
R E S C I E N C E C
Replication / ML Reproducibility Challenge 2021

[Re] Replication Study of ”Fairness and Bias in Online
Selection”
Roxana Petcu1, ID , Pim Praat1, ID , Jeroen Wijnen1, ID , and Manolis Rerres1, ID
1University of Amsterdam, Amsterdam, The Netherlands

Edited by
Koustuv Sinha,

Sharath Chandra Raparthy

Reviewed by
Anonymous Reviewers

Received
04 February 2022

Published
23 May 2022

DOI
10.5281/zenodo.6574689

Reproducibility Summary

Scope of Reproducibility
This report aims to reproduce the results in the paper Fairness and Bias in Online Selection
[1]. The paper presents optimal and fair alternatives for existing Secretary and Prophet
algorithms. Reproducing the paper involves validating three claims made by the au‐
thors [1]: (1) The presented baselines are either unfair or have low performance, (2)
The proposed algorithms are perfectly fair, and (3) The proposed algorithms perform
comparably to or even better than the presented baselines.

Methodology
We recreate the algorithms and perform experiments to validate the authors’ initial
claims for both problems under various settings, with the use of both real and synthetic
data. The authors conducted the experiments in the C++ programming language. We
mainly used the paper as a resource to reimplement all algorithms and experiments
from scratch in Python, only consulting the authors’ code base when needed.

Results
For the Multi‐Color Secretary problem, we were able to recreate the outcomes, as well
as the performance of the proposed algorithm (with a margin of 3‐4%). However, one
baseline within the second experiment returned different results, due to inconsisten‐
cies in the original implementation. In the context of the Multi‐Color Prophet problem,
wewere not able to exactly reproduce the original results, as the authors ran their exper‐
iments with twice asmany runs as reported. After correcting this, the original outcomes
are reproduced.
A drawback of the proposed prophet algorithms is that they only select a candidate in 50‐
70% of cases. None results are often undesirable, so we extend the paper by proposing
adjusted algorithms that pick a candidate (almost) every time. Furthermore, we show
empirically that these algorithms maintain similar levels of fairness.

What was easy
The paper provides pseudocode for the proposed algorithms, making the implementa‐
tion straightforward. More than that, recreating their synthetic data experiments was

Copyright © 2022 R. Petcu et al., released under a Creative Commons Attribution 4.0 International license.
Correspondence should be addressed to Jeroen Wijnen (j.wijnen@outlook.com)
The authors have declared that no competing interests exist.
Code is available at https://github.com/pimpraat/FACT-Ai. – SWH swh:1:dir:da9cb18759db5ecf30608639d8b35a4b247a483d.
Open peer review is available at https://openreview.net/forum?id=S9gs3MmhAY.

ReScience C 8.2 (#32) – Petcu et al. 2022 1

https://orcid.org/0000-0002-2617-205X
https://orcid.org/0000-0003-1412-3389
https://orcid.org/0000-0002-1145-3596
https://orcid.org/0000-0002-3849-6529
mailto:j.wijnen@outlook.com
https://github.com/pimpraat/FACT-Ai
https://archive.softwareheritage.org/swh:1:dir:da9cb18759db5ecf30608639d8b35a4b247a483d/
https://openreview.net/forum?id=S9gs3MmhAY
https://rescience.github.io/

[Re] Replication Study of ”Fairness and Bias in Online Selection”

easy due to providing clear instructions.

What was difficult
However, we did run into several difficulties: 1) There were a number of inconsistencies
between the paper and the code, 2) Several parts of the implementation were missing
in the code base, and 3) The secretary experiments required running the algorithm over
one billion iterations, whichmakes verifying its results within a timelymanner difficult.

Communication with original authors
The authors of the original paper were swift in their response with regard to our find‐
ings. Our main allegations regarding inconsistencies in both the Secretary and Prophet
problems were confirmed by the authors.

1 Introduction

Online selection is challenging, as candidates arrive sequentially and decisions need to
bemadewith incomplete information. Such problems affect our lives in a profoundway.
Algorithmic credit scores determinewho receives amortgage orwho can start a business.
Automatic systems even decide who receives an organ transplant or who has priority
in being admitted to an Intensive Care Unit. The growing importance of algorithms
has prompted concerns about fairness alongside efficiency. Addressing these issues is
essential.
Research has long focused on the performance of such algorithms, but fairness was not
a consideration until recently [2, 3]. The paper ”Fairness and Bias in Online selection” [1]
aims to fill this gap. The authors propose three fair selection algorithms for the domain
of online selection. In particular, they focus on two well‐known problems from the
literature: the Secretary and the Prophet problems.
The aim of this study is to validate the claims made in the paper and see if their results
can be reproduced. Furthermore, we propose an adjusted version of their prophet al‐
gorithms, in order to reduce the number of occurrences where the algorithm does not
pick any candidate.

2 Scope of reproducibility

The focus of our study is to empirically verify the claims of the paper. Themathematical
proofs and theorems lie outside our scope. The authors of the original paper propose
three online algorithms, namely oneMulti‐Color Secretary and twoMulti‐Color Prophet
approaches that are both fair and efficient. They also present several existing baseline
algorithms. The main empirical claims of the paper are:

• The used baselines are either unfair or have low performance.

• The proposed algorithms are perfectly fair.

• The proposed algorithms perform comparably or even better than the presented
baselines.

These claims are supported by experiments where all algorithms select a candidate
based on a variety of datasets. The original authors consider an algorithm fair when
”the solution obtained is balanced with respect to some sensitive attribute (e.g. nation‐
ality, race, gender)” [1]. This notion is consistent with previous work [4, 5]. More pre‐
cisely, algorithms are considered fair when they respect the prior probability p that the

ReScience C 8.2 (#32) – Petcu et al. 2022 2

https://rescience.github.io/

[Re] Replication Study of ”Fairness and Bias in Online Selection”

best candidate belongs to a certain group. Performance is defined as the probability of
selecting the optimal candidate (in the Secretary setting) and the average value of the
selected candidate (in the Prophet setting).
We validate their claims by recreating the algorithms and experiments from scratch in
Python. We use the description in the paper as a guideline, referring to the original code
only when necessary.

3 Methodology

3.1 The Secretary Algorithm

Algorithm 1 describes the original au‐
thors’ fair secretary algorithm. Candi‐
dates appear in increasing order of their
arrival time τ . The algorithm calculates
one threshold t ∈ [0, 1]k per group c, us‐
ing Formula 1.

t∗k = (1− (k − 1)pk)
1

k−1

t∗j = t∗j+1

(∑j
r=1

pr

j−1 − pj∑j
r=1

pr

j−1 − pj+1

) 1
j−1

for 2 ≤ j ≤ k − 1

t∗1 = t∗2 · e
p2
p1

−1

(1)

Algorithm 1 Fair Secretary

Input: t ∈ [0, 1]k, a time threshold per
group

n candidates scores
Output: i ∈ [n], index of chosen candi‐
date
for i← 1 to n do

if τi′ > tc(i) then
if i≻ max {i′ | τi′ ≤ τi, c (i

′ |) = c(i)}
then

return i
end

end
end

This threshold determines fromwhich point the algorithm could pick a candidate. Once
the thresholds are computed, they are used as input to Algorithm 1 along with the data.
The algorithm will return its best candidate.

3.2 Prophet algorithm
In contrast to the secretary setting, the prophet algorithm knows the distribution that
the scores are drawn from. Furthermore, all prophet experiments occur in a setting
where each candidate is in a unique group, meaning each group has a size of one. This
constraint aims to create an algorithm that gives candidates in each arrival position the
same probability of being picked. Each group represents a position in the queue and
arrival order of the candidates in this problem is not random.
The original authors consider two settings in their paper: one where each candidate is
drawn from a separate distribution, and one where the scores are i.i.d.. Pseudocode for
both models is illustrated in Algorithms1 2 and 3.

1Since the original authors refer to Algorithm 2 as the Fair General Prophet and FairPA interchangeably,
it makes sense for us to do the same.

ReScience C 8.2 (#32) – Petcu et al. 2022 3

https://rescience.github.io/

[Re] Replication Study of ”Fairness and Bias in Online Selection”

Algorithm 2 Fair General Prophet
Input: F1...Fn, distributions

q1...qn, fair optimal pick proba‐
bility

n candidates scores
Output: i ∈ [n], index of chosen can‐
didate
for i← 1 to n do

if vi ≥ F−1
i

(
1− qi/2

1−s/2

)
then

return i
end
s← s+ qi

end

Algorithm 3 Fair IID Prophet
Input: F1...Fn, distributions

q1...qn, fair optimal pick proba‐
bility

n candidates scores
Output: i ∈ [n], index of chosen can‐
didate
for i← 1 to n do

if vi ≥ F−1
(
1− 2/3n

1−2(i−1)/3n

)
then

return i
end

end

3.3 Evaluation metrics
For evaluating the experiments, the authors set several metrics that reflect both the fair‐
ness and efficacy of their study. For the Secretary algorithm they report the number
of candidates picked by each model, the number of times the chosen candidates corre‐
spond to themaximumvaluemax Cj within their group, and the probability of choosing
the maximummax C from the data. Meanwhile, the Prophet algorithms are compared
based on the balance in selection rates across arrival order and the average value of the
picked candidates.

4 Code implementation

Implementation of the experiments was done in Python, making use of the descriptions
in the paper and the published code base 2. The original authors conducted their exper‐
iments in C++. The code was factorized neatly into different files for retrieving the data,
implementation of algorithms and experiments.
We were largely able to reproduce all of the code. However, three important elements
of the code were lacking:

• the experiments on the prophet algorithms

• the production of plots and summary statistics of both experiments

• the data preprocessing for real datasets

Due to these issues, wewere unable to review the exact settings of the experiments. This
made it difficult to determine the reason behind different results in our reimplementa‐
tion. Details are expanded on in the following section. As a consequence, we contacted
the authors for further specifications of their approach.
Moreover, the naming of the baselines and proposed algorithms in the original imple‐
mentation is inconsistent with the naming in the paper. The original papers of the base‐
lines were needed to figure out the used naming conventions.
Lastly, it is important to note that our implementation does not utilise GPUs or paralleli‐
sation because we have sequential process. Therefore the results could not be sped up
using high performance clusters. As a result, one of our experiments could not be run
in a timely manner as it took over 40 hours for 1/5 of the data.

2Original code: https://github.com/google-research/google-research/tree/master/fairness_and_bias_in_online_
selection. Our full implementation is open‐sourced and can be found on: https://github.com/pimpraat/FACT-Ai

ReScience C 8.2 (#32) – Petcu et al. 2022 4

https://github.com/google-research/google-research/tree/master/fairness_and_bias_in_online_selection
https://github.com/google-research/google-research/tree/master/fairness_and_bias_in_online_selection
https://github.com/pimpraat/FACT-Ai
https://rescience.github.io/

[Re] Replication Study of ”Fairness and Bias in Online Selection”

5 Experimental setup

5.1 Secretary problem
Data: The paper uses four different datasets for the Secretary problem, out of which two
are synthetic. For each dataset, the algorithm runs 20,000 times.
For the first dataset we divide candidates into four groups with 10, 100, 1000, and 10, 000
occurrences. The probability p of the best candidate coming from this group is the same
for all colors, namely (p = .25). In the second setting, this condition is changed and
group probabilities differ: p = (.3, .25, .25, .2). Thirdly, the authors use a dataset of
phone calls made by a Portuguese banking institution [6]. For the purpose of this exper‐
iment, the score is the length of the phone call. The group probabilities are set to be
equal (p = .2). Lastly, the algorithm is tested on a dataset of influencers of the social
network ‘Pokec’[7]. The influencers’ score is their number of followers and they are di‐
vided into five groups with equal probability: (p = .2) for each group.

Baselines: The authors test their fair Secretary algorithm by contrasting it to two base‐
lines. Secretary algorithm (SA) computes themaximum score value assigned in the first
1/e part of the arrival sequence of the candidates. After that, it compares the rest of the
values with the aforementioned picked one and returns the maximum value across the
whole streamline. It does not consider a candidate’s group. The Single‐color secretary
algorithm (SCSA) selects a color with a probability proportional to the provided values
of p, and then considers only candidates of that color.

5.2 Prophet problem
Data: The prophet algorithms are tested on two synthetic datasets. In the original paper,
each algorithm runs 50, 000 times. In the first experiment, 50 samples are drawn from
a uniform distribution [0, 1]. In the second experiment, 1000 samples are drawn from a
binomial distribution with 1000 trials and probability of success of 1/2.

Baselines: The authors compare their devised algorithmswith four baseline algorithms:
First, the SC algorithm [8], which places a single threshold such that it finds a candidate
50 % of the time. Second, the EHKS algorithm [9] where each candidate is selected with
probability 1

n . Thirdly, the CFHOV algorithm [10], which uses a succession of thresh‐
olds derived from the probabilities that candidates are accepted. Lastly, the DP algo‐
rithm [11] that uses a differential equation to create thresholds. This last algorithm is
excluded from their plots, as it is so unbalanced that it distorts the readability of the
graph.
During implementation we noticed that both the SC and EHKS algorithms were signif‐
icantly quicker. This is due to their property of using a constant calculated threshold
for each run of the algorithm, instead of recalculating the threshold after seeing each
candidate.

6 Replication of results

6.1 Secretary problem
Figure 1 shows the results of the Secretary experiments from our implementation. Our
algorithm is equally fair and appears to pick the optimal candidate with roughly the
same frequency in three out of four experiments. The results from the original paper can
be found in the Appendix (Figure 4). Table 1 shows the evaluationmetrics (as described
in section 3.3) for all experiments. Our scores are generally comparable to those in the
original paper, with a margin of just 3‐4%.

ReScience C 8.2 (#32) – Petcu et al. 2022 5

https://rescience.github.io/

[Re] Replication Study of ”Fairness and Bias in Online Selection”

Figure 1. This plot contains our replication of the results for all four experiments, each one with
a different dataset. Within each graph, there are 7 blocks of bars. The first one represents the
group sizes of the colorswe consider. Thenext two are called F‐Pick andF‐Maxwhich illustrate the
number of elements picked and thenumber ofmaximumamong the elements pickedby theMulti‐
Color Secretary Algorithm (MCSA). The same goes for U‐Pick and U‐Max which are representative
of the plain Secretary Algorithm (SA). Lastly, S‐Pick and S‐Max illustrate the results of the Single‐
Color Secretary Algorithm (SCSA).

The only algorithm in which our results differ is the SA, illustrated as U‐Pick and U‐
Max. The SA algorithm showed inconsistencies in two respects. To begin with, the
authors’ experiments show that in setting (a) (synthetic dataset with equal p), SA almost
exclusively returns candidates from group 4. However, in setting (b) (when p differs
per group) it selects from multiple groups. This change is striking, as the SA algorithm
should not take into account the probabilities of different groups.
We raised these observations in a chain of discussionswith the authors. They confirmed
our suspicions that the results of the SA algorithm are not intuitive, but did not know
the reason for the discrepancies. They indicated that one possible reason would be the
manner of sampling synthetic data. Given their explanation, we chose to further analyze
their C++ implementation and figure out whether our results are incorrect or if there are
other reasons for these differences. We found out that there are several inconsistencies
in their original implementation as compared to the paper:

• New synthetic data are generated for each of the 20,000 iterations of the experi‐
ment instead of using the same dataset for all iterations

• When testing whether the returned candidate at index i is the maximum from
its group Cj , the authors apply a margin of 10. They verify whether score(i) ∈
[max Cj − 10], wheremax Cj represents the maximum score of color j.

• Even though the original paper states that the probabilities p are not taken into
account by algorithm SA, the original implementation does take into account the
probabilitieswhen creating the synthetic data. It adds bias towards a certain group
by assigning one candidate from that group theupper limit value of aunsigned int 64
data type in C++ (264 − 1). This happens only in the second experiment.

ReScience C 8.2 (#32) – Petcu et al. 2022 6

https://rescience.github.io/

[Re] Replication Study of ”Fairness and Bias in Online Selection”

Synth.
Equal p

Synth.
General p

Feedback
maximiz.

Influence
maximiz.

No. picked Original results 1.305 1.309 1.347 1.373
Reproduced 1.354 1.350 1.372 ‐

Max candid. Original results 1.721 1.6302 1.760 1.756
Reproduced 1.684 1.636 1.837 ‐

Table 1. Evaluation metrics for the Secretary Problem. Each score represents how many more
times theMulti‐color Secretary Algorithmchose a candidate as compared to themost fair baseline,
namely the Single‐color Secretary algorithm.

Because of these implementation inconsistencies, parts of the experiments were not
easily reproducible. We claim that they cause a difference in results for experiment (b).
We test our claim by running the original code, but without the three inconsistencies
mentioned above. The modified implementation outputs results that are much closer
to our findings. They are illustrated in the Appendix in Figure 6.
Furthermore, the SA algorithm also returned different results for dataset (d) on Influ‐
enceMaximization. Thepaper illustrates thatU‐pick selects candidates from twogroups,
namely Under and Normal. However, our algorithm picks candidates only from the Nor-
mal group. To understandwhy this happened, we ran this experiment using the original
code. The authors included neither the data nor the preprocessing steps, so we used our
own preprocessed data. The results can be found in the Appendix in Figure 73. When
using the same input data, the original code yields exactly the same results as our im‐
plementation. Therefore, the found inconsistencies originate from the data itself, and
correcting the BMI formula from the original code should result in identical outcomes.4
We can thus conclude that the Influence Maximization experiment would be exactly re‐
produced if we were to have access to the originally prepossessed data.

6.2 Prophet problem
Figure 2 shows the experiment outcomes of our replicatedFairPAandFairIID algorithms.
Even though the general trends in the plots match, our overall number of picks is far
lower for each of the algorithms. The original authors appear to pick a candidate every
single time.5 In some cases, the number of picks even exceeds the number of experi‐
ments run, which should not be possible.6
By contrast, our reproduced FairPA algorithm returns a None result 50% of the time, and
FairIID 30%. This makes sense, as the algorithm was designed to pick each candidate
with probability of q/2.7 We also ran the original code, after making minor adjustments
to get it running and to deal with None picks. Running on this code shows identical
results to our own reproduced implementation.
The most probable explanation for both discrepancies in the reproduced results is that
the original authors ran 100, 000 experiments, instead of 50, 000. Figures 2c and 2d show

3The authors ran approximately 1 billion iterations over the Pokec dataset. Due to time constraints we
had to restrict our experiment to 20,000 iterations. For a clearer comparison between the groups frequency
and the experiment results, we downsampled the size of the input

4For our experiment, we used the formula BMI = weight/height2 and defined the health groups as
described by the WHO.

5For instance the number of picked candidates per position for their FairPA algorithm in the uniform
distribution is 1000. This corresponds to 50 positions x 1000 picks = 50,000 total picks, the same as the number
of iterations used.

6The number of picks of the original FairIID algorithm in the uniform distribution dataset hovers around
1200, which wouldmean 1200 picks x 50 positions = 60,000 total picks, far more than the 50,000 iterations. The
same is true for the FairIID algorithm under the binomial setting. The line is somewhat obscured by other
algorithms, but appears to be consistently higher based on the reported number of experiments.

7q is the probability of an optimal offline algorithm choosing a certain candidate. This offline algorithm
has a None rate of zero.

ReScience C 8.2 (#32) – Petcu et al. 2022 7

https://rescience.github.io/

[Re] Replication Study of ”Fairness and Bias in Online Selection”

(a) uniform distribution, 50,000 iterations (b) binomial distribution, 50,000 iterations

(c) uniform distribution, 100,000 iterations (d) binomial distribution, 100,000 iterations

Figure 2. This plot contains our replication of the results for both prophet experiments, depicting
the number of times the selected algorithms pick from each position in the candidate stream.
Figure 2a & 2b refer to our experiment setup with 50,000 iterations, while Figure 2c & 2d refer to
100,000 iterations. The datasets for 2a and 2c are from the uniform distribution, while 2b and 2d
come from the binomial distribution. Subfigures 2c and 2d are approximately identical to those
in the original paper.

that when running our algorithms with this number of experiments, the results are
strongly comparable to those of the original authors. We also contacted the authors
about this discrepancy. They confirmed that their reported number of picks was too
high. Similarly to us, they assumed to have run the experiments twice as often as re‐
ported. However, they were not able to confirm this at the time. Since the implementa‐
tion of the Prophet experiments themselves are not included in the code base, we were
not able to definitively diagnose the reason for the discrepancy.
Table 2 shows the originally reported mean values, as well as our replication results. As
is clear, we were able to closely approximate the original authors’ results. However, we
were only able to do this after assigning None results a value of zero. Neither the ICML‐
version nor the full version of the paper mentions how their metrics deals with None
picks. Nevertheless, as taking None picks as values of zero generated the same results,
we assumed they used this approach.

FairPA FairIID SC EHKS CFHOV DP

Uniform Original 0.501 0.661 0.499 0.631 0.752 0.751
Reproduced 0.500 0.660 0.497 0.630 0.752 0.750

Binomial Original 298 389 278 364 430 513
Reproduced 299 389 279 363 429 512

Table 2. Evaluation metrics for the Prophet Problem. Each score represents the mean value of
selected candidates. None picks were considered as having a value of zero. For the reproduced
results, we ran 100,000 experiments.

Additionally, the original FairPA and FairIID algorithms selected candidates with an av‐
erage value of ”66.71% and 88.01% (for the uniform case), and 58.12% and 75.82% (for

ReScience C 8.2 (#32) – Petcu et al. 2022 8

https://rescience.github.io/

[Re] Replication Study of ”Fairness and Bias in Online Selection”

the binomial case), of the ”optimal, but unfair, online algorithm” average. 8 9 Here, we
again found found the same results (deviation < 1%).

7 Fair online decision making with higher pick-rates

As mentioned in section 6.2 the paper’s proposed prophet algorithms pick a candidate
in only 50% of cases. This is often not useful in practice. For this reason, we extended
on the original paper by adjusting the (mathematical) parameters used for the FairPA
and FairIID algorithms. We contacted the authors to ask about their reasoning for us‐
ing their parameters. They replied that their parameters achieved: ”the best possible
approximation ratio guarantee of a 1/2. However, they added: ”It is possible that other
algorithms also achieve the 1/2 guarantee, or something close to it, while having other
interesting properties, for instance being less wasteful.”
Both algorithms 2 and 3 depend on calculating a top percentile that the candidate’s value
needs to be in. Each formula includes a constant of 1. We change this constant to pa‐
rameter ϵ:

• The FairProphet algorithm depends essentially on 1− qi/2
1−s/2 . We change this frac‐

tion to 1− qi/2
ϵ−s/2

• TheFairIID algorithmdepends on 1− 2/3n
1−2(i−1)/3n , whichwe change to 1− 2/3n

ϵ−2(i−1)/3n .

and perform a grid search to approximately find the optimal values. For this parameter
search, we used values slightly above and below the original parameters. We hypoth‐
esise that choosing a lower ϵ should decrease the top percentile a candidate needs to
belong to in order to get selected. This should decrease the probability of finishing
without picking any candidate, with the downside of achieving possibly a lower mean
value.
Figure 3 shows the results from our grid search, for the FairPA setting. The experiments
for the FairIID setting show similar trends, as can be seen in Appendix section 8.3. As
ϵ decreases, the number of picks goes up significantly. The algorithm remains approxi‐
mately equally fair10. However, when ϵ becomes too low, fairness starts to suffer. This
is because the algorithm always chooses a candidate before getting to the end, meaning
it never sees the last candidates in line.
Our updated version of both the FairPA and FairIID increases performance on almost
all originally used metrics in the paper for both distributions (see Appendix section 8.3).
For the best found epsilon values, the None rate is close to zero. When excluding None
results from the mean value of candidates, our optimal version performs slightly worse
than the original authors’ algorithm. This makes sense, as our algorithm is less picky
and will also accept candidates with slightly lower scores. On the other hand, when
including None results as a 0 value in the average, our algorithm outperforms that of
the original authors.

8During communication with the authors it was brought to our attention that the results for the DP differ
in the ICML version and the full version of the original paper, ”due to a small issue in the calculation of the DP
in the ICML version.”. This results in the DP achieving an average score of 0.964 and 548.94 for the uniform
and binomial distribution respectively. This then also changes the value of the optimal, but unfair algorithm
to the following: ” 51.97% and 68.57% (for the uniform case), and 54.35% and 70.91% (for the binomial case)”
[12]. However, we focus on the ICML paper and thus focus on the presented results in this version. Partly due
to the issue that no sufficient documentation could be found in order to solve this addressed issue in the DP
algorithm.

9While the paper does not specify explicitly which unfair algorithm they mean in the paper, this seemed
to refer to the DP algorithm.

10We would like to mention that we have not mathematically proven that our version is indeed ’fully’ fair
as the original authors did

ReScience C 8.2 (#32) – Petcu et al. 2022 9

https://rescience.github.io/

[Re] Replication Study of ”Fairness and Bias in Online Selection”

(a) uniform (b) binomial

Figure 3. Results from the gridsearch for the FairPA setting. The figures show the number of picks
per position for different values of ϵ. The value ϵ = 1.0 corresponds to the original paper’s algo‐
rithm.

8 Conclusion

To summarise this study: for both the Secretary and the Prophet problems we found
that the results are largely reproducible. We did however find some inconsistencies in
one of the baselines of the secretary problem, and on the scale of the prophet results.
After further investigation, these discrepancies could be attributed to inconsistencies in
the original authors’ code. After this reproducibility study we conclude that the main
claims made in the paper still hold.
The paper and the provided code base provided a good resource for reproducing the
code. However, due to the absence of several parts of their code and the mentioned
inconsistencies, the replication of the (exact) results took longer than expected. Fortu‐
nately, the authors showed to be very helpful and willing to answer our questions and
concerns.
A drawback of the proposed prophet algorithms is that they only select a candidate in
50% (FairPA) and 30% (IID) of cases. Having such a None result is often undesirable, so
we introduced two adjusted prophet algorithmswhich have a pick rate of (close to) 100%.
Our results suggest that these algorithms maintain similar levels of fairness.
As a point of discussion, we would like to note that knowing the group probabilities p
beforehand is, in some cases, quite counter intuitive. This fell outside of the scope of
this reproducibility study, but it would be an interesting approach for further research
to handle this critique.

References

1. J. Correa, A. Cristi, P. Duetting, and A. Norouzi-Fard. “Fairness and Bias in Online Selection.” In: Proceedings
of Machine Learning Research 139 (18–24 Jul 2021). Ed. by M. Meila and T. Zhang, pp. 2112–2121. URL:
https://proceedings.mlr.press/v139/correa21a.html.

2. N. Buchbinder, K. Jain, and M. Singh. “Secretary problems via linear programming.” In: Mathematics of Opera-
tions Research 39.1 (2014), pp. 190–206.

3. S. Cayci, S. Gupta, and A. Eryilmaz. “Group-Fair Online Allocation in Continuous Time.” In: Advances in Neural
Information Processing Systems. Ed. by H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin. Vol. 33.
Curran Associates, Inc., 2020, pp. 13750–13761. URL: https : / /proceedings .neurips . cc /paper /2020/ file /
9ec0cfdc84044494e10582436e013e64-Paper.pdf.

4. E. Celis, V. Keswani, D. Straszak, A. Deshpande, T. Kathuria, and N. Vishnoi. “Fair and Diverse DPP-Based Data
Summarization.” In: Proceedings of the 35th International Conference on Machine Learning. Ed. by J. Dy and
A. Krause. Vol. 80. Proceedings of Machine Learning Research. PMLR, Oct. 2018, pp. 716–725. URL: https :
//proceedings.mlr.press/v80/celis18a.html.

ReScience C 8.2 (#32) – Petcu et al. 2022 10

https://proceedings.mlr.press/v139/correa21a.html
https://proceedings.neurips.cc/paper/2020/file/9ec0cfdc84044494e10582436e013e64-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/9ec0cfdc84044494e10582436e013e64-Paper.pdf
https://proceedings.mlr.press/v80/celis18a.html
https://proceedings.mlr.press/v80/celis18a.html
https://rescience.github.io/

[Re] Replication Study of ”Fairness and Bias in Online Selection”

5. F. Chierichetti, R. Kumar, S. Lattanzi, and S. Vassilvtiskii. “Matroids, Matchings, and Fairness.” In: Proceedings
of the Twenty-Second International Conference on Artificial Intelligence and Statistics. Ed. by K. Chaudhuri and
M. Sugiyama. Vol. 89. Proceedings of Machine Learning Research. PMLR, 16–18 Apr 2019, pp. 2212–2220.
URL: https://proceedings.mlr.press/v89/chierichetti19a.html.

6. S. Moro, P. Cortez, and P. Rita. “A Data-Driven Approach to Predict the Success of Bank Telemarketing.” In:
Decision Support Systems 62 (June 2014). DOI: 10.1016/j.dss.2014.03.001.

7. L. Takac and M. Zábovský. “Data analysis in public social networks.” In: International Scientific Conference and
International Workshop Present Day Trends of Innovations (Jan. 2012), pp. 1–6.

8. E. Samuel-Cahn. “Comparison of Threshold Stop Rules and Maximum for Independent Nonnegative Random
Variables.” In: The Annals of Probability 12.4 (1984), pp. 1213–1216. DOI: 10.1214/aop/1176993150. URL: https:
//doi.org/10.1214/aop/1176993150.

9. S. Ehsani, M. Hajiaghayi, T. Kesselheim, and S. Singla. “Prophet Secretary for Combinatorial Auctions and
Matroids.” In: CoRR abs/1710.11213 (2017). arXiv:1710.11213. URL: http://arxiv.org/abs/1710.11213.

10. J. Correa, P. Foncea, R. Hoeksma, T. Oosterwijk, and T. Vredeveld. “Posted Price Mechanisms and Optimal
Threshold Strategies for Random Arrivals.” English. In: Mathematics of Operations Research 46.4 (Nov. 2021),
pp. 1452–1478. DOI: 10.1287/moor.2020.1105.

11. Y. S. Chow, H. E. Robbins, and D. O. Siegmund. “Great expectations: The theory of optimal stopping.” In: 1971.
12. J. Correa, A. Cristi, P. Duetting, and A. Norouzi-Fard. “Fairness and Bias in Online Selection (full version).” In:

2021.

ReScience C 8.2 (#32) – Petcu et al. 2022 11

https://proceedings.mlr.press/v89/chierichetti19a.html
https://oadoi.org/10.1016/j.dss.2014.03.001
https://oadoi.org/10.1214/aop/1176993150
https://doi.org/10.1214/aop/1176993150
https://doi.org/10.1214/aop/1176993150
http://arxiv.org/abs/1710.11213
http://arxiv.org/abs/1710.11213
https://oadoi.org/10.1287/moor.2020.1105
https://rescience.github.io/

[Re] Replication Study of ”Fairness and Bias in Online Selection”

Appendix

8.1 Plots from original paper

Figure 4. Results from the Secretary experiments in the original paper. The plot compares their
fair secretary algorithmwith the secretary algorithm (SA) and the single‐color secretary algorithm
(SCSA) on (a) synthetic dataset, equal p values, (b) synthetic dataset, general p values, (c) feedback
maximization dataset, and (d) influence maximization dataset. Here Input is the number of ele‐
ments from each color in the input, F‐Pick and F‐Max are the number of elements picked by our
fair secretary algorithm and the number of them that are the maximum among the elements of
that color. Similarly, U‐Pick (S‐Pick) and U‐Max (S‐Max) are the number of elements picked by SA
and SCSA and the number of them that are the maximum among the elements of that color.

Figure 5. Results from the Prophet Experiments in the original paper: Results from the original
paper. The plot represents the number of times that our algorithms (Fair PA, Fair IID) and the
baselines (SC, EHKS, DP) pick from each position of the input prophet problem stream. In (a) the
stream consists of 50 sample from the uniform distribution and in (b) the stream consist of 1000
sample from the binomial distribution.

ReScience C 8.2 (#32) – Petcu et al. 2022 12

https://rescience.github.io/

[Re] Replication Study of ”Fairness and Bias in Online Selection”

8.2 Plots from original code

Our results C++ altered implementation results

Figure 6. Results from running the original C++ code on the synthetic Dataset General p Experi‐
ment.

Our results C++ altered implementation results

Figure 7. Results from running the original C++ code on the Influence Maximization Experiment.

ReScience C 8.2 (#32) – Petcu et al. 2022 13

https://rescience.github.io/

[Re] Replication Study of ”Fairness and Bias in Online Selection”

8.3 Extension: parameter grid search
In this section, we present the results from our hyperparameter search on ϵ for both Fair
Prophet algorithms. The original value of ϵ was 1.0 for both algorithms. As ϵ decreases,
the None rate goes down. Optimal values appear to be 0.5 for FairPA and 0.7 for the
FairIID algorithm. If ϵ becomes lower than that, fairness suffers. The algorithm is then
so unstrict, that it always makes a pick before seeing the last candidates in the queue.

(a) uniform, performance metrics (b) binomial, performance metrics

Figure 8. Results grid search of FairPA, as presented in section 7. Figures 3a & 3b show the number
of picks per position for different values of ϵ. The value ϵ = 1.0 corresponds to the original paper’s
algorithm. Figures 8a & 8b show None rates and mean scores (including and excluding None
results) for both settings.

(a) uniform (b) binomial

(c) uniform, mean values (d) binomial, mean values

Figure 9. Results grid search of FairIID algorithm, as presented in section 7. Figures 9a & 9b show
the number of picks per position for different values of ϵ. The value ϵ = 1.0 corresponds to the
original paper’s algorithm. Figures 9c & 9d show None rates and mean scores (including and
excluding None results) for both settings.

ReScience C 8.2 (#32) – Petcu et al. 2022 14

https://rescience.github.io/

	Introduction
	Scope of reproducibility
	Methodology
	The Secretary Algorithm
	Prophet algorithm
	Evaluation metrics

	Code implementation
	Experimental setup
	Secretary problem
	Prophet problem

	Replication of results
	Secretary problem
	Prophet problem

	Fair online decision making with higher pick-rates
	Conclusion
	Plots from original paper
	Plots from original code
	Extension: parameter grid search

