
R E S C I E N C E C
Replication / ML Reproducibility Challenge 2021

[Re] Value Alignment Verification

Siba Smarak Panigrahi1,2, ID and Sohan Patnaik1,2, ID
1Equal Contributions – 2Indian Institute of Technology Kharagpur, India

Edited by
Koustuv Sinha,

Sharath Chandra Raparthy

Reviewed by
Anonymous Reviewers

Received
04 February 2022

Published
23 May 2022

DOI
10.5281/zenodo.6574687

Reproducibility Summary

Scope of Reproducibility
The main goal of the paper ”Value Alignment Verification” [1] is to test the alignment of
a robot’s behavior efficiently with human expectations by constructing a minimal set of
questions. To accomplish this, the authors propose algorithms and heuristics to create
the above questionnaire. They choose a wide range of gridworld environments and a
continuous autonomous driving domain to validate their put forth claims. We explore
value alignment verification for gridworlds incorporating a non‐linear feature reward
mapping as well as an extended action space.

Methodology
We re‐implemented the pipeline with Python using mathematical libraries such as
numpy and scipy. We spent approximately twomonths reproducing the targeted claims
in the paper with the first month aimed at reproducing the results for algorithms and
heuristics for exact value alignment verification. The second month focused on extend‐
ing the action space, additional experiments, and refining the structure of our code.
Since our experiments were not computationally expensive, we carried out the experi‐
ments on CPU. The code is available at https://github.com/AIExL/vav_rc2021.

Results
The techniques proposed by authors in [1] can successfully address the value alignment
verification problem in different settings. We empirically demonstrate the effectiveness
of their proposals by performing exhaustive experiments with several variations to their
original claims. We showhigh accuracy and low false positive and false negative rates in
the value alignment verification task with aminimumnumber of questions for different
algorithms and heuristics.

What was easy
The problem statement, as well as the implementation of algorithms and heuristics,
were straightforward. We also took aid from the original repository published with the
paper. However, we implemented the entire pipeline from scratch and incorporated
several variations to our code to perform additional designed experiments.

Copyright © 2022 S.S. Panigrahi and S. Patnaik, released under a Creative Commons Attribution 4.0 International license.
Correspondence should be addressed to Siba Smarak Panigrahi (sibasmarak.p@gmail.com)
The authors have declared that no competing interests exist.
Code is available at https://github.com/AIExL/vav_rc2021. – SWH swh:1:dir:4d43ea96458cc573dd2b57208fae0b12f8da896f.
Open peer review is available at https://openreview.net/forum?id=BFLM3nMmhCt.

ReScience C 8.2 (#31) – Panigrahi and Patnaik 2022 1

https://orcid.org/0000-0003-2525-988X
https://orcid.org/0000-0002-4181-4161
https://github.com/AIExL/vav_rc2021
mailto:sibasmarak.p@gmail.com
https://github.com/AIExL/vav_rc2021
https://archive.softwareheritage.org/swh:1:dir:4d43ea96458cc573dd2b57208fae0b12f8da896f/
https://openreview.net/forum?id=BFLM3nMmhCt
https://rescience.github.io/

[Re] Value Alignment Verification

What was difficult
Comprehending different algorithms and heuristics proposed in prior works along with
their mathematical formulation and reasoning for their success in the given task was
considerably difficult. Additionally, the original code base had several redundant files,
which created initial confusion. We iterated and discussed the arguments in the paper
and prior work several times to thoroughly understand the pipeline. Nevertheless, once
the basics were clear, the implementation was comparatively simple.

Communication with original authors
We reached out to the authors numerous times via email to seek clarifications and addi‐
tional implementation details. The authors were incredibly receptive to our inquiries,
and we appreciate their thorough and prompt responses.

ReScience C 8.2 (#31) – Panigrahi and Patnaik 2022 2

https://rescience.github.io/

[Re] Value Alignment Verification

1 Introduction

Autonomous agents are used for complex, challenging, riskier, and dangerous tasks
which brings up the need of verifyingwhether the agents act in away that is both optimal
and safe w.r.t another agent that has already been performing the said task (example, a
human agent). This problem of verifying the alignment of one agent’s behavior w.r.t an‐
other agent is known as Value Alignment Verification. The original paper [1] proposes a
framework for efficient value alignment verification. They discuss three different set‐
tings of increasing difficulty in terms of verification:

1. explicit human, explicit robot: where both the agents are completely aware of their
reward functions.

2. explicit human, implicit robot: where the human agent is aware of its reward func‐
tion but the robot agent can only be queried about its action preferences on differ‐
ent states.

3. implicit human, implicit robot: where the only basis of value alignment is through
preferences over trajectories.

Depending on the setting, value alignment can be either exact or approximate. We try to
reproduce and validate the results for the proposed framework on the first and second
setting, i.e., (explicit human, explicit robot) and (explicit human, implicit robot). The exper‐
iments involve gridworld environments with a deterministic action space. The aim of
value alignment verification is to create a questionnaire using the human agent’s knowl‐
edge (reward function or trajectory preferences) that can be given to any agent in order
to verify alignment. Efficient verification aims to minimize the number of queries in
the questionnaire. While few works on value alignment discuss qualitative evaluation
of trust [2] or asymptotic alignment of an agent’s performance via interactions and ac‐
tive learning [3] [4] [5], [1] solely focuses on verifying value alignment for two or more
agents with a learned policy. The objective is to efficiently test compatibility of different
robots with human agents. In the following sections, we reiterate the formal definition
of value alignment as stated by the original authors (Value Alignment Verification in Sec‐
tion 3 and Exact Value Alignment Verification in Section 4), followed by our experiment
settings in Section 7 and subsequent observations in Section 8.

2 Notation

We use the notation proposed in [6], where a Markov Decision Process (MDP) M is de‐
fined by an environmentE and a reward functionR. An environmentE = (S,A, P, S0, γ)
where S is a set of states,A is a set of actions, P is a transition function, P : S×A×S →
[0, 1], γ ∈ [0, 1) is discount factor and a distribution over initial states S0. The reward
function R : S → R. A policy π : S × A → [0, 1] from states to a distribution over ac‐
tions. The state and state‐action values of a policy π are V π

R (s) = Eπ[
∑∞

t=0 γ
tR(st)|s0 =

s] and Qπ
R(s, a) = Eπ[

∑∞
t=0 γ

tR(st)|s0 = s, a0 = a] for s ∈ S and a ∈ A. The op‐
timal value functions are, V ∗

R(s) = maxπ V π
R (s) and Q∗

R(s, a) = maxπ Qπ
R(s, a). Let

AR(s) = argmaxa′∈AQ
∗
R(s, a

′) denote the set of optimal actions at a state s under the
reward function R. Then AR(s) = {a ∈ A|π∗

R(a|s) > 0}. It is assumed that reward func‐
tion is linear under state features ([7], [8], [9]) ϕ : S → Rk, such that R(s) = wTϕ(s),
where w ∈ Rk. Note that there is no restriction on the features ϕ, therefore these
features could be complex non‐linear functions of the state as well. The state‐action
value function can be written in terms of features ([10]) as Qπ

R(s, a) = wTΦ
(s,a)
π where

Φ
(s,a)
π = Eπ[

∑∞
t=0 γ

tϕ(st)|s0 = s, a0 = a].

ReScience C 8.2 (#31) – Panigrahi and Patnaik 2022 3

https://rescience.github.io/

[Re] Value Alignment Verification

3 Value Alignment Verification

Consider two agents (for instance, a human and a robot) where the first agent’s (human)
reward function provides the ground truth for the value alignment verification of the
second agent (robot). The definition is as follows:

Definition 1 Given reward function R, a policy π′ is ϵ-value aligned in environment E if and
only if

V ∗
R(s)− V π

′

R (s) ≤ ϵ, ∀s ∈ S (1)

The aim of the study [1] is efficient value alignment verification which, formally, is a
solution for the following:

min
T⊆T

|T |, s.t. ∀π
′
∈ Π, ∀s ∈ S

V ∗
R(s)− V π

′

R (s) > ϵ ⇒ Pr[π
′
passes test T] ≤ δfpr

V ∗
R(s)− V π

′

R (s) ≤ ϵ ⇒ Pr[π′ fails test T] ≤ δfnr

(2)

where T is the set of all possible queries, Π is set of all policies for which the test is
designed, δfnr, δfpr ∈ [0, 1] are the false negative and false positive rates, and |T | is the
size of test T . When ϵ = δfpr = 0, the authors call this setting exact value alignment
verification.

4 Exact Value Alignment Verification

Exact value alignment verification is not possible, even for finite MDPs, when we can
only query the robot agent for its action preferences. Therefore, it is possible only in the
most idealized setting, i.e., explicit human, explicit robot.

Definition 2 Define an agent π′ to be rational ([11]) if:

∀a ∈ A, π′(a|s) > 0 ⇒ a ∈ argmax
a

Q∗
R′(s, a) (3)

where argmaxaQ
∗
R′(s, a) is the optimal state-action value function for the reward functionR′.

As there exist infinitely many reward functions which can return the same optimal pol‐
icy ([12]), determining that ∃s ∈ S,R(s) ̸= R′(s) does not necessarily imply that agents
with the reward functions R,R′ are not aligned. We provide an example of this in Fig‐
ure 1, where the optimal policy for human and robot is the same; thus, they are aligned.
However, the rewards are different, as mentioned in Table 1.

Figure 1. Counterexample with same optimal policy for human and robot

Definition 3 Define the set of all the optimal policies under the reward function R as OPT(R).

OPT (R) = {π|π(a|s) > 0 ⇒ a ∈ argmax
a

Q∗
R(s, a)}

ReScience C 8.2 (#31) – Panigrahi and Patnaik 2022 4

https://rescience.github.io/

[Re] Value Alignment Verification

Table 1. Human and robot rewards for gridworld (Figure 1)

State Color Terminal State Human Reward Robot Reward

Blue No ‐ 0.6157 ‐ 0.5316
White No ‐ 0.3107 ‐ 0.0694
Green Yes + 0.7242 + 0.8441

Looking at Definition 1 and Equation 3 simultaneously makes it evident that for a ra‐
tional robot, if all of its optimal policies are also optimal under ground truth reward
function R; the robot is exactly aligned with the human.

Corollary 1 We have exact value alignment in environment E between a rational robot with
reward functionR

′
and a human with reward functionR ifOPT (R

′
) ⊆ OPT (R).

Revisiting the inspiration ([12]) of the original author’s proposed approach for efficient
exact value alignment ‐

Definition 4 Given an environmentE, the consistent reward set (CRS) of a policy π in environ-
ment E is defined as the set of reward functions under which π is optimal

CRS(π) = {R|π ∈ OPT (R)} (4)

When R(s) = wTϕ, the CRS is of the form ([12], [13]):

Corollary 2 Given an environment E, the CRS(π) is given by the following intersection of
half-spaces:

{w ∈ Rk|wT (Φ(s,a)
π − Φ(s,b)

π) ≥ 0, ∀a ∈ argmax
a′∈A

Qπ
R(s, a

′), b ∈ A, s ∈ S}

Since the boundaries of the CRS polytope is consistent with a policy that may not be
aligned with optimal policy (e.g. zero reward), we remove all such boundary cases to
obtain a modified set called aligned reward polytope (ARP).

5 Reproducing Exact Value Alignment

In this section, we explain the procedure in order to verify the claims made in the pa‐
per regarding sufficient conditions for provable verification of exact value alignment
(explained in Section 4). We verify exact value alignment in disparate settings proposed
by the authors for explicit human - explicit robot setting. If we have access to the value or
reward function of a human, we term it as explicit human. A similar notion is applicable
for the robot as well.

Theorem 1 Under the assumption of a rational robot (defined in Section 4) that shares linear
reward features with the human, efficient exact value alignment verification is possible in the
following query settings: (1) Query access to reward function weights w

′
, (2) Query access to

samples of the reward functionR
′
(s), (3) Query access to V ∗

R′ (s) andQ∗
R′ (s, a), and (4) Query

access to preferences over trajectories.

Case 1 Reward Weight Queries

A brute‐force paradigm can be implemented to evaluate an explicit robot optimal policy
under the human reward function. However, there exists another succinct verification
test. We need to query the weight vectorw

′
of the robot (here,R

′
(s) = (w

′
)Tϕ(s), ϕ(s) is

the feature vector of state s). The paper asserts that it is possible to form a test (defined
later as ∆) that uses the obtained w

′
to verify alignment. Additionally, this query to

the weight vector w
′
is done in constant time, and the test is linear in the number of

questions.

ReScience C 8.2 (#31) – Panigrahi and Patnaik 2022 5

https://rescience.github.io/

[Re] Value Alignment Verification

Definition 5 Given anMDPMcomposed of environmentE and reward functionR, the aligned
reward set (ARS) is defined as the following set of reward functions:

ARS(R) = {R
′
|OPT (R

′
) ⊆ OPT (R)}

We state the lemmawhich proves the sufficient condition for exact value alignment and
direct the interested readers for the proof of the lemma to refer the paper.

Lemma 1 Given an MDP M = (E, R), the human’s and robot’s reward function R and R
′

respectively can be represented as linear combinations of features ϕ(s) ∈ Rk, i.e., R(s) =
wTϕ(s), R

′
(s) = (w

′
)Tϕ(s), and given an optimal policy π∗

R under R, we have

w
′
∈ ∩(s,a,b)∈OHR

s,a,b ⇒ R
′
∈ ARS(R)

where

HR
s,a,b = {w|wT (Φ(s,a)

π)− Φ(s,b)
π) > 0} andO = {(s, a, b)|s ∈ S, a ∈ AR(s), b ̸= AR(s)}

Definition 6 The intersection of half-spaces
(
∩(s,a,b)∈O HR

s,a,b

)
is defined as the Aligned Re-

ward Polytope (ARP). The design of ARP in the form of∆matrix is defined as follows:

∆ =

[
Φ

(s,a)
π)− Φ

(s,b)
π

...

]

In the above equation, a is an optimal action at state s, and b is a non‐optimal action. The
actions in the trajectory following a and b are optimal. Each row of∆ represents the nor‐
mal vector for a strict half‐space constraint based on feature count differences between
an optimal and sub‐optimal action. Therefore, for a robot weight vector w

′
, if∆w

′
> 0,

the robot is aligned. We follow the stepsmentioned in the original paper to include only
non‐redundant half‐space normal vectors in ∆. We enumerate all possible half‐space
normal vectors corresponding to each state s, optimal action a, and non‐optimal action
b. We accumulate only non‐redundant half‐space normal vectors:

1. Removal of Duplicate Vectors: To remove duplicate vectors, we compute the cosine
distance between the half‐space normal vectors. One vector in each of the pairs
of vectors with cosine distance within a small precision value (we select 0.0001) is
retained in∆, others being discarded. All zero vectors are also removed.

2. Removal of Redundant Vectors: According to the paper, the set of redundant vectors
can be found efficiently using the Linear Programming approach. To check if a
constraint aTx ≤ b is necessary, wefirst remove that constraint and solve the linear
programming problem. If the optimal solution is still constrained to be less than
or equal to b, that constraint can be safely discarded. After removing all such
redundant vectors, we get only a set of non‐redundant half‐space normal vectors.

Case 2 Reward Queries

In this case, the tester seeks for the rewards of the robot. Here, a tester is same as a
user (human) who wishes to verify the alignment of a robot. Since it is assumed that
both human and robot have access to their state feature vectors, and from the equation
R(s) = wTϕ(s), we obtain theweight vector for the robot, and this case reduces to Case 1.
LetΦM be defined as thematrix where each row corresponds to the feature vector ϕ(s)T
for a distinct state s ∈ S. In order to solve the system of linear equation for obtaining
the weight vector, the number of queries needed is rank(ΦM).

Case 3 Value Function Queries

ReScience C 8.2 (#31) – Panigrahi and Patnaik 2022 6

https://rescience.github.io/

[Re] Value Alignment Verification

The tester seeks the action value function and the value function for each state in this
case setting. Subsequently, the reward weights for the robot are obtained with the aid
of the following equations:

R
′
(s) = (w

′
)Tx and R

′
(s) = Q∗

R′ (s, a)− γEs′ [V
∗
R′ (s

′
)]

This case also boils down to Case 1 as we obtain the weight vector for the robot. Ac‐
cording to the paper, if we define the maximum degree of the MDP transition function
as

dmax = max
s∈S,a∈A

|{s
′
∈ S|P (s, a, s

′
) > 0}|,

then at most dmax possible next state queries are needed to evaluate the expectation.
Therefore, atmost rank(ΦM)(dmax+1) queries are required to recover the robot’s weight
vector.

Case 4 Preference Queries

We obtain preference over trajectories ξ as judged by the human. Each preference
ξA > ξB, induces a constraint (w

′
)T (Φ(ξA)− Φ(ξB)) > 0, where Φ(ξ) =

∑n
i=1 γ

iϕ(si) is
the cumulative discounted reward features (linear combination of state features) along
a trajectory. Therefore, we construct ∆ where each row corresponds to a half‐space
normal resulting from preference over individual trajectories. In this case, only a log‐
arithmic number of trajectories are needed from all possible trajectory space to obtain
∆matrix and proceed to verify alignment of robot. We obtain all valid trajectories, per‐
form preprocessing (remove duplicate & redundant vectors), and observe that the total
number of queries is bounded by logarithmic number of trajectories we started with
([14]).

6 Value Alignment Verification Heuristics

When the robot acts as a black box and can provide state action preferences instead of
a policy, the authors propose three heuristics; Critical States, Machine Teaching and ARP
Heuristic. Each heuristic consists of a method for selecting the states at which the robot
is tested and queries for an action, subsequently checking if the action is optimal under
human’s reward function. It is important to note that for these heuristics, δfpr > 0, as
there is no guarantee for the robot to always take the same action at a given state.

1. Critical States Heuristic: Inspired by the notion of critical states (CS) [2], the heuris‐
tic test consists of states for which Q∗

R(s, π
∗
R(s)) − 1

|A|
∑

a∈A Q∗
R(s, a) > t, where

t is a threshold value. This intuitively states the importance of a particular state
and tends to make the verification efficient.

2. Machine Teaching Heuristic: This heuristic is based on Set Cover Optimal Teach‐
ing (SCOT) [13], which approximates the minimal set of state‐action trajectories
necessary to teach a specific reward function to an IRL agent. [13] show that in
the intersection of half‐spaces that define the CRS (Corollary 2), the learner recov‐
ers a reward function. The authors use SCOT to create informative trajectories
and create alignment tests by seeking a robot action at each state along the trajec‐
tory. Producing a test with SCOT takes longer than CS heuristic, but unlike CS,
SCOT prevents repetitive inquiries by reasoning about reward features over a set
of trajectories.

3. ARP Heuristic: This heuristic is a black‐box alignment heuristic (ARP‐bb) based
on the ARP definition. ARP‐bb first computes∆, then uses linear programming to
remove duplicate half‐space constraints, subsequently asks for robot actions from

ReScience C 8.2 (#31) – Panigrahi and Patnaik 2022 7

https://rescience.github.io/

[Re] Value Alignment Verification

the states corresponding to the non‐redundant constraints (rows) in∆. Intuitively,
the states probed by ARP‐bb are significant because different actions disclose vital
information about the reward function. ARP‐bb approximates testing each half‐
space constraint by using single‐state action queries. As a result, ARP‐bb trades off
increased approximation error in exchange for a lower query and computational
complexity.

7 Experiments

In this section, we describe several experiments carried out in order to investigate the
following:

1. Algorithms and Heuristics: Comparison of different algorithms and heuristics in
different gridworlds. We tabulate the performance of testers (accuracy, false posi‐
tive rate, false negative rate, and the number of queries presented to the robot for
verification) w.r.t different gridworld widths ranging from 4 to 8 and feature size
from 3 to 8. The dimension of feature for a state is termed as number of features or
feature size. Our experiments confine these state features ϕ to be one‐hot vectors
only.

2. Diagonal Actions: Comparison of algorithms and heuristics in gridworlds with
an extended action space. We allow diagonal movement between standard move‐
ments. This increases the standard 4 actions (left, up, right, and down) to 8 ac‐
tions (left‐up‐diag, up‐right‐diag, right‐down‐diag, and down‐left‐diag). Here, diag
refers to diagonal movement. Again, we tabulate the performance of testers w.r.t
different gridworld widths.

3. Non‐linear reward and state‐feature relationships: Comparison of different algo‐
rithms and heuristics with non‐linear (cubic and exponential) reward R and state‐
feature ϕ(s) relationships. In cubic, we approximate the linear behavior when
wTϕ(s) ≈ 0, else not. The exact relationship we consider is R = x3 + 10x where
x = wTϕ(s). In exponential, we completely remove the linear relationship between
R and ϕ(s) and considerR = ew

Tϕ(s). We tabulate the performance of testers w.r.t
different gridworld widths in both cases.

4. Critical States Tester for different thresholds: Comparison of Critical States Tester
performance with different threshold values (0.0001, 0.2 and, 0.8) for a state to be
critical.

Section 8 provides the results for one algorithm (Reward Weight Tester) and one heuris‐
tic (Critical State Tester) and plots relevant to their accuracy and number of test queries.
We redirect readers to Section 2 of Supplementary Material for the detailed tabulated
performance of all algorithms, heuristics, and the plots related to false positive and
false negative rates. Also, note that the default gridworld rows are 4, gridworld width is
8, number of actions is 4, feature size is 5, reward and state‐feature relationship is linear
(R = wTϕ(s)), and threshold value of Critical States Tester is 0.2.
We created 100 different human agents for each experiment, and for each human agent,
we created 100 different robots to check their alignment. Each human agent corre‐
sponds to a different human weight vector whose each element is sampled from a nor‐
mal distribution with mean 0 and variance 1. Different robot agents correspond to dif‐
ferent robot weights that are obtained by adding a random normal noise vector to the
corresponding humanweight vector. The elements of the noise vector are sampled from
the same normal distribution. Further, we normalize the robot and human weight vec‐
tor to have a unit norm. In total, we run 1.32 million experiments to address the points
mentioned above.

ReScience C 8.2 (#31) – Panigrahi and Patnaik 2022 8

https://rescience.github.io/

[Re] Value Alignment Verification

(a) Accuracy (b) Number of Test Queries

Figure 2. Tester performance for different gridworld widths (num features = 5)

8 Results

In the plots and following discussion, rwt indicates Reward Weight Queries Tester, rt
indicates Reward Queries Tester, vft indicates Value Function Queries Tester, ptt indi‐
cates Preference Trajectory Queries Tester, cst indicates Critical States Tester, scott
indicates SCOT Tester, and arpbbt indicates ARP Black Box Tester.

8.1 Algorithms and Heuristics
The comparison between the performance of different algorithms and heuristics is pre‐
sented in Table 2, and Figure 2 (for different gridworld widths), Table 3 and Figure 3
(for different feature sizes). The plots obtained are similar to the plots presented in [1].
We averaged the accuracy over 10000 experiments (100 different human agents and 100
different robots corresponding to each human agent) and round up to 3 decimal places.
We notice that scott takes the maximum time to verify 100 different robots whereas
rwt takes theminimum time. The details are present in Section 2 of the Supplementary
Material. We observe that, in general, the algorithms for exact value alignment verifica‐
tion have slightly higher accuracy. We also observe that the accuracies and number of
test queries increase with increasing feature sizes. Note that, in [1], the accuracy in var‐
ious plots is considered as (1 ‐ false positive rate), while we have different plots for both.
We attribute the comparatively low accuracy with ptt to comparatively bad trajectory
queries.

Table 2. Different testers versus gridworld widths

Tester Width Accuracy False False Number of
positive rate negative rate queries

4 0.995±0.013 0.005±0.011 0.001±0.005 1
rwt 6 0.997±0.007 0.002±0.005 0.001±0.005 1

8 0.999±0.004 0.001±0.004 0.000±0.002 1

4 0.973±0.043 0.000±0.000 0.027±0.043 13
cst 6 0.987±0.018 0.000±0.000 0.013±0.018 24

8 0.996±0.007 0.000±0.001 0.004±0.007 29

As per Definition 1, we require δfpr = ϵ = 0 for Exact Value Alignment Verification;
hence false negatives can be present in the corresponding algorithms. Further, we dis‐
cussed with the authors the possibility of false positives in these algorithms, and we
concluded that since we do not consider all possible trajectories in a gridworld (which
is exponential in the number of actions), false positives can be present. However, we
observe that both false positive and false negative rates are negligibly small. These re‐

ReScience C 8.2 (#31) – Panigrahi and Patnaik 2022 9

https://rescience.github.io/

[Re] Value Alignment Verification

sults empirically show that indeed the proposed algorithms and heuristics successfully
identify the alignment between human agents and robots.

(a) Accuracy (b) Number of Test Queries

Figure 3. Tester performance for different number of features

In Figure 2b, the number of queries indicates the size of the questionnaire, i.e., |T |. The
total number of queries required to verify the value alignment with cst is higher than
other heuristics owing to its simplermechanism for obtaining state queries. We observe
that arpbbt is also bounded by the logarithm of the total number of queries, i.e., trajec‐
tories of a certain maximum length (this value is set at 10), possible in a gridworld. The
number of states to be queried in scott is fixed at the maximum length of a trajectory
possible (this value is set at 5 for scott). Also, with the increase in the size of the grid‐
world, the number of queries with cst increases. Further, we have not presented the
number of queries for rt and vft in plots because they havewell‐definedmathematical
formulae to calculate |T |.

Table 3. Different testers versus features sizes

Tester Feature Accuracy False False Number of
size positive rate negative rate queries

3 0.951±0.051 0.037±0.045 0.012±0.034 1
rwt 5 0.999±0.004 0.001±0.004 0.000±0.002 1

7 1.000± 0.001 0.000±0.000 0.000±0.001 1

3 0.876±0.097 0.000±0.002 0.124±0.097 31
cst 5 0.996±0.007 0.000±0.001 0.004±0.007 29

7 0.999±0.002 0.000±0.000 0.001±0.002 28

(a) Accuracy (b) Number of Test Queries

Figure 4. Tester performance for different gridworld widths with extended action space

ReScience C 8.2 (#31) – Panigrahi and Patnaik 2022 10

https://rescience.github.io/

[Re] Value Alignment Verification

Table 4. Different testers versus gridworld widths with extended action space

Tester Width Accuracy False False Number of
positive rate negative rate queries

4 0.992±0.017 0.006±0.015 0.003±0.010 1
rwt 6 0.994±0.013 0.005±0.011 0.001±0.004 1

8 0.996±0.008 0.002±0.005 0.002±0.005 1

4 0.945±0.055 0.000±0.001 0.055±0.055 9
cst 6 0.984±0.017 0.000±0.001 0.016±0.017 12

8 0.992±0.011 0.000±0.000 0.008±0.011 21

8.2 Diagonal Actions
The performance summary for rwt and heuristics are presented in Table 4 and Figure 4.
We observe similar trends to gridworld with smaller action space ‐ the accuracy is high,
and the false positive and false negative rates are extremely small, the number of queries
with cst is higher than other heuristics, and the number of queries for scott is fixed
at the maximum possible length of a trajectory. These results empirically indicate that
the proposed testers are successfully able to verify the alignment of robots and humans
in gridworlds with an extended action space.

8.3 Non-linear reward and state-feature relationships
The performance summary for rwt and cst is presented in Table 5 and Figure 5. We
observe that for cubic relationship, the performance for bothrwt andcst is close to that
with linear relationship. Note that cubic approximates the linear relationship between
R and wTϕ(s), when wTϕ(s) ≈ 0. However, as expected for exponential relationship
(assumption of Lemma 1 is no longer true), the performance for rwt is exceedingly poor
while for cst the decline is negligible. This empirically enforces the importance and
independence of linear relationship assumption between rewards and state features for
exact value alignment algorithms (rwt) and heuristics (cst), respectively.

Table 5. Different testers versus gridworld widths with non‐linear reward state‐feature relation‐
ships

Tester Width Accuracy False False Number of
positive rate negative rate queries

4 0.993±0.013 0.004±0.007 0.003±0.011 1
rwt 6 0.995±0.008 0.003±0.006 0.002±0.005 1

(cubic) 8 0.997±0.006 0.001±0.005 0.001±0.004 1

4 0.048±0.052 0.953±0.052 0.000±0.000 1
rwt 6 0.017±0.021 0.983±0.021 0.000±0.000 1

(exponential) 8 0.006±0.012 0.994±0.012 0.000±0.000 1

4 0.968±0.040 0.000±0.000 0.032±0.040 16
cst 6 0.991±0.015 0.000±0.000 0.010±0.015 24

(cubic) 8 0.995±0.010 0.000±0.000 0.005±0.010 32

4 0.947±0.051 0.000±0.001 0.053±0.051 16
cst 6 0.984±0.022 0.000±0.001 0.016±0.022 16

(exponential) 8 0.983±0.099 0.010±0.099 0.007±0.010 31

ReScience C 8.2 (#31) – Panigrahi and Patnaik 2022 11

https://rescience.github.io/

[Re] Value Alignment Verification

(a) Accuracy (Cubic) (b) Accuracy (Exponential)

Figure 5. Tester performance for different reward ‐ state features relationship

8.4 Critical States Tester with different thresholds
Theperformance of cstwith different thresholds (0.0001 and 0.8, 0.2 iscst row inTable
2) is presented in Table 6. The corresponding figures are presented in Section 2 of the
Supplementary Material. We observe that the accuracy for low threshold values is high
whereas the accuracy drops considerably with higher threshold value. This is due to a
decrease in the number of test queries with higher thresholds leading to a decrease in
alignment verification ability. The comparison between the number of test queries for
different thresholds displays an expected trend, i.e., the number of states to be queried
with lower thresholds is higher than those with a higher threshold.

Table 6. Critical states tester with different thresholds

Tester Width Accuracy False False Number of
positive rate negative rate queries

cst 4 0.971± 0.036 0.000±0.000 0.029±0.036 16
(threshold 6 0.987±0.018 0.000±0.000 0.013±0.018 24
= 0.0001) 8 0.997± 0.007 0.000±0.000 0.003±0.007 32

cst 4 0.616± 0.447 0.362±0.463 0.022±0.032 1
(threshold 6 0.563±0.482 0.431±0.488 0.007±0.013 4

= 0.8) 8 0.644±0.468 0.354±0.470 0.003±0.008 3

9 Discussion

In this work, we implemented the algorithms and heuristics for Exact Value Alignment
Verification. We observe that all the methods proposed in [1] can identify the alignment
between a robot and a human agent with high confidence in two distinct scenarios, im-
plicit and explicit robot with an explicit human agent. In this work, we have not inves‐
tigated implicit robot, implicit human (approximate value alignment verification) setting
due to lack of time. Additionally, we have carried out ablation studies to study the per‐
formance of these proposed methods in different settings, including an extended de‐
terministic action space and non‐linear reward state‐feature relationship. Ultimately, a
human agent could use any of the algorithms or heuristic (depending on the ability of
the robot to access its rewards) to create a driver’s test to test the robot’s alignment.

References

1. D. S. Brown, J. Schneider, A. Dragan, and S. Niekum. “Value Alignment Verification.” In: International Conference
on Machine Learning. PMLR. 2021, pp. 1105–1115.

ReScience C 8.2 (#31) – Panigrahi and Patnaik 2022 12

https://rescience.github.io/

[Re] Value Alignment Verification

2. S. H. Huang, K. Bhatia, P. Abbeel, and A. D. Dragan. “Establishing appropriate trust via critical states.” In: 2018
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE. 2018, pp. 3929–3936.

3. D. Hadfield-Menell, S. J. Russell, P. Abbeel, and A. Dragan. “Cooperative inverse reinforcement learning.” In:
Advances in neural information processing systems 29 (2016), pp. 3909–3917.

4. P. Christiano, J. Leike, T. B. Brown, M.Martic, S. Legg, and D. Amodei. “Deep reinforcement learning from human
preferences.” In: arXiv preprint arXiv:1706.03741 (2017).

5. D. Sadigh, A. D. Dragan, S. Sastry, and S. A. Seshia. “Active preference-based learning of reward functions.” In:
(2017).

6. K. Amin, N. Jiang, and S. Singh. “Repeated inverse reinforcement learning.” In: arXiv preprint arXiv:1705.05427
(2017).

7. B. D. Ziebart, A. L. Maas, J. A. Bagnell, A. K. Dey, et al. “Maximum entropy inverse reinforcement learning.” In:
Aaai. Vol. 8. Chicago, IL, USA. 2008, pp. 1433–1438.

8. A. Barreto, W. Dabney, R. Munos, J. J. Hunt, T. Schaul, H. Van Hasselt, and D. Silver. “Successor features for
transfer in reinforcement learning.” In: arXiv preprint arXiv:1606.05312 (2016).

9. D. Brown, R. Coleman, R. Srinivasan, and S. Niekum. “Safe imitation learning via fast bayesian reward inference
from preferences.” In: International Conference on Machine Learning. PMLR. 2020, pp. 1165–1177.

10. P. Abbeel and A. Y. Ng. “Apprenticeship learning via inverse reinforcement learning.” In: Proceedings of the
twenty-first international conference on Machine learning. 2004, p. 1.

11. S. Russell and P. Norvig. “Artificial intelligence: a modern approach.” In: (2002).
12. A. Y. Ng, S. J. Russell, et al. “Algorithms for inverse reinforcement learning.” In: Icml. Vol. 1. 2000, p. 2.
13. D. S. Brown and S. Niekum. “Machine teaching for inverse reinforcement learning: Algorithms and applica-

tions.” In: Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 33. 01. 2019, pp. 7749–7758.
14. D. S. Brown, W. Goo, and S. Niekum. “Better-than-Demonstrator Imitation Learning via Automatically-Ranked

Demonstrations.” In: Proceedings of the 3rd Conference on Robot Learning. 2019.

ReScience C 8.2 (#31) – Panigrahi and Patnaik 2022 13

https://rescience.github.io/

[Re] Value Alignment Verification

10 Sample Gridworld

We present a sample gridworld (Figure 6a), a sample human agent’s optimal policy (Fig‐
ure 6b), a sample robot’s optimal policy (Figure 6c). In the gridworld, there are three
different kinds of state (blue, yellow, and white, with state in green color denoting the
terminal state). The bold arrows show themovements as per the optimal policy. Clearly,
the robot is not aligned with the human agent. Further, we also depict the state queries
(states marked with ⋆) asked by different testers as per the above human agent. Query
states as per Critical States Tester in Figure 7a, Set Cover Optimal Teaching Tester (SCOT
Tester) in Figure 7b and ARP Black Box Tester in Figure 7c. Additionally, with the aid of
arrows, we depict the corresponding (maximally informative) trajectory with the state
queries for SCOT Tester.

(a) Sample gridworld (b) Human policy (c) Robot policy

Figure 6. Sample Gridworld and Policies

(a) Critical States Tester (b) Set Cover Optimal Teaching
Tester (c) ARP Black Box Tester

Figure 7. Query states for different heuristic testers on a sample gridworld

11 Additional Results

In the plots, tables, and following discussion, rwt indicates Reward Weight Queries
Tester, rt indicates Reward Queries Tester, vft indicates Value Function Queries Tester,
ptt indicates Preference Trajectory Queries Tester, cst indicates Critical States Tester,
scott indicates SCOT Tester, and arpbbt indicates ARP Black Box Tester. Also note
that, by performance metrics we refer accuracy, false positive rate, false negative rate,
and number of test queries. rwt, rt, rwt, and rt are together referred to as algorithms.
cst, scott, and arpbbt are together referred to as heuristics.

11.1 Algorithms and Heuristics
Table 7 details the performance metrics for all algorithms and heuristics. We fixed the
feature size at 5. The feature size (or the number of features) is equal to the dimension
of state‐feature ϕ. Therefore, if ϕ : S → Rk ⇒ feature size = k.
We observed that the varying width of a gridworld did not affect significantly the accu‐
racy (Figure 8a), false positive (Figure 8b), and false negative rates (Figure 8c), while the
number of test queries (Figure 8d) increased for heuristics except for scott, because
the number of test queries for scott is equal to the maximum length of a trajectory
(here, it is equal to 5). The accuracy for all the testers is extremely high, while the false

ReScience C 8.2 (#31) – Panigrahi and Patnaik 2022 14

https://rescience.github.io/

[Re] Value Alignment Verification

positives and false negatives are exceedingly low, which indicates the ability of the al‐
gorithms and heuristics to identify alignment (or misalignment) between a robot and a
human agent.
In table 8, we vary the feature size from 3 to 8. We fixed the gridworld width at 8. We
observed no significant variation in accuracy (Figure 9a), false positive (Figure 9b), and
false negative rates (Figure 9c). The trend for the number of test queries (Figure 9d)
increases for rt, vft, and arpbbt while stays the same for rwt and scott. Unlike
with different gridworld widths, the number of test queries stays similar with different
feature sizes for cst.

(a) Accuracy (b) False Positive Rate

(c) False Negative Rate (d) Number of Test Queries

Figure 8. Tester performance for different gridworld widths

11.2 Diagonal Actions
Table 9 details the performance metrics for rwt and all heuristics in a gridworld with
diagonal movements allowed. Again, since we varied the width of a gridworld, we fixed
the feature size at 5. We did not perform additional experiments with rt, vft, and ptt,
since they are reducible torwt. We concluded there is no observable difference from the
results in gridworlds without the diagonal movements, i.e., the accuracy (Figure 10a) is
extremely high, and the false positive (Figure 10b), and false negative rates (Figure 10c)
are significantly low. Additionally, the number of test queries (Figure 10d) increases for
cst with an increase in the width of a gridworld.

11.3 Non-linear reward and state-feature relationship
Table 10 details the performance metrics for rwt and cst in gridworlds of different
widths and non‐linear relationship between reward and state‐feature. The correspond‐
ing plot can be found in Figure 11 for cubic and Figure 12 for exponential relationship.
These plots and tables contain all the gridworld widths ranging from 4 to 8 (naturally,
the feature size is fixed at 5), which are not present in the Results section of the paper.
Note that, in cubic we approximate the linear relationship only when wTϕ(s) ≈ 0 while

ReScience C 8.2 (#31) – Panigrahi and Patnaik 2022 15

https://rescience.github.io/

[Re] Value Alignment Verification

Table 7. 0

Tester Width Accuracy False False Number of
positive rate negative rate queries

4 0.995±0.013 0.005±0.011 0.001±0.005 1
5 0.997±0.008 0.002±0.006 0.006±0.004 1

rwt 6 0.997±0.007 0.002±0.005 0.001±0.005 1
7 0.997±0.008 0.002±0.005 0.002±0.006 1
8 0.999±0.004 0.001±0.004 0.000±0.002 1

4 0.992±0.015 0.007±0.014 0.001±0.004 5
5 0.994±0.013 0.005±0.012 0.001±0.004 5

rt 6 0.994±0.012 0.004±0.010 0.002±0.007 5
7 0.997±0.006 0.002±0.005 0.001±0.004 5
8 0.998±0.005 0.002±0.004 0.000±0.002 5

4 0.990±0.019 0.008±.017 0.002±0.007 25
5 0.996±0.008 0.003±.007 0.001±0.004 25

vft 6 0.995±0.011 0.003±.007 0.003±0.009 25
7 0.995±0.021 0.004±.017 0.002±0.007 25
8 0.998±0.005 0.001±.005 0.001±0.002 25

4 0.956±0.041 0.013±0.028 0.031±0.034 4
5 0.969±0.035 0.010±0.026 0.021±0.027 5

ptt 6 0.970±0.039 0.018±0.039 0.011±0.019 10
7 0.971±0.040 0.023±0.041 0.005±0.012 8
8 0.957±0.054 0.040±0.055 0.003±0.006 4

4 0.973± 0.043 0.000±0.000 0.027±0.043 13
5 0.978±0.048 0.000±0.000 0.022±0.048 16

cst 6 0.987±0.018 0.000±0.000 0.013±0.018 24
7 0.980±0.100 0.010±0.099 0.009±0.019 26
8 0.996±0.007 0.000±0.001 0.004±0.007 29

4 0.960±0.041 0.002±0.005 0.040±0.041 5
5 0.979±0.024 0.002±0.005 0.019±0.023 5

scott 6 0.988±0.017 0.001±0.004 0.010±0.017 5
7 0.993±0.010 0.002±0.005 0.005±0.009 5
8 0.994±0.010 0.002±0.005 0.004±0.008 5

4 0.985±0.036 0.015±0.036 0.000±0.000 7
5 0.987±0.040 0.013±0.040 0.000±0.000 6

arpbbt 6 0.991±0.027 0.009±0.027 0.000±0.000 7
7 0.996±0.016 0.004±0.016 0.000±0.000 5
8 0.994±0.022 0.006±0.022 0.000±0.000 9

exponential completely ignores the linear relationship. We observed that since the accu‐
racy is high for cubic and low for exponential relationships, the false positive rates are
low and high respectively.

11.4 Critical States Tester with different thresholds
Table 11 details the performance metrics for cst in different gridworld widths and dif‐
ferent threshold values (0.0001, 0.2, and 0.8). As noted earlier, we observed that the
number of queries decreases with strict threshold values such as 0.8, which results
in reduced verification abilities. The corresponding plots for performance metrics are

ReScience C 8.2 (#31) – Panigrahi and Patnaik 2022 16

https://rescience.github.io/

[Re] Value Alignment Verification

(a) Accuracy (b) False Positive Rate

(c) False Negative Rate (d) Number of Test Queries

Figure 9. Tester performance for different number of features

(a) Accuracy (b) False Positive Rate

(c) False Negative Rate (d) Number of Test Queries

Figure 10. Tester performance for different gridworld widths with an extended action space

present in Figure 13.

ReScience C 8.2 (#31) – Panigrahi and Patnaik 2022 17

https://rescience.github.io/

[Re] Value Alignment Verification

Table 8. Different testers versus features sizes

Tester Feature Accuracy False False Number of
size positive rate negative rate queries

3 0.951±0.051 0.037±0.045 0.012±0.034 1
4 0.991±0.015 0.006±0.013 0.003±0.007 1

rwt 5 0.999±0.004 0.001±0.004 0.000±0.002 1
6 0.999±0.006 0.000±0.002 0.001±0.005 1
7 1.000±0.001 0.000±0.000 0.000±0.001 1
8 1.000±0.002 0.000±0.001 0.000±0.001 1

3 0.945±0.065 0.040±0.056 0.015±0.04 3
4 0.989±0.017 0.008±0.013 0.003±0.010 4

rt 5 0.998±0.005 0.002±0.004 0.000±0.002 5
6 0.998±0.007 0.001±0.003 0.001±0.006 6
7 1.000±0.002 0.000±0.001 0.000±0.002 7
8 1.000±0.004 0.000±0.004 0.000±0.000 8

3 0.940±0.069 0.050±0.068 0.010±0.030 15
4 0.989±0.018 0.006±0.012 0.004±0.014 20

vft 5 0.998±0.005 0.001±0.005 0.001±0.002 25
6 0.999±0.004 0.000±0.002 0.001±0.004 30
7 1.000±0.002 0.000±0.002 0.000±0.001 35
8 1.000±0.001 0.000±0.001 0.000±0.001 40

3 0.809±0.094 0.091±0.109 0.101±0.080 3
4 0.923±0.075 0.055±0.073 0.022±0.040 3

ptt 5 0.957±0.054 0.040±0.055 0.003±0.006 4
6 0.972±0.042 0.027±0.042 0.001±0.004 12
7 0.986±0.030 0.014±0.030 0.000±0.001 5
8 0.995±0.012 0.005±0.012 0.000±0.002 8

3 0.876±0.097 0.000±0.002 0.124±0.097 31
4 0.970±0.101 0.010±0.099 0.020±0.025 32

cst 5 0.996±0.007 0.000±0.001 0.004±0.007 29
6 0.997±0.008 0.000±0.000 0.003±0.008 18
7 0.999±0.002 0.000±0.000 0.001±0.002 28
8 1.000±0.001 0.000±0.000 0.000±0.001 28

3 0.883±0.090 0.006±0.011 0.112±0.089 5
4 0.979±0.029 0.004±0.008 0.018±0.029 5

scott 5 0.994±0.010 0.002±0.005 0.004±0.008 5
6 0.998±0.005 0.001±0.003 0.001±0.004 5
7 0.998±0.004 0.001±0.003 0.001±0.003 5
8 0.999±0.003 0.001±0.002 0.000±0.001 5

3 0.912±0.110 0.088±0.110 0.000±0.000 3
4 0.973±0.063 0.027±0.063 0.000±0.000 4

arpbbt 5 0.994±0.022 0.006±0.022 0.000±0.000 9
6 0.998±0.008 0.002±0.008 0.000±0.000 13
7 0.999±0.003 0.001±0.003 0.000±0.000 14
8 1.000±0.001 0.000±0.001 0.000±0.000 17

ReScience C 8.2 (#31) – Panigrahi and Patnaik 2022 18

https://rescience.github.io/

[Re] Value Alignment Verification

Table 9. Different testers versus gridworld widths with extended action space

Tester Width Accuracy False False Number of
& positive rate negative rate queries

4 0.992±0.017 0.006±0.015 0.003±0.010 1
5 0.994±0.013 0.004±0.009 0.002±0.007 1

rwt 6 0.994±0.013 0.005±0.011 0.001±0.004 1
7 0.997±0.008 0.002±0.006 0.001±0.003 1
8 0.996±0.008 0.002±0.005 0.002±0.005 1

4 0.945±0.055 0.000±0.001 0.055±0.055 9
5 0.975±0.039 0.000±0.000 0.026±0.039 14

cst 6 0.984±0.017 0.000±0.001 0.016±0.017 12
7 0.987±0.022 0.000±0.000 0.013±0.022 21
8 0.992±0.011 0.000±0.000 0.008±0.011 21

4 0.945±0.049 0.002±0.005 0.054±0.049 5
5 0.969±0.036 0.003±0.009 0.029±0.034 5

scott 6 0.983±0.023 0.001±0.004 0.016±0.023 5
7 0.988±0.023 0.001±0.003 0.011±0.022 5
8 0.989±0.017 0.002±0.005 0.010±0.017 5

4 0.974±0.068 0.026±0.068 0.000±0.000 5
5 0.984±0.059 0.016±0.059 0.000±0.000 6

arpbbt 6 0.991±0.039 0.009±0.039 0.000±0.000 8
7 0.993±0.029 0.007±0.029 0.000±0.000 5
8 0.992±0.037 0.008±0.037 0.000±0.000 6

(a) Accuracy (b) False Positive Rate

(c) False Negative Rate (d) Number of Test Queries

Figure 11. Tester performance for cubic reward ‐ state features relationship

ReScience C 8.2 (#31) – Panigrahi and Patnaik 2022 19

https://rescience.github.io/

[Re] Value Alignment Verification

(a) Accuracy (b) False Positive Rate

(c) False Negative Rate (d) Number of Test Queries

Figure 12. Tester performance for exponential reward ‐ state features relationship

Table 10. Different testers versus gridworld widths with non‐linear reward state‐feature relation‐
ships

Tester Width Accuracy False False Number of
positive rate negative rate queries

4 0.993±0.013 0.004±0.007 0.003±0.011 1
5 0.995±0.011 0.004±0.009 0.001±0.005 1

rwt 6 0.995±0.008 0.003±0.006 0.002±0.005 1
(cubic) 7 0.995±0.008 0.003±0.006 0.002±0.005 1

8 0.997±0.006 0.001±0.005 0.001±0.004 1

4 0.048±0.052 0.953±0.052 0.000±0.000 1
5 0.027±0.037 0.973±0.037 0.000±0.000 1

rwt 6 0.017±0.021 0.983±0.021 0.000±0.000 1
(exponential) 7 0.012± 0.019 0.988±0.019 0.000±0.000 1

8 0.006±0.012 0.994±0.012 0.000±0.000 1

4 0.968±0.040 0.000±0.000 0.032±0.040 16
5 0.977±0.031 0.000±0.000 0.023±0.031 20

cst 6 0.991±0.015 0.000±0.000 0.010±0.015 24
(cubic) 7 0.988±0.019 0.000±0.000 0.012±0.019 28

8 0.995±0.010 0.000±0.000 0.005±0.010 32

4 0.947±0.051 0.000±0.001 0.053±0.051 16
5 0.976±0.023 0.000±0.001 0.024±0.023 20

cst 6 0.984±0.022 0.000±0.001 0.016±0.022 16
(exponential) 7 0.985±0.027 0.000±0.001 0.015±0.027 28

8 0.983±0.099 0.010±0.099 0.007±0.010 31

ReScience C 8.2 (#31) – Panigrahi and Patnaik 2022 20

https://rescience.github.io/

[Re] Value Alignment Verification

(a) Accuracy (b) False Positive Rate

(c) False Negative Rate (d) Number of Test Queries

Figure 13. Critical states tester with different thresholds

Table 11. Critical states tester with different thresholds

Tester Width Accuracy False False Number of
positive rate negative rate queries

4 0.971±0.036 0.000±0.000 0.029±0.036 16
cst 5 0.985±0.023 0.000±0.000 0.015±0.023 20

(threshold 6 0.987±0.018 0.000±0.000 0.013±0.018 24
= 0.0001) 7 0.992±0.016 0.000±0.000 0.008±0.016 28

8 0.997±0.007 0.000±0.000 0.003±0.007 32

4 0.973±0.043 0.000±0.000 0.027±0.043 13
cst 5 0.978±0.048 0.000±0.000 0.022±0.048 16

(threshold 6 0.987±0.018 0.000±0.000 0.013±0.018 24
= 0.2) 7 0.980±0.100 0.010±0.099 0.009±0.019 26

8 0.996±0.007 0.000±0.001 0.004±0.007 29

4 0.616±0.447 0.362±0.463 0.022±0.032 1
cst 5 0.557±0.469 0.426±0.483 0.017±0.031 4

(threshold 6 0.563±0.482 0.431±0.488 0.007±0.013 4
= 0.8) 7 0.575±0.485 0.421±0.488 0.004±0.009 0

8 0.644±0.468 0.354±0.470 0.003±0.008 3

11.5 Time profile for algorithms and heuristics
Table 12 details the time taken by all algorithms and heuristics to verify 100 different
robots for a single human agent. We observed that due to the complexity of Set Cover
Optimal Teaching Heuristic, scott takes the maximum time to complete the verifica‐
tion while rwt takes minimum time. Also, as expected, with the increase in the width
of a gridworld, the time taken to verify increases. Formost of the algorithms and heuris‐

ReScience C 8.2 (#31) – Panigrahi and Patnaik 2022 21

https://rescience.github.io/

[Re] Value Alignment Verification

tics, the time taken increases 2X when width of a gridworld increases from 4 to 8 while
for scott, the time taken increases by at least 3X.

Table 12. Different testers versus time taken

Tester Width Time (in sec)

4 15.980
5 21.966

rwt 6 30.335
7 31.186
8 35.093

4 34.399
5 53.089

rt 6 54.039
7 66.959
8 73.450

4 39.110
5 55.968

vft 6 41.702
7 69.879
8 70.993

4 21.164
5 23.315

ptt 6 29.121
7 33.048
8 40.644

4 18.714
5 24.487

cst 6 30.871
7 32.206
8 36.563

4 95.301
5 143.555

scott 6 195.014
7 257.184
8 322.146

4 20.763
5 25.800

arpbbt 6 28.041
7 34.407
8 38.532

ReScience C 8.2 (#31) – Panigrahi and Patnaik 2022 22

https://rescience.github.io/

	Introduction
	Notation
	Value Alignment Verification
	Exact Value Alignment Verification
	Reproducing Exact Value Alignment
	Value Alignment Verification Heuristics
	Experiments
	Results
	Algorithms and Heuristics
	Diagonal Actions
	Non-linear reward and state-feature relationships
	Critical States Tester with different thresholds

	Discussion
	Sample Gridworld
	Additional Results
	Algorithms and Heuristics
	Diagonal Actions
	Non-linear reward and state-feature relationship
	Critical States Tester with different thresholds
	Time profile for algorithms and heuristics

