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Reproducibility Summary

Scope of Reproducibility
Pan et al. [1] propose an unsupervised method named GAN2Shape that purportedly is
able to recover 3D information stored in the weights of a pre‐trained StyleGAN2 model,
to produce 3D shapes from 2D images. We aim to reproduce the 3D shape recovery and
identify its strengths and weaknesses.

Methodology
We re‐implement the method proposed by Pan et al. [1] with regards to 3D shape re‐
construction, and extend their work. Our extensions include novel prior shapes and
two new training techniques. While the code‐base relating to GAN2Shape was largely
rewritten, many external dependencies, which the original authors relied on, had to be
imported. The project used 189 GPU hours in total, mostly on a single Nvidia K80, T4 or
P100 GPU, and a negligible number of runs on a Nvidia V100 GPU.

Results
We replicate the results of Pan et al. [1] on a subset of the LSUN Cat, LSUN Car [2] and
CelebA [3] datasets and observe varying degrees of success. We perform several exper‐
iments and illustrate the successes and shortcomings of the method. Our novel shape
priors improve the 3D shape recovery in certain cases where the original shape prior
was unsuitable. Our generalized training approach shows initial promise, but has to be
confirmed with increased computational resources.

What was easy
The original code is easily runnable on the correct machine type (Linux operating sys‐
tem and CUDA 9.2 compatible GPU) for the specific datasets used by the authors.

What was difficult
Porting the model to a new dataset, problem setting or a different machine type is far
from trivial. The poor cohesion of the original code makes interpretation very difficult,
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and that is why we took care to re‐implement many parts of the code using the decou‐
pling principle. The code depends on many external implementations which had to be
made runnable, which caused a significant development bottleneck as we developed on
Windows machines (contrary to the authors). The exact loss functions and the number
of training steps were not properly reported in the original paper, whichmeant it had to
be deduced from their code. Certain calculations required advanced knowledge of light‐
transport theory, which had no familiarity to us, and had to be mimicked and could not
be verified.

Communication with original authors
We did not communicate with the original authors.
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1 Introduction

Image generation has been a hot topic within generative models as they represent an
intuitive problem whose results are easily accessible by the public. One of the models
that has received a lot of public attention is StyleGAN (Karras, Laine, and Aila [4]). The
network’s architecture has been refined through multiple iterations in StyleGAN2 [5],
StyleGAN2‐ADA [6] and StyleGAN3 [7]. StyleGAN2 improves on thefirst versionby, among
other things, adding a projection method onto the latent space, which allows the inver‐
sion of an image into its latent representation.

Methods like GAN2Shape [1] aim at exploiting the information that is already stored in
the generator of a pre‐trained StyleGAN2 model to go beyond generating synthetic 2D
images. In particular, thismethod aims to extract the 3D shape of the preeminent object
in any image. This is intuitively possible due to the size of the training dataset of the
StyleGAN2model, and its ability to generate images of an object frommultiple views and
lighting directions by varying w. The authors of GAN2Shape use StyleGAN2 networks
pre‐trained on different dataset categories andfive different feature extractionmodels to
derive the shape information for images belonging to the same dataset categories. This
method, compared to many others [8, 9, 10, 11], has the advantage of being completely
unsupervised, and not requiring a change in the training process of the classical 2D
GAN.

In this article, we describe our replication of GAN2Shape [1] and report mixed results.
We perform several experiments and we illustrate the successes and shortcomings of
the method. Further, we extend the method improving the original results in several
cases.

2 Scope of reproducibility

The authors of GAN2Shape make the following claims:

1. Their framework does not require any kind of annotation, keypoints or assump‐
tion about the images

2. Their framework recovers 3D shapewith high precision onhuman faces, cats, cars,
buildings, etc.

3. GAN2Shape utilizes the intrinsic knowledge of 2D GANs

4. The 3D shape generated immediately allows for re‐lighting and rotation of the im‐
age.

3 Methodology

Our initial intent of re‐implementing the source code from the description of the paper
had to be abandoned due to the lack of detailed information of some key points in the
method. We, therefore, decided to follow a different approach integrating both the de‐
tails from the authors’ code and the paper’s description. While trying to always base our
implementation on the paper’s description we found some parts (particularly the loss
functions) that differed from the actual code and decided to follow the latter instead.

The resources we used were mainly the authors’ code, the code and documentation of
all the out‐sourced methods the authors borrowed: StyleGAN2 [5] (code), Unsup3D [12]
(code), Semseg [13] (code) and BiSeNet [14, 15] (code). The GPUs used weremultiple and
varied depending on availability: Nvidia Tesla K80, T4, V100 and P100.
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3.1 Model descriptions
To extract the implicit 3D knowledge of pre‐trained StyleGAN network, Pan et al. [1] pro‐
pose an elaborate scheme involving five different neural networks. Each network mod‐
els a particular quantity corresponding to the view and lighting directions, the depth of
the image, and the albedo. The View and Light (V and L, resp.) networks operate in
a encoder type manner, trying to obtain a low‐dimensional vector representation of the
camera view direction v and the direction of light l illuminating the object in the picture.
The Depth and Albedo (D and A, resp.) networks utilize auto-encoder architectures1 to
obtain image‐resolution depth maps d and diffuse reflections (albedo) a off the object’s
presumed surface.

The real GAN knowledge extraction happens in the final network, the Offset encoder E,
combinedwith the pre‐trained StyleGAN2 generator,G. The offset encoder aims to learn
a latent representation w of images with randomly sampled view and light directions,
pseudo-samples. Paired with G, this allows the creation of new realistic samples Ĩi =
G(w′

i) with new view and lighting directions, denoted projected samples. The projected
samples then serve as extended training data, providing multiple view‐light direction
variations of the original image.

To use the components v, l, d and a to obtain a reconstructed image, the authors utilize
a pre‐trained neural renderer developed by Kato, Ushiku, and Harada [16], which we
denote by Φ.

Training Procedure — The training process of this method can be divided into 3 different
steps, where the different networks involved are trained separately. In the original paper,
these steps are done sequentially and for one image at a time, as shown in Figure 1, and
each step is repeated multiple times before moving into the following one. The result
is a model that can predict the depth map for only one image. All of the networks are
trained using the Adam optimization algorithm.

Prior pre‐training. Before attempting to learn the true shape of an object, the depth
network is initialized by pre‐training it on a fixed prior shape. For this purpose Pan et al.
[1] propose to use an ellipsoid shape as the shape prior. We utilized this ellipsoid prior
to reproduce the results of Pan et al. [1], and we extended their work by also evaluating
two new different priors.

Step 1 optimizes only the A network according to Equation 1. Given an input I, the first
four networks predict their components v, l, d, a, and we obtain a reconstructed image
Î = Φ(v, l,d, a)2.

Lstep1(I, Î) = ∥I− Î∥1 + λsLs(D(I)) + λpLp(I, Î) (1)

Step 2 optimizes the E network according to Equation 2. Using the d and a compo‐
nents given in the last step 1 iteration, and random directions v′

i, l
′

i, we generate Np

new pseudo‐images I
′

i. For each I
′

i we predict∆wi = E(I
′

i), which serves as input to the
StyleGAN generator network G and obtain the projected images Ĩi.

Lstep2(I) =
1

Np

Np∑
i=1

∥I
′

i −G(w+ E(I
′

i))∥1 + λ1∥E(I
′

i)∥2 (2)

Step 3 optimizes the L, V ,D andA networks according to Equation 3. It consists in part
of Lstep1. The second part utilizes the projected samples from the last iteration of step

1We refer to tables 5‐7 of the original paper ([1]) for the exact architectures.
2Lp is a neural network trained to predict similarities between images [17] andLs is a term that encourages

smoothness of the resulting depth maps (as described in [18]). We refer to our code for the weights λi.
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2. For each projected sample ṽi = V (̃Ii), l̃i = L(̃Ii) is calculated. Combined with d and
a from the original image, they can be used to reconstruct each projected sample from
the components Ī = Φ(ṽi, l̃i,d, a)).

Lstep3(I, Ī) =
1

Np

Np∑
i=1

[Lp(I, Īi) + ||I− Īi||1] + Lstep1(I, Î) + λ2Ls(D(I)) (3)

Stages. The steps are repeated for a number of stages. In each, the steps are trained for a
different number of iterations (see Table 1 in subsection 5.5 in the appendix for details).

Single
image

Prior pre‐
training Step 1

Step 2

Step 3

Single
image
model

Predict depth map
for one image.

×Nstages

Figure 1. Schematic of the original training process.

Novel Shape Priors — The first novel prior we consider is a masked box. Using the mask
returned by the parsing model developed by Zhao et al. [19] we extrude the relevant
object from the background, in a step‐like manner. Improving on this idea, we also
smooth the transition from the object to the background. This is done by using three
2D convolutions, where we convolve the masked box shape with a 11× 11 filter of ones.
Renormalizing the convolved shape, we obtain Figure 2c denoted as ‘smoothed box’.

The last prior we tested is obtained by normalizing the score (or “confidence”) that the
parsing model gives to each pixel. We use this confidence to project the object, i.e. a
pixel that is within the category with more confidence will be farther projected. This
prior is similarly smoothed by convolutions and is denoted as ‘confidence based’.

Figure 2 shows a visual representation of the prior shapes used for an example image
taken from the CelebA dataset.

(a) Ellipsoid (original) (b)Masked box (c)Masked, smoothed
box

(d) Confidence based

Figure 2. Original vs. our novel shape priors, shown on the CelebA (face) dataset

3.2 Generalized Training Procedure
Given the single‐use nature of the model obtainable with the original training proce‐
dure, we decided to develop an alternative training procedure to favor a general model
M∗ usable for all images belonging to the same distribution as the training dataset D.
We propose to pre‐train the depth netD on all images first, instead of repeating the pro‐
cess for each image. We also modify Step 1, 2 and 3 by greatly lessening the number of
iterations given to a single image and breaking up the sequential training of the original
method into a few iterations per example, and instead introducingNe epochs and batch
training to compensate, increasing resource utilization and training speed. To facilitate
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understanding of our modifications to the training procedure, we provide a schematic
in Figure 3. It can be compared to the original shown in Figure 1. Let us note that the

Training
dataset

Extract
batch

Prior pre‐
training

Extract
batch

Step 1 Extract
image

Step 2

Step 3

General
model

Predict depth
map ∀ images
in the category.

×NB
× batch size

×NB

×Ne

Figure 3. Schematic of our new training process designed to favor generalization.

original authors also briefly mention a ‘joint training’ that should improve the general‐
ization ability of the model, however, its performance is not properly reported and it
only represents a mini‐batch extension of the pre‐training step.

3.3 Datasets
Weaimed to reproduce the authors’ results on the LSUNCar, LSUNCat [2] and CelebA [3].
From these datasets, the authors selected a subset consisting of 10 images of cars, 216
images of cat faces, and 399 celebrity faces. Like the authors, we used RGB images of
three color channels, resized to 128 × 128 pixel resolution. No further preprocessing
was applied.

3.4 Hyperparameters
For replication purposes, the original hyperparameters by Pan et al. [1] were used, but
we also tried tuning some parameters that we believe are key to the method: the num‐
ber of projected samples,Np, for each image and the number of epochs for pre‐training
the depth network. Np was varied within {2, 4, 8, 16, 32}. In our tests we found the val‐
ues 4, 8 and 8, respectively for the LSUN Car, LSUN Cat and CelebA dataset, to be the
threshold after which the improvements in image quality start greatly decreasing (see
subsection 5.11 in Appendix for more details).

The number of epochs for the depth network pre‐training was varied within {100, 500,
1000, 2000}. This pre‐training affects how irregular the depth map predictions are. We
believe that using a threshold for the loss to check the convergence would be preferable
as the number of epochs selected by the authors (1000) is enough in most cases but not
in all. We attribute irregularity in some of our results to this issue.

3.5 Experimental setup and code
For each dataset we run our implementation of the framework from Pan et al. [1] on
the images that were selected by the authors, the procedure saves a checkpoint for each
network. These checkpoints are later fed the original image to get the generated result.
The evaluation of the results was only qualitative as all the datasets we explored do not
have a ground truth for comparison. We instead relied on a manual evaluation.
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Our code is available at https://github.com/alessioGalatolo/GAN-2D-to-3D. Our results are avail‐
able interactively under the docs folder and at alessiogalatolo.github.io/GAN‐2D‐to‐3D/.

3.6 Computational requirements
Most of the experiments we ran were on a Intel(R) Xeon(R) CPU @ 2.20GHz with 2 cores
available and a Nvidia Tesla P100‐PCIE‐16GB. Since the framework described by Pan et
al. [1] is instance‐specific, we report the average time for completing the projection of a
single image: 96m and 28s for an image in the CelebA dataset, 95m and 43s for a LSUN
Cat image and 74m and 32s for a LSUN Car image.

4 Results

The model correctly learned the shape and the texture of many images, although some
examples were less successful than others. For example, the model converged to be‐
lievable shapes for two of the cars in Figure 4, but the shape of the right‐most car is
debatable.

In the following sections we show the reconstructed depth map and 3D projection of
some images chosen as representative of the dataset. All of the images that follow have
the background cut from the actual object, this was only done for ease of illustration
and was not done for the actual training process since the original authors do not mask
the background in all cases. It is also difficult to illustrate the results fairly in 2D images,
so we invite the reader to visit our website with interactive 3D plots3.

4.1 Results reproducing the original paper

LSUN Car —We present the results on LSUN Car dataset in Figure 4. Most features are
projected in the correct direction and show details that are correctly outward projected
from themain object. This result supports all the claimsmade in section 2 as we did not
use any annotation or assumption for the images, many details were retrieved with high
precision using the StyleGAN knowledge and we were able to easily make a rotation of
the image (see interactive web‐page).

(a) (b) (c) (d) (e) (f)

Figure 4. LSUN Car and Cat

LSUN Cat — The second experiment was conducted on the LSUN Cat dataset. The results
were slightly poorer compared to the LSUNCar dataset. The face of the cats gets properly
recognized, but some details like the nose are not protruded from the rest of the face and
are generally on the same plane, see Figure 4. Some images present some irregularities
in the form of spikes and hills (d). The rotation (f) does not result in a completely natural

3alessiogalatolo.github.io/GAN‐2D‐to‐3D/
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image as part of the face of the cat appears on the same plane. This experiment does
not support claims 2 and 4 in some cases (e.g. figures 4 (d) and (f) negate claims 2 and 4
respectively) while it does for claims 1 and 3 (section 2).

CelebA — The third experiment conducted on the CelebA dataset shows that most of the
face are correctly portrayed with the only exception of the border of the face e.g. chin
and forehead that sometimes is not included in the projection, see Figure 5 (b). Also we
found out that themethod does not behave well with faces that are viewed from the side,
see Figure 5 (c), where the face still gets a projection as it was viewed from the front. As
a consequence of this, the rotation of side faces does not result in a good image. This
experiment supports claims 1‐4 (section 2) only for some faces and claims 1 and 3 for
those viewed from the side.

(a) (b) (c)

Figure 5. CelebA

4.2 Results beyond the original paper

The effects of shape priors — The original paper did not specify the exact reasons for choos‐
ing an ellipsoid prior for the pre‐training of the depth net, therefore we decided to ex‐
periment with multiple prior shapes as well as no prior shape.

No prior. With the goal of assessing the results of this method when no prior shape
is given, we ran a test on one image from the LSUN Car dataset without any prior pre‐
training, and with random initialization. The reconstruction objective is still satisfied
very well, but it has converged to an extremely noisy depth map (see Figure 9 in subsec‐
tion 5.6 in the appendix). This briefly shows that this method would not work without a
strong shape prior to guide it towards a reasonable shape.

Smoothed Box Prior. The first extention experiment was done by testing the first of the
prior shapes we proposed, the smoothed box prior. Figure 6 shows the smoothed box
prior tested on the LSUN Cat and CelebA dataset where it can be seen how it is better at
understanding the structure of the nose and face in general.

Confidence‐BasedPrior. Another experimentweperformed focusedon theperformance
of the second prior we presented, the confidence based prior. Figure 7 shows some re‐
sults on the datasets considered in this paper. The results are most promising in the
CelebA dataset where the image of a face is correctly projected even if viewed from the
side.
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(a) (b)

Figure 6. Example result for two different image examples from the LSUN Cat and CelebA datasets.
For each example, the left‐most figure corresponds to the ellipsoid and right‐most figure corre‐
sponds to the smoothed masked box prior.

(a) LSUN Car (b) LSUN Cat (c) CelebA

Figure 7. Results with the confidence based prior.

Generalized Training Procedure —We demonstrate the results of our new training loop on
LSUN Cat. We note again that the difference to the previous demonstration on LSUN
Cat, is that a single network D∗ was used to predict all of the images, as opposed to
a different network Di for each image Ii. The general model was trained on a limited
subset of 30 images from LSUN Cat. It was trained for a modest 60 epochs which results
in approximately 60% of the weight updates per image of the original method. Figure 8
shows the projection of some images from the LSUN Cat dataset. One can observe that
the method recognizes the general structure of the cat’s face but also presents some
artefacts in some specific parts of the face e.g. the second cat’s cheek is further projected
than where it should and similarly for the third cat’s chin.

Improved initialization — Our final experiment is inspired by the observation of the depen‐
dency of the method to the number of pseudo‐samples Np, and the variability that fol‐
lows in the results depending on their quality, as discussed in subsubsection 5.3.1. We
experimentwith drastically increasing this number from16 to 128 for 10 short epochs, in
which each training step is performed only once. We observemarginal improvements in
the predicted shape (Figure 8) and larger improvements in the smaller details/features.
See the subsection 5.10 in the appendix for further detail.

Training step 1 was not changed and it is allowed to converge in the first stage, as it does
not involve the projected samples. See Table 2 in the appendix for an exact description
of the number of iterations. All other parameters were left as in subsubsection 4.2.1,
with the smoothed box prior. We experimented with two of the worst performers from
the LSUN Cat dataset to evaluate whether this method could improve the results, see
Figure 16. We applied the same idea to the general model described in sections 3.2,
4.2.2 and saw improvements, see Figure 8. The results can be compared to Figure 14.
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(a) Reconstructed depth

(b) Reconstruced 3D image

Figure 8. Depth map predictions for a few image samples from the training set D ⊂ LSUN Cat
dataset, all using one and the same generalmodelM∗ trained with initialization iterations.

5 Discussion

5.1 What was easy
The authors provide a clear specification of the Python package dependencies, as well as
other dependencies. Additionally, they provide scripts for easy downloading of a select
few datasets and pre‐trained model weights. They precisely state how to execute the
training script and how to run themodel for evaluation. Note that this refers to running
the original code and that modifying and extending the code brought many difficulties,
as explained in the next section.

5.2 What was difficult
The paper by Pan et al. [1] did not contain enough information for a successful reimple‐
mentation. Many details had to be discerned or guessed from their code. Furthermore,
the quality of said code does not allow for a quick interpretation. For example, deduc‐
ing the training loop and the number of iterations for each stepwas further complicated
by the poor cohesion of the original code: the trainer script was heavily mingled with
model class, using class members of the model object to increment training steps and
nested function calls back and forth between the trainer and model classes.

The components v, l, d and a were not enough to pass in to the neural renderer to re‐
construct an image. In reality, several calculations of quantities such as diffuse shading
and texture were needed to be fed into the neural renderer, using concepts from light
transport theory that were not mentioned in the paper.

Another difficulty was the heavy reliance on external pre‐trained neural networks. The
neural renderer [16], in particular, posed several problems. The major one was incom‐
patibility withWindows machines. To be able to develop on our personal machines, we
had to make manual edits of the neural renderer script and different CUDA files.

Another challenge with this method is the lack of objective quantitative metrics to eval‐
uate the success of the models. One instead has to rely almost entirely on qualitatively
gauging the shape reconstructions by eye.
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5.3 Conclusions

Variability of the results —We observed that themethod is very sensitive to various random
factors and identical runs may yield different results, see Figure 12. One factor may be
the random initialization of the networks, but we do not believe it is the dominating
factor, since the depth network is pre‐trained on a fixed prior shape each run. Rather, as
mentioned by the authors [1], the quality of the projected samples varies. Additionally,
we only sample 8 − 16 different view‐light directions in each step 2 iteration, which
may be too few projected samples for a robust model. Since this sampling is random,
increasing the number of samples should assure the inclusion of meaningful view and
light projections (experimental backing in subsection 5.7 in the appendix).

Catastrophic forgetting —We have observed that the instance‐specific model forgets the
previous training images (see subsection 5.8 in the appendix, Figure 13), and thus has
no generalization capability. This is not necessarily a problem if one has time and com‐
putational resources. It can also be argued that this is exactly what is intended with this
model, and that generalization is up to the training dataset of the StyleGAN model. It
does, however, limit the usefulness of the model. As an example, the training time for
one 128× 128 pixel RGB image using a Tesla K80 GPU was about 2.5 hours, which seems
exceedingly costly for just one low‐resolution depth map. We argue that a generalmodel
would have more use. The ideal scenario would be a modelD∗ trained onD that is able
to accurately predict di = D∗(Ii) ∀ Ii ∈ D, and even extend to unseen testing data be‐
longing to the same distribution as D. This discussion is what urged us to explore the
altered training procedure of sections 3.2 and 4.2.2.

Final conclusions —We were able to replicate some of the results of Pan et al. [1] on the
datasets LSUN Car, LSUN Cat and CelebA. We identified several failure modes and lim‐
itations of the model, and back it up with experimental evidence. Examples are the
variability and sensitivity to the projected samples, the heavy dependence on shape pri‐
ors and the computational costliness of the single‐use model ‐ all of which were not
adequately accounted for in the original paper.

We propose a new prior shape, the smoothed box prior, that has shown very promising
results especially for fine details and complex object structures. We propose a second
prior shape, confidence‐based, that has shown best results in the face dataset. We fi‐
nally suggest two new training procedures that produce better results and are better at
generalizing than the original model by Pan et al. [1].

We recognize the limitations of this work as we were only able (due to the restricted
computational power) to test the method on part of the dataset. For example, the Cat’s
dataset used by the authors contains more than 200 images but we were able to only test
few of them. We speculate that some images in the dataset could yield better results
than those reported here. However, we believe that few bad projected images should be
enough to claim the uneffectiveness of the method at least in some particular cases.

Another limitation of our work is the lack of quantitative evaluation methods. The orig‐
inal authors propose their results also on the BFM benchmark [20] where it is possible
to use some metrics to accurately evaluate the results.

5.4 Future work
We speculate that it would be interesting to adapt the same method to StyleGAN3 [7]
where the network has been modified to support training with fewer samples, leaving
the question if thenetwork still retains enough information that is needed forGAN2Shape
to work. Future work could also explore the use of our priors on datasets where the orig‐
inal method failed (e.g. the LSUN Horse dataset). We speculate that, since our prior
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captures the boundaries of the object very well (compared to the ellipsoid where the
boundaries are only used to position the origin), it could achieve better results in com‐
plex 3D objects where the shape cannot be simplified into an ellipse. A limitation of this
method is that it does not use voxels, but learns a height map. This disallows realistic
shape reconstructions and more complex geometries with multiple x and y values for
each z value etc. Future work should investigate whether this model could be extended
to predict voxels instead of height maps. Given our promising results with the general‐
izing trainer, which was obtained through only a few epochs of training, we believe that
it should be further explored with increased epochs and training set size.
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Appendix

5.5 Hyperparameters

Stage Iterations/step
1 [700, 700, 600]

2, 3, 4 [200, 500, 400]

Table 1. Specification of the different stages for the single‐image model.

Stage Iterations/step Np

0 [700, 0, 0] 16
1‐10 [1, 1, 1] 128
11 [1, 700, 600] 16

12, 13, 14 [200, 500, 400] 16

Table 2. Specification of the different stages for the single‐imagemodelwith initialization iterations

Epochs Iterations/step Np

60 [13, 22, 18] 16

Table 3. Specification of the iterations/step for the generalized model.

Epochs Iterations/step Np

10 [13, 1, 1] 128
60 [13, 22, 18] 16

Table 4. Specification of the iterations/step for the generalized model with initialization iterations

Table 5. Hyperparameters for the general model with initialization iterations on the LSUN Cat
dataset.

Parameter Value
n_epochs_prior 1000

n_epochs_generalized 70
n_epochs_init 10

n_init_iterations 8
batch_size 10

channel_multiplier 1
image_size 128

z_dim 512
root_path data/cat

learning_rate 0.0001
view_scale 1

refinement_iterations 1
n_proj_samples 16

rot_center_depth 1.0
fov 10

tex_cube_size 2

We refer to our GitHub repository for a complete declaration of all hyperparameters for
all datasets.
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5.6 Effects of shape priors
Figure 9 shows the effects of random initialization of the depthnetwork. Figure 10 shows

(a) Textured shape (b) 3D depth map (c) Reconstructed image

Figure 9. Results with no shape prior.

the results on the first car where it can be observed that our prior is even better the the
ellipsoid at capturing fine details such as the side mirror.

(a) Textured shape (b) 3D depth (c) 2D depth colormap

(d) Textured shape (e) 3D depth (f) 2D depth colormap

Figure 10. Ellipsoid prior (top row) vs. the smoothed masked box (bottom row) prior.

5.7 Variability of identical runs
Figure 12 shows several runs with the same configuration on the first car image ending
up with different results.
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(a) Cat 1 (original prior) (b) Cat 1 (our prior)

Figure 11. Results for a few other images from the LSUN Cat dataset, for the ellipsoid (left) and
smoothed masked box (right) priors.

(a) (b) (c)

Figure 12. Several runs with identical configuration.

5.8 Catastrophic forgetting
When the training process is complete for one image It we have confirmed that the
model Mt = {V, L,D,A}t is able to construct a believable depth map (subsection 4.1).
However, when training continues to the next image It+1 andMt+1 is obtained, we have
observed that the ability to predict the depth map of the previous image deteriorates,
and the problem gets worse with an increasing time discrepancy between the model
and image. In other words, the depth network Dt at training step t is only usable for
predicting the depth map dt = Dt(It) and so suffers from catastrophic forgetting of the
previous images. This is illustrated in Figure 13.

The training time for one 128 × 128 pixel RGB image using a Tesla K80 GPU was about
2.5 hours, which seems exceedingly costly for just one low‐resolution depth map.

(a)M3(I3) (b)M3(I2) (c)M3(I1)

Figure 13. Depth map predictions for a few image samples from the LSUN Car dataset, illustrating
catastrophic forgetting for the modelM .
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5.9 Additional generalized training results

(a) Reconstructed depth

(b) Reconstruced 3D image

Figure 14. Depth map predictions for a few image samples from the training set D ⊂ LSUN Cat
dataset, all using one and the same generalmodelM∗.

I199 I201 I199 I201

(a) Using the generalmodelM∗.

I199 I201 I199 I201

(b) Using the instance‐specific modelMlast

Figure 15. Depth map predictions for unseen image samples {I199, I201} ̸∈ D from the LSUN Cat
dataset.
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5.10 Initialization iteration results
The observations of sections 5.3.1 and 3.4 can be condensed into two main points to
form a hypothesis. Please note that our limited computational resources meant that we
could not perform rigorous experimentation to confirm these observations with a large
number of samples, and that this section should be viewed as a speculative experiment.

• The initial few training iterations can be viewed as an initialization of the weights,
which depends on what projected samples are generated by the StyleGAN2 model.

• The “features” (i.e. peaks and valleys) of the depth map predictions do not quali‐
tatively change with increasing iterations, but remain fixed except in size (i.e. the
height of the peaks).

If one accepts these claims, then it is clear that the first few iterations determine the suc‐
cess of the shape reconstruction. That is why we experiment with drastically increasing
the number of pseudo‐samples during the first iterations. This reduces the bias of the
initialization and reduces the relative impact that a poor projected sample generated by
the GAN has on the model weights. Specifically, we increase the number of projected
samplesNp from 16 to 128 for 10 short epochs, in which each training step is performed
only once.

Ideally, one would of course permanently increase Np, but with extreme costs in terms
of training time. This method only added ∼ 4minutes of training time using a Tesla T4
GPU.

(a) Original initialization (b) Original initialization

(c)With initialization iterations (d)With initialization iterations

Figure 16. Results for the worst performers for the single‐image model using the smoothed box
prior, from the LSUN Cat dataset. Original initialization (top row) and using initialization itera‐
tions (bottom row). The leftmost cat saw the most drastic changes. While the result is a “spikey”
depthmap, we argue that the general shape has a better resemblance to a cat, and less square box‐
like as with the original initialization. The rightmost cat saw some improvement in some details
such as the ears and the mouth region.

ReScience C 8.2 (#30) – Galatolo and Nilsson 2022 17

https://rescience.github.io/


[Re] Replicating and Improving GAN2Shape Through Novel Shape Priors and Training Steps

5.11 Hyperparameter tuning
We found that Np correlates with the quality of the predicted shapes. The trend tends
to be that more is better, but with diminishing returns. The biggest benefit that a large
Np has, is that strange artefacts are less likely to persist. It is difficult to pinpoint an
acceptable threshold for Np, as it varies between datasets and even between images.
Therefore we believe a good compromise is to perform a few initialization iterations as
described in section 4.2.3 with a large Np (i.e. 128) and then continue training with a
lower number according to the aforementioned thresholds.

To illustrate the results when varying on the number of projected samples Nproj we
present the results on the LSUN car and Celeba dataset. In Figure 18 the first two cars
(corresponding to a lowNp) havemore irregular surfaces andonehas a large spike, while
the third is more regular. The same is observed for the Celeba faces in Figure 17, where
the first face (corresponding to a low Np) has significant irregularities across the face.
As described in subsubsection 5.3.1, we attribute this phenomenon to lower relative
impact that sampling poor view‐light projections has, the larger Np is.

Figure 17. Face 1 when trained with 4, 8, 16 and 32 (from left to right) number of projected samples.

Figure 18. Car 1 when trained with 2, 4 and 8 (from left to right) number of projected samples.
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