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Reproducibility Summary

Scope of Reproducibility
We evaluate the following claims related to fairness‐based objective functions presented
in [1]: (1) For the four objective functions, the success rate in the worst‐served neighbor‐
hood increases monotonically with respect to the overall success rate. (2) The proposed
objective functions do not lead to a higher income for the lowest‐earning drivers, nor
a higher total income, compared to a request‐maximizing objective function. (3) The
driver‐side fairness objective can outperform a request‐maximizing objective in terms
of overall success rate and success rate in the worst‐served neighborhood. This means
that this objective, whilst reducing the spread of income, also positively impacts rider
fairness and profitability.

Methodology
The code provided by [1] was used as a base for our re‐implementation in PyTorch. We
evaluate the claims by the original authors by (a) replicating their experiments, (b) test‐
ing for sensitivity to a different value estimator, (c) examining sensitivity to changes in
the preprocessing method, and (d) testing for generalizability by applying their method
to a different dataset.

Results
We reproduced the first claim since we observed the same monotonic increase of the
success rate in the worst‐served neighborhood with respect to the overall success rate.
The second claim we did not reproduce, since we found that the driver‐side fairness ob‐
jective function obtains a higher income for the lowest‐earning drivers than the request‐
maximizing objective function. We reproduced the third claim, since the driver‐side
objective function performs best in terms of overall success rate and success rate in
the worst‐served neighborhood, and also reduces the spread of income. Changes of the
value estimator, preprocessing method and even dataset all led to consistent results re‐
garding these claims.

Copyright © 2022 V. Neplenbroek, S. Perdijk and V. Prins, released under a Creative Commons Attribution 4.0 International license.
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[Re] Replication study of ’Data-Driven Methods for Balancing Fairness and Efficiency in Ride-Pooling’

What was easy
The paper is written engagingly and the theoretical sections, in particular, give a clear
description of the problem setup and objectives. The paper is also accompanied by an
open‐source code base, which supports reproduction efforts.

What was difficult
The provided code lacks a script to preprocess raw data, which is required to reproduce
the experiment, nor was the preprocessed data openly available. Additionally, complex
code structure and scarce commenting complicated replication.

Communication with original authors
Due to the absence of preprocessed data, we contacted the authors, who quickly pro‐
vided the requested data.
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1 Introduction

Ride‐pooling platformsmatch independent drivers with multiple riders. This matching
is performed by machine learning algorithms, which are designed to maximize com‐
pany profit. The profit motive behind these algorithms can cause unfairness among
drivers and riders, for instance by unequally distributing rides between drivers, or by
servicing requests originating in some neighborhoods at lower rates [1, 2, 3].
The paper Data-Driven Methods for Balancing Fairness and Efficiency in Ride-Pooling [1]
(henceforth referred to as “the paper” or “the authors”) explores the tradeoff between
rider fairness, driver fairness, and total income (i.e. company profitability) by measur‐
ing fairness and profitability metrics across simulations using four objective functions.
These objective functions are maximized by an algorithm that matches rider requests
to drivers, using actual request data from the New York Yellow Taxi dataset. The follow‐
ing metrics are studied: a) the percentage of all requests that are serviced (the overall
success rate), b) the success rate in the neighborhood with the lowest local success rate
(the success rate in the worst-served neighborhood), and c) the distribution of income across
drivers. The overall success rate is used as a proxy for company profitability, whereas
the success rate in the worst‐served neighborhood and the income of the least‐earning
drivers are measures of rider and driver fairness, respectively.
The matching algorithm, introduced by [4], uses a Markov decision process (MDP) in
combination with a neural value estimator to match rides to drivers non‐myopically,
that is, with awareness of future events that could impact the value of a match. The pa‐
per’s algorithm requires a strongly connected graph (i.e. street network) on which the
taxis operate, precomputed routes and travel times between all pairs of nodes (i.e. inter‐
sections), and a dataset of requests, each containing an origination node, a destination
node, and the time the request was issued.
Thepaper compares twoprofitability‐focusedobjective functions and two fairness‐focused
objective functions. Theprofitability‐focused request objectivemaximizes the total num‐
ber of requests serviced during the simulation, given by the sum of ongoing requests pi
and completed requests si, for each driver i:

orequest(R,W ) =

n∑
i=1

(|pi|+ |si|), (1)

where R and W are sets respectively containing the states of the drivers, and all pre‐
viously unaccepted and accepted requests. The profitability‐focused income objective
maximizes the total income of all drivers:

oincome(R,W ) =

n∑
i=1

πi, (2)

where πi is the income of driver i, which is made up of a constant part and a variable
part that depends on the distance of the trip. The rider fairness objective maximizes
profit whilst minimizing the variance of the success rate across all neighborhoods j:

orider(R,W ) = −λV ar(
hj

kj
) +

n∑
i=1

πi, (3)

where hj is the number of serviced requests originating in neighborhood j, kj is the
total number of requests originating in j, and λ a hyperparameter moderating the reg‐
ularization. The driver‐side fairness objective maximizes profit whilst minimizing the
variance of the income across all drivers i:

odriver(R,W ) = −λV ar(πi) +

n∑
i=1

πi. (4)
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2 Scope of reproducibility

We focus our reproducibility study on the claims related to the fairness‐based objective
stated in the previous section. These claims (henceforth referred to as the claims) can be
summarized as follows:

1. For the four objective functions, the success rate in theworst‐servedneighborhood
increases monotonically with respect to the overall success rate.

2. The proposed objective functions do not lead to a higher income for the lowest‐
earning drivers, nor a higher total income, compared to a request‐maximizing ob‐
jective function. This extends claim 1, suggesting that a profit motive generally
leads to increased fairness for drivers and riders alike.

3. The driver‐side fairness objective (4) can outperform a request‐maximizing objec‐
tive (1) in terms of overall success rate and success rate in the worst‐served neigh‐
borhood. This means that this objective while reducing the spread of income, also
positively impacts rider fairness and profitability.

The authors have demonstrated claim 3 to hold only for 50 drivers. For 200 drivers they
find the opposite, namely that equation (1) outperforms equation (4) in terms of fairness
as well as profitability metrics.
We evaluate these claims by testing whether they still hold under a variety of modifica‐
tions to the experimental setup. We conduct four experiments that deviate increasingly
from the exact setup of the paper: (a) the experiment of the paper is reproduced using
the author’s preprocessed data, (b) the non‐myopic neural value estimator is replaced
by a myopic greedy estimator, (c) the experiment of the paper is replicated using data
generated with our own preprocessing method, and (d) the experiment is applied to a
different dataset (New York Green Taxi dataset), using our own preprocessing method.
Note that all experiments except for (b) use the neural value estimators also used in the
original paper.

3 Methodology

This section explains the methodology used for the four experiments we carried out.
An overview of the used code is provided, followed by descriptions of the model, the
datasets and the hyperparameters. Finally, we outline the experimental setup and state
the computational resources needed to perform the experiments.

3.1 Code
The code provided by the authors, which is largely based on the code by [4], was used
as a base for our re‐implementation in PyTorch. The provided code was sufficient to re‐
produce the experiments performed in the original paper, after the authors emailed the
preprocessed data that they used in the paper. This data consists of the graph of Man‐
hattan, travel times, routes, and rider requests from the New York Yellow Taxi dataset
mapped to nodes on the graph. Neither the code to generate this data nor the data itself
are publicly available.
To solve the integer linear problem that determines which set of actions is assigned to
which driver, the original code uses the callable library CPLEX 12.8. However, at the
time of this replication study, the free edition of CPLEX does not suffice to train the
required models, since the problem size limits were exceeded. Therefore, the no‐cost
academic edition of CPLEX 20.11 was used instead.

1https://pypi.org/project/cplex/
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In addition to an exact reproduction, we examine the paper’s claims’ robustness against
a different method of preprocessing the same raw data. The paper uses the method
described in [5] to preprocess the raw trip data. However, this method is computation‐
ally demanding and complex to implement. We developed an algorithm that generates
routes and travel times on a graph, but that differs in two ways from [5]. First, we use
travel time estimates from OpenStreetMap (OSM), corrected by a multiplication con‐
stant, equal to the mean ratio between the actual travel time and the OSM estimate of
the travel time, computed over all trips in the dataset.
Second, unlike the method used in the paper, we do not compute the Dijkstra algorithm
for each pair of nodes, which is an O(n2) approach, where n is the number of nodes
in the graph. For the street network of Manhattan (n ≈ 4000), this can take days on a
typical laptopwithoutGPUacceleration. Instead, our routing algorithm invokesDijkstra
on a total of ≈ 500, 000 pairs of randomly sampled nodes, which yields a coverage of
≈ 60% of all n2 = 16M routes, because all subroutes of each route are also optimal
routes. The optimal routes between the remaining 40% of node pairs are approximated
by setting each remaining route (n,m) equal to the concatenation of subroutes (n, p)
and (p,m), for a predecessor p selected from a set of predecessors of nodem, for which
routes (n, p) and (p,m) are known and yield the lowest total travel time.
Lastly, to test the generalizability of the methods used in the paper, we performed addi‐
tional simulations using trips in Brooklyn from the New York Green Taxi dataset. The
algorithm described above is used to generate routes and travel times between all nodes,
given the graph of Brooklyn’s street network.

3.2 Model descriptions
The original paper has adapted the model that incorporates an MDP to assign a set of
actions to each vehicle from [4]. An overview of this algorithm is provided in Appendix
A. Themodel makes use of a neural value estimator that assigns a value to each possible
set of actions. In the original paper, the objective functions (equations 1, 2, 3, 4) that this
model aims tomaximize are varied, alongwith the number of drivers (50 and 200 drivers
are used).
The input to the neural value estimator [4] is composed of the current location and path
of the vehicle, the permissible delay, the current epoch, the number of other vehicles
in the vicinity and the number of requests that were placed in the current epoch. By
using an LSTM, this value estimator can take into account non‐myopic considerations
like the possibility that a future rider request will appear along the route of a current
rider request, therefore increasing the value of the current request. The location and
path features are embedded using pretrained embeddings, which were computed by a
separate network that was trained to predict travel times between any two nodes in the
graph.

3.3 Datasets

The original experiments are conducted on the New York Taxi dataset [6], available at 2,
consisting of pickup and drop‐off locations and times for Yellow Taxi passengers from
March 23rd to April 1st and from April 4th to April 8th, 2016.
The generalization experiments are conducted on the New York Green Taxi dataset 3,
consisting of pickup and drop‐off locations and corresponding times for Green Taxi pas‐
sengers in the months February, March and June. We take the subset of trips in Brook‐
lyn, to keep the size of the graphmanageable and similar to the graph ofManhattan used
in the original paper. Whereas Yellow taxis in practice only serve the business district of
downtownManhattan, the Green taxis serve all of New York. This makes the Green Taxi

2https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
3https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
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dataset a good choice to test the generalization of results concerning rider‐side metrics,
because of differences in affluence between various districts of New York. In addition,
Brooklyn is a different geographical area and the Green Taxi dataset contains a different
distribution of requests, compared to the Yellow Taxi dataset.

3.4 Hyperparameters
Nohyperparameter searchwas done for this replication study. Instead, the hyperparam‐
eters provided by [1] were used to adhere to the original experimental setup as much as
possible. This meant that for the driver‐side fairness objective function we set λ to be
4
6 , and for the rider‐side fairness objective function, λ was set to be 109. Additionally,
we set the constant costs of a ride to $5, the capacity of a car to 4 riders, the number of
neighborhoods to 10, and we batch rider requests per minute.

3.5 Experimental setup
For each experiment containing a neural value estimator (section 2), themodel is trained
for each combination of objective function (equations 1, 2, 3, 4) and number of drivers
(∈ {50, 200}). For the specific packages and their versions that were used to obtain our
results, we refer to our codebase 4. Reproducing the experiments by [1] means that we
trained allmodels on 3 days of data, except for the rider‐side fairness objective (equation
3) models, which were trained on 2 days of data. All models were evaluated on one day
of data.
In order to evaluate the claims, the followingmetrics are of interest: the overall success
rate, the success rate in the worst‐served neighborhood (also calledminimum request suc-
cess rate), and the income per driver. To compare the objective functions, three plots are
generated per experiment, in line with the reporting of the original paper: 1) the min‐
imum request success rate as a function of the overall success rate for the simulation
with 50 drivers, 2) the same plot for the simulation with 200 drivers, and 3) the distri‐
bution of income across drivers for each objective function for the simulation with 200
drivers.
During the exact reproduction of the paper’s experiments, we observed that the neural
model is not trained (seemingly inadvertently) in the experiment with 50 drivers. The
number of training examples for the neural net grows in the number of drivers and
the number of days of training data. The authors included a minimum threshold of
training examples, which is not met by the experiment with 50 drivers. However, the
algorithm silently executes, therefore using an untrained randomly‐initialized neural
network. Importantly, the value assigned to each action is a linear combination of a
deterministic term and the output of the (untrained) neural net. Therefore, even though
the network’s outputs are random in the case of 50 drivers, the computed values are not.
This finding motivated the experiment where the neural value estimator is replaced by
a greedy value estimator.
To test the claims under a different data preprocessing method, we run an experiment
using the same rawdata as the original paper, but with our self‐developed preprocessing
method (i.e. a graph of Manhattan with routes and travel times computed as outlined
in section 3.1). Apart from the data preprocessing, this experiment is identical to the
experiment in the paper. With this, we aim to investigate the sensitivity of the claims
and the method used by [1] to different data preprocessing methods and in particular to
a different travel time computation, which is inherently noisy.
Our final experiment uses the Green Taxi dataset and our own preprocessing method
in order to study the generalizability of the work by [1]. The models for the Green Taxi
dataset were trained on 6 days of data, except for the rider‐side fairness objective (equa‐
tion 3) models, which were trained on 4 days of data. All these models were evaluated

4https://github.com/Veranep/rideshare-replication
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on two days of data. For all experiments using our preprocessing method, two new sets
of pretrained embeddings were trained for the corresponding graphs of Manhattan and
Brooklyn.

3.6 Computational requirements
All experiments were run on one Nvidia GeForce 1080Ti GPU, using three CPU nodes.
Training and evaluating a model on the Yellow Taxi dataset for 50 drivers took roughly
2.5 hours, whereas training and evaluating one for 200 drivers took 6‐7.5 hours. For the
rider‐fairness objective function models, which were only trained on two days of data,
runtimes were two‐thirds of this. The experiments that use a greedy non‐neural value
estimator took an hour less for 200 drivers and roughly the same amount of time for 50
drivers. For the Green Taxi dataset, more days of data were used to train on, since this
dataset contains fewer requests per day. Here, the model took roughly 1 hour to train
and evaluate for 50 drivers and 10 hours for 200 drivers. Computing embeddings of size
100 for all ≈ 4000 locations took approximately 10 hours. Finding shortest paths and
computing travel times between all pairs of locations took 1.5 hours on a laptop with an
Intel i5 processor 5.

4 Results

In this section, we present the results of the reproduction of the original paper, the re‐
placement of the neural value estimator by the greedy non‐neural value estimator, the
replication using our data preprocessingmethod, and the generalization experiment us‐
ing the Green Taxi dataset. For each experiment, we evaluate whether the claims listed
in Section 2 are supported by the presented results.

4.1 Reproduction of the original experiment
The first claim states that objective functions which improve the overall success rate for
riders also improve the success rate in the worst‐served neighborhood. The figures that
the authors use to support this are displayed in Appendix B and our reproduced results
in Figures 1a and 1b. If objective functions that improve the overall success rate also
improve the success rate in the worst‐served neighborhood, we should see the success
rate in theworst‐servedneighborhoodmonotonically increase as the overall success rate
increases. This is indeed a pattern that we see in the figures from the original paper, as
well as in our figures.
Second, the authors claim that no objective function raises wages for the lowest‐earning
drivers or raises the total income, compared to the requests objective function (equation
1). In the original paper, results related to the income distribution used to support this
claim are only obtained for 200 drivers, as can be seen in Appendix B. In our reproduc‐
tion the function thatmaximizes total income at 200 drivers is also the requests objective
function. However, the maximum income for the least‐earning drivers is obtained with
the driver‐side fairness objective function, as displayed in Figure 1c.
The final claim states that the driver‐side fairness objective function (equation 4) outper‐
forms the requests objective function (equation 1) in terms of overall success rate, suc‐
cess rate in the worst‐served neighborhood, and reducing the spread of income. These
first two results are only obtained for 50 drivers, as seen in the figures in Appendix B,
and the last result only for 200 drivers. We reproduce all three of these results. In Fig‐
ure 1a, we see that both the highest overall success rate and the highest success rate
in the worst‐served neighborhood are obtained with equation (4). Finally, we find that

5Specifically, a MacBook Pro (13‐inch, 2020) with 1.4 GHz Quad‐Core Intel Core i5 CPU
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equation (4) reduces the spread of income compared to (1), as can be seen from Figure
1c.

(a) Results for 50 drivers

(b) Results for 200 drivers

(c) Income distribution for 200 drivers

Figure 1. Results of the reproduction study. In subplots 1a and 1b, each marker represents an
objective function. As in the original paper, success rates are small, because the number of
drivers is much smaller than the number of riders. In subplot 1c, the income by objective

function is shown.

4.2 Results beyond original paper
In addition to reproducing the results in the original paper, we performed supplemen‐
tary experiments to test the generalizability of the methods used in the original paper.
First we discuss the results of replacing the neural value estimator with a greedy value
estimator. Further, we examine the results of using our preprocessing method. Lastly,
we discuss the results obtained using the Green Taxi dataset.
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Results using a greedy non-neural value estimator — These results are obtained by replacing
the neural non‐myopic value estimator with a myopic greedy value estimator. This
serves both to test the added value of the neural estimator, and to test the sensitivity
of the claims to a different estimation method. Interestingly, the results obtained with
the greedy estimator (Figure 2) closely resemble the results obtained with the neural es‐
timator (Figure 1), even in the case of 200 drivers where the neural estimator does train
(as opposed to the case with 50 drivers). This suggests that, given the limited training
examples for 200 drivers and 3 days of taxi data, the neural model provides little added
benefit over amyopic greedy estimator. By extension, this experiment reaches the same
conclusions: claims 1 and 3 are replicated, but claim 2 is not.

(a) Results for 50 drivers

(b) Results for 200 drivers

(c) Income distribution for 200 drivers

Figure 2. Results of using a greedy value estimator. Apart from using a different value estimator,
this experiment uses the exact same setup as the original paper (and that we use in our

reproduction in section 4.1).

Results using our preprocessing method — To examine the sensitivity to changes in the pre‐
processing method, we compare the results of this experiment to the results of the re‐
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production. The obtained results, as displayed in Figure 3, are similar to the reproduced
results. We see the same monotonic increase in Figures 3a and 3b as we saw in Figure
1 for the reproduction. Similarly, the income distribution (Figure 3c) shows that objec‐
tive (4) obtains the highest income for the lowest‐earning drivers and reduces the spread
of income. Therefore, we can conclude that these results support claim 1 and claim 3,
but do not support claim 2, and that the method proposed by the authors is robust to
changes in the preprocessing method.

(a) Results for 50 drivers

(b) Results for 200 drivers

(c) Income distribution for 200 drivers

Figure 3. Results of using our preprocessing method. Apart from preprocessing the raw Yellow
Taxi data differently, this experiment uses the exact same setup as the original paper (and that

we use in our reproduction in section 4.1).

Results on Green Taxi dataset — In order to analyze the generalizability of the original paper,
we use the results obtained on the Green Taxi dataset to see if the claims described in
Section 2 hold for a different dataset. These results (Figure 4) are similar to the ones ob‐
tained on the Yellow Taxi dataset in both the reproduction experiment (Figure 1) and the
experiment using our preprocessing (Figure 3). This experiment again supports claims
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1 and 3, but does not support claim 2.
Important to note is that the success rates are much higher compared to those obtained
on the Yellow Taxi dataset. This is because the Green Taxi demand in Brooklyn is signif‐
icantly less than the Yellow Taxi demand in Manhattan. Hence, with an equal number
of taxis a greater share of requests can be met. The fact that the findings of this ex‐
periment are consistent with the previous experiments, all of which have much lower
success rates, provides confidence that the claims also generalize to realistic success
rates (i.e. success rates approaching 100%, as is expected from real taxi companies).

(a) Results for 50 drivers

(b) Results for 200 drivers

(c) Income distribution for 200 drivers

Figure 4. Results for the Green Taxi Dataset. In subplots 4a and 4b, each marker represents an
objective function. These results were obtained by averaging the success rates obtained for the
two evaluation days. In subplot 4c, the income by objective function is shown. Here, the drivers

from each evaluation day are treated separately.
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5 Discussion

To conclude, our results support the first claim, since we find that the success rate in the
worst‐served neighborhood increases monotonically with respect to the overall success
rate for both 50 and 200 drivers. Unlike the original paper, wedonot find that the request‐
maximizing objective function (equation 1) maximizes income for the lowest‐earning
drivers, so we do not support the second claim. Instead, we find that at 200 drivers the
driver‐side fairness objective function (equation 4) obtains the highest income for the
lowest‐earning drivers.
We support the third claim since our results show that the driver‐side fairness objective
function yields the greatest overall success rate, the highest success rate in the worst‐
served neighborhood, and reduces the spread of driver income. Indeed, our results
provide even stronger support for this claim than the original paper. Unlike the paper,
we have found the driver‐side objective to provide the best success rates in both cases
of 50 and 200 drivers. Furthermore, this objective lifts the income of the least‐earning
drivers above what they make under the request‐maximizing objective. This makes the
driver‐fairness objective attractive in all respects, and an interesting subject for further
research. One avenue to explore is why the driver‐fairness objective produces greater
success rates than the request‐maximizing objective, even though the latter’s sole pur‐
pose is to maximize the success rate.
The obtained results are generally consistent across the four conducted experiments,
showing that the claims which are supported by our results (claims 1 and 3) are robust
and relatively insensitive to a range of reasonable changes to the experimental setup.
This provides confidence that these claims and the corresponding objective functions
generalize well beyond the precise setups in which we and [1] tested them.
One limitation of ourwork, which is also shared by the original paper, is that the success
rates across all experiments are unrealistically low, because the number of drivers (50 or
200) is insufficient to meet demand (there are more than 10,000 Yellow taxis in Manhat‐
tan). This creates an abundance of possible actions for each driver that is not represen‐
tative of the competition that exists for real‐world taxi services. Running experiments
in a setup where success rates are more realistic would be a worthwhile additional gen‐
eralization experiment. Such experiments may require more computational resources
than some researchers, ourselves included, have access to. However, our results for the
Green Taxi dataset already mitigate concerns that the claims would not generalize to
greater success rates; the claims were upheld in this setup with success rates of over
50%.

5.1 What was easy
The paper is written engagingly and the theoretical sections in particular give a clear
description of the problem setup and objectives. The paper is also accompanied by an
open‐source codebase with their implementation, which is extremely helpful to obtain‐
ing accurate reproductions.

5.2 What was difficult
Even though the code was sufficient to reproduce the experiments done in the original
paper, it was cluttered at times. It contains functions that are never used, as well as print
statements solely used to check if a certain point in the code is reached without errors.
Additionally, the code used to create the location embeddings creates embeddings of
size 10, when embeddings of size 100 are expected by the model. When reimplement‐
ing the code in PyTorch, most difficulty was experienced when having to feed masked
data into an LSTM backwards, as a result of how masking is implemented in PyTorch.
Further, various important details could only be found in the code, such as which days
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they used to train the model on and the used epoch duration. One of the most impor‐
tant details that was missing is the notion that the model does not train for 50 drivers
and three days of Yellow Taxi data, as it will not train without enough examples. Fur‐
ther, the data to perform the original experiments and the script to preprocess the raw
data were not publicly available. After contacting the authors, they provided us with
the missing data. Despite what is stated in the paper, approximately 1% of the routes in
this data were not computed. These omitted routes, however, were not present in any
of the rider requests and therefore did not pose a problem to this research.

5.3 Communication with original authors
We contacted the authors because the data and the embeddings used to perform the
original experiments are not publicly available. The authors provided the missing data
quickly and expressed willingness to help with further queries.
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A NeurADP Algorithm

Algorithm 1 NeurADP(N,T)
1: Initialize: replay memoryM , Neural value function V (with random weights θ)
2: for each episode 1 ≤ n ≤ N do
3: Initialize the state sn0 by randomly positioning vehicles.
4: Choose a sample path ξn

5: for each step 0 ≤ t ≤ T do
6: Compute the feasible action set Ft based on snt .
7: Solve the ILP in Table 1 to get best action ant . Add the Gaussian noise for

exploration.
8: Store (rnt , Ft) as an experience inM .
9: if t % updateFrequency == 0 then
10: Sample a randommini‐batch of experiences fromM
11: for each experience e do
12: Solve the ILP in Table 1 with the information from experience e to get

the objective value ye
13: for each vehicle i do
14: Perform a gradient descent step on (ye,i−V (ri,nt ))2 with respect to

the network parameters θ
15: end for
16: end for
17: end if
18: Update: sa,nt = T a(snt , a

n
t ), s

n
t+1 = T ξ(sa,nt , ξnt+1)

19: end for
20: end for

B Results of the original paper
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(a) 50 drivers

(b) 200 drivers

Figure 5. The results of the original paper [1]. The overall success rate is the rate of accepted
requests in all neighborhoods, and the minimum request success rate is the minimum rate of
accepted requests in a neighborhood. Each data point of the same symbol refers to a different

(unspecified) value of λ.

Figure 6. Results of the original paper [1]. The income distribution for 200 drivers.
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