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Reproducibility Summary

Scope of Reproducibility
We conducted a reproducibility study of the paper Exacerbating Algorithmic Bias through
Fairness Attacks [1]. According to the paper, current research on adversarial attacks is
primarily focused on targeting model performance, which motivates the need for ad‐
versarial attacks on fairness. To that end, the authors propose two novel data poisoning
adversarial attacks, the influence attack on fairness and the anchoring attack. We aim
to verify the main claims of the paper, namely that: a) the proposed methods indeed af‐
fect a model’s fairness and outperform existing attacks, b) the anchoring attack hardly
affects performance, while impacting fairness, and c) the influence attack on fairness
provides a controllable trade‐off between performance and fairness degradation.

Methodology
We chose PyTorch Lightning to re‐implement all of the code required to reproduce the
original paper’s results. Our implementation enables the quick and easy extension of
existing experiments, as well as the integration with the various development tools that
come with PyTorch Lightning. All of our experiments took about 120 hours to complete
on a machine equipped with an Intel Core i7 7700k CPU and an NVIDIA GeForce GTX
1080 GPU.

Results
Our results slightly deviate from the ones reported by the authors. This could be at‐
tributed to the design choices we had to make, due to ambiguities present in the orig‐
inal paper. After inspecting the provided codebase along with relevant literature, we
were able to replicate the experimental setup. In our experiments, we observe similar
trends and hence we can verify most of the paper’s claims, albeit not getting identical
experimental results.
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What was easy
The original paper is well‐structured and easy to follow, with the principal ideas behind
the proposed algorithms being very intuitive. Additionally, the datasets used in the ex‐
periments are publicly available, small in size, and the authors provide their code on
GitHub.

What was difficult
During our study, we encountered a few unforeseen issues. Most importantly, we were
not able to identify critical technical information required for the implementation of the
proposed algorithms, as well as a detailed description of the models used, their training
pipeline, hyperparameters, and data pre‐processing techniques. Furthermore, the pub‐
licly available code is convoluted and employs out‐of‐date libraries, making it difficult
to set up the necessary environment.

Communication with original authors
We contacted the paper’s first author once to confirm our understanding of certain el‐
ements of the paper that were either not specific enough or missing. Although they
responded fairly quickly, their answer prompted us back to the paper and the provided
codebase, while not encouraging any further communication.
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1 Introduction

Adversarial attacks have becomepopular in themachine learning community since they
allow scientists to understand and mitigate the weaknesses of the employed models.
Current research is primarily focused on adversarial attacks targeting the performance
of machine learning systems [2, 3], but recent studies indicate that adversarial attacks
can also be used to target fairness [1, 4, 5]. In the studied paper, the authors propose two
novel families of adversarial attacks ‐ the influence attack on fairness and the anchor‐
ing attack ‐ and demonstrate their effect in exacerbating algorithmic bias by evaluating
them on three datasets using two well‐known fairness metrics.
Both of the proposed methods belong to the family of data poisoning attacks, in which
the adversary attempts to inject malicious data points into the training data. In par‐
ticular, given a “clean” training dataset Dc, i.e. a dataset containing only the original
training samples, the adversary generates a “poisoned” dataset Dp and integrates it into
the original one, resulting in the final train set Dtrain = Dc ∪ Dp. The poisoned dataset
Dp is generated in such a way that training with Dtrain results in a model with degraded
performance or, in our case, a less fair model.
The paper considers a binary classification scenario, under a common fairness setup
with two demographic groups; the advantaged Dadv and the disadvantaged Ddisadv. Un‐
der this setting and given an adversarial loss that increaseswhen themodelmakes unfair
decisions, the influence attack on fairness finds adversarial data points by performing
gradient ascent on the adversarial loss. On the other hand, the anchoring attack places
poisoned points in the close vicinity of two target points, one from Dadv and one from
Ddisadv, with the opposite labels but the same demographic.

2 Scope of reproducibility

In this reproducibility study we aim to verify the following main claims of the paper:

• Both of the proposed attacks impact the fairness of the targeted model, outper‐
forming other attacks in the literature, such as Koh’s basic influence attack [6] and
Solan’s gradient‐based poisoning attack [5].

• The anchoring attack has little to no impact on the model’s accuracy, making it
more difficult to detect.

• The influence attack on fairness provides a controllable trade‐off between the im‐
pact on performance and fairness via a regularization term λ.

Additionally, we extend the evaluation set up to test whether current methods can be
used to invert the inherent bias of a dataset. To this end, we re‐implement the entire
experimental setup, and hence contribute:

• an extensive study and evaluation of the adversarial attacks proposed by Mehrabi
et al. [1].

• amodification to the influence attack on fairness which can invert or diminish the
inherent bias of a dataset.

• a comprehensible and easily extensible codebase, which can be used both in the
evaluation of current methods and as a framework for further research on adver‐
sarial attacks on fairness.
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3 Methodology

3.1 Poisoning Attacks
Poisoning attacks are a category of adversarial attacks where the attacker impacts a sys‐
tem by injecting a small portion of engineered malicious data into its training set. In
particular, we consider that the system is trained on a clean dataset Dc and evaluated
on a test datasetDtest. The attacker has knowledge of both sets, as well as of the system’s
architecture and its training pipeline. With this information, the attacker creates a poi‐
soned dataset Dp, with |Dp| = ϵ|Dc|, so that training the attacked system on Dc ∪ Dp

impacts its performance, or in our case its fairness. The parameter ϵ controls the per‐
centage of poisoned points, which depends on the nature of the application. Finally,
we assume that the attacked system has a defense mechanism B that possibly removes
poisoned data with the use of anomaly detection techniques.

Influence Attack on Fairness — The Influence Attack on Fairness (IAF) is a gradient‐based
data poisoning attack, derived from a combination of the works of Koh et al. [7], which
introduces the basic influence attack, and Zafar et al. [8], which proposes a novel fair‐
ness loss. Themain idea is to buildDp from copies of two datapoints (x̃1, ỹ1) and (x̃2, ỹ2)
sampled from Dc, and progressively update them to decrease model fairness, as mea‐
sured by an adversarial loss Ladv. The authors propose to use Ladv = Lbc +λ · Lf , where
Lbc is any binary classification loss and Lf is the aforementioned fairness loss.
To update (x̃1, ỹ1) and (x̃2, ỹ2), the paper suggests to perform gradient ascent on Ladv
and then updateDp with their copies. Since Ladv depends on the trainedmodel’s param‐
eters θ̂, the gradient ascent follows an expectation‐maximization scheme, where in the
expectation step the model is trained on B(Dc ∪ Dp)

1and in the maximization step the
points move on the gradient direction. Although this idea is very intuitive, calculating
the gradient of Ladv w.r.t each adversarial point is challenging. The approach presented
in [6] is to apply the chain rule as ∂L

∂x̃i = ∂L
∂θ̂

∂θ̂
∂x̃i , with the later derivatives calculated in

Equations 1 and 2. Here, ℓ is the model’s train loss for the single data point and Hθ̂ is
the Hessian of the train loss at θ̂ w.r.t. the adversarial sample x̃i. More details for the
derivation of these formulas, as well as how to compute them efficiently, can be found
in Section 2.2 of [7] and Section 4.1.1 of [6].

gθ̂,Dtest

def
=

∂L
∂θ̂

=
1

|Dtest|
∑

(x,y)∈Dtest

∇ℓ(θ̂; x, y) (1)

∂θ̂

∂x̃
= −H−1

θ̂

∂2ℓ(θ̂; x̃, ỹ)
∂θ̂∂x̃

(2)

Anchoring Attack — The anchoring attack places poisoned datapoints, which act as an‐
chors, in the near vicinity of two target points. In particular, the attacker samples two
target points xtarget−, and xtarget+ from the advantaged Dadv and disadvantaged Ddisadv

groups of the train dataset. Subsequently, |ϵn| poisoned datapoints {x̃i}|ϵn|i=1 are gener‐
ated in the near vicinity of the target points, placing them in the same demographic
group but on opposite categories ỹi ̸= ytarget. Intuitively, this aims to move the decision
boundary so that more advantaged points have a positive predictive outcome and more
disadvantaged points have a negative outcome, hence inducing more biased outcomes.
The paper proposes two methods to sample xtarget− and xtarget+ from the dataset:

• RandomAnchoring (RAA): xtarget is sampleduniformly for eachdemographic group.
1In the original paper, the authors mention that training is performed onDc∪Dp, but we deem that using

B(Dc ∪ Dp) is more sensible and congruent with the basic influence attack [6].
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• Non‐RandomAnchoring (NRAA): xtarget is the point close to themost similar points
given its label and demographic. This aims to affect as many points as possible
when placing poisoned points within its vicinity.

In the latter case, the authors suggest to consider two points, x and x′, as neighbors if
and only if ||x − x′|| < R, R ∈ R. The choice of R and the specific norm || · || is not
defined in the paper. After careful examination of the provided code, we found that the
L1 norm was used and the R values were hard‐coded for each dataset. To avoid manual
experimentation for each dataset’s R, we propose the following definition for the most
popular point in a dataset X :

xpop
def
= argmax

x∈X

∑
x′∈X

exp

(
−d(x, x′)

σ2
d(X )

)
(3)

where d is a distance metric and σ2
d(X ) denotes the variance of the points’ distances to

each other under d. Motivation for this choice and implementation details can be found
in Appendix B.

3.2 Defenses
The authors use a defense mechanism B in both of the proposed attacks, along with a
corresponding projection function that bypasses it, without specifying the actual type
of the defense. Although this information is not crucial for the comprehension of the
attacks, we deem it critical for their reproducibility.
After inspecting the code and the cited literature, we found that the defensemechanism
used is a combination of the L2 defense and the slab defense [9]. The L2 defense removes
points far from their corresponding class’ centroid according to the L2 distance:

βy = ED[x | y], sβ = ||x− βy||2

The slab defense projects points onto the line between the class centroids and then re‐
moves the points too far from the centroids:

βy = ED[x | y], sβ =
∣∣(β1 − β−1)

⊤(x− βy)
∣∣

The feasible set Fβ ⊂ X × Y encodes the defenses, as well as the constraints for the in‐
put’s features, and contains all of the points that would not be discarded by the defender.
For the L2 constraint, we apply the LP relaxation technique as described in [6] and end
up with a feasible set:

FLP =
{
(x, y) : E

[∥∥x̂− µy

∥∥2
2

]
≤ τ2y ∧ x ∈ R≥0

}
where µy denotes the centroid of the subset of points in class y. The parameter τy is
chosen dynamically for each y, such that 90% of the points in the Dy subset satisfy the
L2 constraint. For the slab constraint, we construct a feasible set:

Fslab =
{
(x, y) : |(µ1 − µ−1)

⊤(x− µy)| ≤ τ ′y ∧ x ∈ R≥0

}
where µ1 and µ−1 denote the centroids of classes 1 and −1 respectively. Once again,
the parameter τ ′y is chosen dynamically for each y such that 90% of the points in theDy

subset satisfy the slab constraint. Our final feasible set is the intersection of the feasible
sets under the two constraints, plus any additional input constraints imposed by X .
Projecting points ontoFβ takes the formof anoptimizationproblem, namely calculating
argminx∈Fβ

∥x− x̃i∥2, where x̃i denotes the poisoned point. We then simply solve the
optimization problem using the library CVXPY with the SCS solver. This procedure is
extensively discussed in [6], Section 3.3.
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4 Experimental Setup

4.1 Model and training pipeline
We did not manage to find a detailed description of either the model used or its training
pipeline in the original paper. The authors mention that the hinge loss was used, lead‐
ing us to assume that benchmarked model was a Support Vector Machine. However,
after examining their code, we identified that the default model used was a Logistic Re‐
gression model. We also followed this choice, as it allows for an easy calculation of the
fairness loss used in the influence attack on fairness. Additionally, the authors seem
to use SciPy’s fmin_ncg optimizer to train the model, which is a second‐order opti‐
mization algorithm that uses conjugate gradients. In our implementation, we opted for
Stochastic Gradient Descent, which should be able to converge to the same parameters,
as the minimization problem is convex. In our reported results, we used the average
over three runs to account for any stochasticity in the pipeline.

4.2 Datasets
We carry out our experiments on the same three datasets as the original paper and con‐
sider “gender” to be the sensitive attribute. We use a pre‐processed version of each
dataset, as provided by the authors, to have a common starting point. However, we
later discovered a few issues regarding the pre‐processing pipeline, which we elaborate
on in Appendix A. In all cases, the test set consists of 20% of the total data and there is
no validation set. A short description of each dataset is presented below:
German Credit Dataset2 [10]. This dataset has 1000 entries of loan applicants. Each
applicant is characterized by 13 categorical and 7 numerical features describing their
credit risk and is classified as either “good” or “bad”, in terms of their ability to repay the
loan.
COMPAS Dataset3 [11]. This dataset has 7214 entries of criminal defendants. We utilize
8 categorical features from the dataset to predict whether a defendant will recommit a
crime within 2 years.
Drug Consumption Dataset4 [12]. This dataset has 1885 entries of people alongside their
drug history. Each person is described by 13 numerical attributes, which can be used
to infer drug usage of 18 different substances. We focused on predicting whether indi‐
viduals have used cocaine in their lifetime, akin to the original paper.

4.3 Fairness Metrics
We evaluate the impact of our attacks both in terms of performance and fairness. For
performance, we use the accuracy error, while for fairness we use the Statistical Parity
Difference (SPD) [13] and the Equality of Opportunity Difference (EOD) [14]. This eval‐
uation protocol matches the one in the original paper, although our implementation
of EOD gives different results. We were able to verify our results’ validity by compar‐
ing them with the AI Fairness 360 library [15]. Moreover, the original paper used the
absolute values of the aforementioned metrics, which we followed for the reproduced
experiments but not for our extensions, as the metrics’ signs contained the necessary
information.
Statistical Parity Difference. Statistical parity is used to ensure that the demographic
distribution of the samples being classified positively (or negatively) is similar to the
distribution of the entire population. As a result, when we measure the difference in

2https://archive.ics.uci.edu/ml/machine-learning-databases/statlog/german/german.data-numeric
3https://github.com/propublica/compas-analysis/blob/master/compas-scores-two-years.csv
4https://archive.ics.uci.edu/ml/machine-learning-databases/00373/drug_consumption.data
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statistical parity between the twodemographics (advantaged and disadvantaged groups),
we can deduce whether a model is biased in favoring or harming one of the two groups.

SPD =
∣∣ P (ypred = +1 | x ∈ Dadv)− P (ypred = +1 | x ∈ Ddisadv)

∣∣
Equality of Opportunity Difference. Equality of opportunity is used to guarantee that
samples with a positive ground truth label are just as likely to be classified positively,
regardless of the demographic group they belong in. By measuring the difference in
equality of opportunity for the two groups, we can identify whether the model is biased
towards classifying positively more often for either demographic group, given that they
have a positive ground‐truth label.

EOD =
∣∣ P (ypred = +1 | x ∈ Dadv, ylabel = +1)− P (ypred = +1 | x ∈ Ddisadv, ylabel = +1)

∣∣
4.4 Hyperparameters

For all of our experiments, we trained the models for 300 epochs with early stopping
based on the train accuracy. We chose an SGD optimizer with a learning rate of 0.001,
weight decay of 0.09, and batch sizes of 10, 50, and 10 for the German Credit, Drug
Consumption, and COMPAS datasets respectively. Regarding the adversarial attack hy‐
perparameters, we used 100 iterations and a step size η = 0.01 for the IAF, and τ = 0 for
both anchoring attacks.

4.5 Implementation Details
We implemented the data poisoning attacks described above in Python, using PyTorch
Lightning to train our models5. Each attack, along with its helper functions, is imple‐
mented in a separate file under the attacks folder. We also placed a utils.py file
under the same folder, which implements essential utilities that are leveraged by all
adversarial attacks. We defined two abstract classes, Dataset and Datamodule, in
the corresponding files under the datamodules folder, which enable our framework
to process a dataset from a given file and construct the required PyTorch DataLoader
objects. Consequently, each dataset mentioned in Section 4.2 corresponds to a separate
file under the same folder, deriving from the Datamodule class. Ourmodels are placed
under the models folder, deriving from the LinearModel class, while the training
pipeline is described in trainingmodule.py. Finally, our fairness metrics and losses
are available in fairness.py.
In this way, besides providing a well‐structured and easy‐to‐follow code, we also allow
fellow researchers to extend our experiments by easily incorporating different models,
attacks, datasets, and fairness metrics. To implement a new attack, one can simply
create a separate file under the attack folder and leverage the implemented attack
utilities, such as the projection and defense mechanisms. To test existing attacks with
a different dataset, one can create a new PyTorch Lightning LightningDatamodule
that extends our Datamodule class. Finally, in order to test a different model, one
needs to create a PyTorch Module that extends the LinearModel class and update the
BinaryClassifier class accordingly.

4.6 Computational requirements
All of our experiments required a total of 120 hours on a machine with an Intel Core i7
7700k CPU and an NVIDIA GeForce GTX 1080 GPU. We found the most computationally
expensive part to be the training of the models, and hence the influence attack, which
requires multiple train iterations. This makes it significantly slower than the anchoring
attack. However, it is worth noting that a GPU is not strictly necessary. GPU speedups

5Our code is available at https://github.com/toliz/fairness-attacks
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were in the vicinity of 20% over a CPU‐only setup since we only have a single‐layer linear
model.

5 Results

5.1 Results reproducing the original paper
In this Section, we are reporting the results for the two experiments conducted in the
original paper.

Impact of the proposed attacks on fairness — First, we evaluate the effectiveness of the pro‐
posed adversarial attacks on the three datasets mentioned in Section 4.2 using the met‐
rics discussed in Section 4.3, for varying ϵ values. We perform the anchoring attack, us‐
ing both random (RAA) and non‐random sampling (NRAA). We additionally reproduce
Koh’s influence attack [6] and Solan’s attack [5], using our implementation. Our results
are presented in Figure 1 and correspond to Figure 2 of the original paper.

Figure 1. Impact on performance and fairness of a logistic regression classifier, using the attacks
proposed in [1] and other state‐of‐the‐art methods, for increasing ϵ values.

We observe that the IAF is the most versatile attack on fairness, as it can raise the test
error by 20% and push the SPD and EOD values close to 1. This general trend matches
the results of the original paper, although it appears that the effectiveness of the attack
diminishes for higher values of ϵ. As a result, we see caseswhere the fairness is impacted
less than other attacks, which is contradictory to the results of the original paper.
The NRAA appears to be the second most effective fairness attack, especially for the
COMPAS dataset, where it can reach the performance of the IAF, at the cost of using a
significantly higher percentage of poisoned data ϵ. However, it also appears to increase
the model’s test error up to 20%, which contradicts the findings of the original paper,
that the NRAA attack does not affect performance.
Finally, the RAA appears to be less effective when compared to the NRAA. The test er‐
ror was preserved, as in the original paper, but its impact on fairness was inconsistent
depending on the value of ϵ and the dataset. It is worth mentioning that this attack
exhibited the most variance in our results when using different seeds, which can be
explained by the method’s inherent stochasticity.
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Regulation of the trade-off between impacting performance and fairness —We evaluated the reg‐
ulation of the trade‐off between impacting fairness and performance using the IAF on
the same datasets and metrics as previously. Our results are presented in Figure 2 and,
apart from our extra experiment for λ = 0.5, correspond to Figure 3 of the original
paper.

Figure 2. Impact on performance and fairness of a logistic regression model using the IAF, for
increasing λ values.

We notice that the IAF drops the model’s performance by 10% to 20%. The hyperparam‐
eters λ and ϵ seem to not have a strong correlation with the test error, as every pair of
them leave it intact. This comes in contrast to the results of the original paper, where
higher λ and ϵ values affect the performance less. We also observe that higher λ values
have a greater impact on fairness, which is in accordance with the original paper’s re‐
sults. However, in the original paper, higher ϵ values also increase the rate at which λ
affects the fairness of the targeted model, while in our results very high values, such as
ϵ = 1, seem to have the opposite effect.

5.2 Results beyond the original paper
In this section, we report our results for an additional experiment we conducted. Al‐
though there were many interesting directions we wanted to investigate, we focused on
just one due to limited time and resources.

Inversion of the dataset’s bias direction — The experiments of Section 5.1.1 made us question
whether it is possible to use the principal idea behind the IAF to inverse the bias present
in the datasets, instead of always exacerbating it in favor of the advantaged group. To
this end, we changed the sign of λ, according to the intrinsic bias of the dataset. Our
results are presented in Figure 3 and indicate this approach does indeed shift the bias
of the dataset towards the other extreme.
An important byproduct of this technique is that it can be used to mitigate the existing
bias of the datasets. We observe in Figure 3 that for λ = 0.2, the fairness metrics ap‐
proach zero while the performance remains on the same level. Hence, tuning the value
of λ in a held‐out validation set would allow us to augment the existing datasets to be
fairer without sacrificing performance. Do note that in this experiment we used the ac‐
tual differences of the SPD and EOD to better capture the direction of the bias. For more
details, refer to Appendix C.
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Figure 3. Reversing the intrinsic bias of the Drug Consumption dataset using a modified version of
the IAF.

6 Discussion

Based on the results of the first experiment, we are able to partially verify the first two
claims of the paper. More specifically, both the IAF and the NRAA are indeed the most
effective attacks on fairness, under most of the evaluated settings. However, the RAA
performs poorly compared to the existing methods, such as Koh’s and Solan’s, which
contradicts part of the first claim. What is more, although the RAA does not affect the
performance of the targeted system, theNRAA can, which contradicts part of the paper’s
second claim. Similarly, the results of our second experiment suggest that although λ is
able to control the impact on fairness, it is not as effective in doing so with performance.
Based on this, we can partially verify the third claim of the paper. In summary, although
we were not able to fully verify the original claims based on our results, we can confirm
the methods’ effectiveness in attacking fairness.

6.1 What was easy
One of the things we found welcoming was the overall presentation of the paper which
is nicely structured and has cohesive sections. The provided pseudo‐code condenses
the principal ideas of both attacks very intuitively, and the datasets used in the paper
are publicly available and small in size. The latter welcomes everyone to reproduce
the results, regardless of their computational budget. Additionally, the authors provide
their code on GitHub where missing details can be found easily. All these elements hint
at an easy reproduction of the results.

6.2 What was difficult
As we got familiarized with the concepts behind the attacks, we identified some issues
which were not apparent at first. To begin with, even though the principal ideas are in‐
tuitive, the notation used is not always self‐sufficient. The algorithms depend on other
utilities (such as the projection of data in the feasible set) and non‐trivial calculus op‐
erations, which are not discussed. Additionally, information about the model, training
pipeline, hyperparameters, and data pre‐processing used is absent. For these elements,
we tried consulting the code provided by the authors, but it turned out to be convo‐
luted. We encountered a structure that was hard to follow, non‐intuitive variable names,
absence of comments and docstrings, and large portions of unused code. All these ele‐
mentsmade the reproduction of the results challenging and required some assumptions
and critical decisions on our part.

6.3 Communication with the authors
We contacted the first author with a list of questions to resolve the existing ambiguities.
Although the response was fairly quick, we were prompted to check the existing code
in‐depth, while further communication was discouraged.
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7 Conclusion

In this reproduction study, we extensively reviewed the paper Exacerbating Algorithmic
Bias through Fairness Attacks. We provided a clear foundation, upon which we described
the proposed data poisoning attacks, namely the influence attack on fairness and the
anchoring attack, as well as the experimental setup of the original paper. We filled in
numerous details that we considered crucial for the reproducibility of the results. We
evaluated the effectiveness of the proposed attacks both in terms of performance and
fairness, and even though we did not manage to get the exact results of the original
paper, our experiments show similar trends. Hence, we can verify the superiority of
the proposed methods compared to the rival ones. Finally, we examined the regulation
of the trade‐off between impacting fairness and performance and found that while the
impact on performance cannot be directly controlled, the impact in fairness can be.
These findings suggest that although the original paper is not reproducible, its claims
are valid.
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Appendix

A List of inconsistencies and assumptions

After studying the original paper and the provided code, we spotted a few inconsisten‐
cies between the two. In order to deal with them, we had to make some assumptions
that better aligned with the methods presented in the original paper.
Regarding the influence attack on fairness, Koh et al. [6] suggest that the train set during
the attack is not Dc ∪ Dp, but B(Dc ∪ Dp), i.e. the set that passes from the defense
mechanism B. Hence, we assume that when the authors mention that they update the
feasible setFβ ← B(Dc∪Dp), theymean that they update the parameters β of the feasible
set. Additionally, pre‐computingH−1

θ̂
is computationally expensive and is avoided in the

authors’ code. Instead the computational trick introduced in Koh et al. [7] is used.
Regarding the anchoring attack, we noticed two issues in the paper and the accompa‐
nied code. The anchoring attack with non‐random sampling is deterministic and thus
each iteration of attack will result in the same poisoned dataset Dp discarding the need
to have multiple iterations. Moreover, the anchoring attack with random sampling is a
stochasticmethod, yet in the existing implementation, the randomnumber generator is
seeded with the same number in every iteration, resulting in the same poisoned dataset
Dp. As a result, the attack’s output will be deterministically generated as the method’s
stochasticity is discarded with the iterations being redundant.
Regarding the helper functions for both attacks and defenses, it seems that the authors
use the LP relaxation technique implemented in [6] by default in their experiments.
However, we could not find an explicit mention of this in paper. Additionally, we did not
find any suggestion for choosing the neighbor cutoff radius σ, which seems to be hard‐
coded for every dataset. Finally, the choice of radii for the L2 constraint and slab cutoff
are not discussed in the paper, although the authors seem to use similar techniques to
the ones discussed in 3.2.
Regarding the pre‐processing pipeline applied to the original data, we noticed it is nei‐
ther mentioned in the paper nor provided in the GitHub repository of the authors. Af‐
ter contacting them, they pointed us to another repository that included a similar pre‐
processing pipeline to the one applied for the paper. Observing the code, we noticed
two issues. Categorical data were converted to one‐hot encoded and then standardized
with the quantitative features, which is not the most efficient technique. Also, the test
data were normalized along with the train data, allowing information from the test set
to be utilized for training.
Regarding the experimental setup, the reported results in the paper are the output of a
single seed for the random generator. As a consequence, there was only a single split of
the data between training and testing leading to results with high variance.

B Finding the most popular point in a dataset

Let x1, x2, . . . , xn ∈ Rm be points in a dataset X . Our goal is to define the most popular
point xpop in a meaningful way, such that it is dataset agnostic, i.e. it does not require
manual input of parameters, such as a manually defined radius for each dataset. We
mainly experimented with two methods.

• Method A: Percentile Radius: We define the most popular point

xpopA
def
= argmax

x∈X
CountN (x, R) (4)

where CountN(x, R) is a function that returns the number of points xi ∈ X such
that d(x, xi) ≤ R, R ∈ R+ ∀xi ∈ X for some distance metric d. The problem of
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picking a fitting radiusR is not trivial as the radius has to be neither too small nor
too big as either all or no points would be considered neighbors, respectively. The
method we propose is to pick a radius R such that at least α% of x ∈ X satisfy
||x − µ|| ≤ R, where µ the centroid of X . In our experiments, α = 15 has proved
to be decent for all three datasets.

• Method B: Exponentially decayed distances: We define the most popular point

xpopB
def
= argmax

x∈X

∑
x′∈X

exp

(
−d(x, x′)

σ2
d(X )

)
(5)

where d is a distance metric and σ2
d(X ) denotes the variance of all the distances of

the points in the dataset to each other under d. We define σ2
d(X )

def
= Var (vec(d(X ))),

where [d(X )]ij := d
(
[X ]i: , [X ]j:

)
.

In Method A, we still define neighbors based on balls surrounding datapoints. Even
though we still have to pick an α, the choice is easier, as we don’t have to manually
check the distances in the dataset.
InMethod B, we discard the idea of neighbors based on radii around points and we turn
our focus on finding a datapoint in a very dense area of the dataset. To ensure that the
sum is higher for points with a lot of other points in their close vicinity, we exponentially
decay the distances. This forces points close to our point in question to contribute more
to the sum. We also need the method to be dataset agnostic, thus we need to scale the
wideness of the exponential kernel. If the variance6of the distances is high, we need to
widen the kernel such that points further away still contribute to the sum. In contrast, if
distances have low varianceweneed to sharpen the exponential kernel tomake sure that
only points close enough to the point in question contribute to the sum. We define the
variance of the dataset X as σ2

d(X ) = Var (vec(d(X ))), where [d(X )]ij := d
(
[X ]i: , [X ]j:

)
.

We opted for this method since it requires the least amount of arbitrary assumptions
about the dataset. Preliminary experiments hinted towardsmethod B achieving slightly
better results in our task, but this wasn’t pursued further.
In the Anchoring Attack, we need to sample a negative sample xtarget− from the advan‐
taged class Dadv and a positive sample xtarget+ from the disadvantaged class Ddisadv. In
the non‐random sampling setting (NRAA), we simply calculate the most popular point
in the negative but advantaged class Dadv ∩ D− ⊂ D and the most popular point in the
positive but disadvantaged class Ddisadv ∩ D+ ⊂ D.

C Data Augmentation

As it has been demonstrated through experimental evaluation, the IAF can deteriorate
a model’s fairness. However, we argue that the same approach can be applied for data
augmentation to increase a model’s fairness resulting in an unbiased classifier.
The use of the fairness metrics with absolute values, as described in Section 4.3, fails to
highlight the bias direction. However, by using the actual differences of the metrics, we
canutilize this information. Therefore, knowing the initial bias of the data by inspecting
the sign of P (ylabel | x ∈ Dadv) − P (ylabel | x ∈ Ddisadv), we can assume that the model’s
bias will be in the same direction, i.e., the SPD and EOD will have the same sign. To
this end, to direct a model’s bias towards zero, we have to use the opposite sign of the
aforementioned quantity for the values of λ.

6The mean of the dataset or some other statistic could also be used, which intuitively makes more sense.
Basic experiments hinted that dividing by the variance performed better, but the mean method can not be
completely discarded as we didn’t conduct thorough experiments due to time constraints.
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Moreover, as the altered method is used for augmentation, the test dataset Dtest should
not be utilized, in contrast with the IAF. Finally, we could use a validation set to halt the
data augmentation process in order to find the optimal value of λ where the SPD and
EOD would be close to zero.
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