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1 Reproducibility Summary

Scope of Reproducibility
We are reproducing Comparing Rewinding and Fine-tuning in Neural Networks, by [1]. In
this work the authors compare three different approaches to retraining neural networks
after pruning: 1) fine‐tuning, 2) rewindingweights as in [2] and 3) a new, originalmethod
involving learning rate rewinding, building upon [2]. We reproduce the results of all
three approaches, but we focus on verifying Renda’s original approach: learning rate
rewinding, since it is newly proposed and is described as a universal alternative to other
methods.
As the authors of [1], we used CIFAR10 for most of the experiments, but we added exper‐
iments on a larger version of this dataset: CIFAR100. We have also extended the list of
tested network architectures to include Wide ResNets [3]. The new experiments led us
to discover the limitations of learning rate rewinding which in some cases can worsen
pruning results on large neural network architectures.

Methodology
We implemented the code ourselves in Python with TensorFlow 2, basing our imple‐
mentation of the paper alone and without consulting the source code provided by the
authors. We ran two sets of experiments. In the reproduction set, we have striven to ex‐
actly reproduce the experimental conditions of [1]. We have also conducted additional
experiments, which use other network architectures, effectively showing results previ‐
ously unreported by the authors. We did not cover all originally reported experiments
– we covered as many as needed to state the validity of claims. We used Google Cloud
resources and a local machine with 2x RTX 3080 GPUs.

Results
We were able to reproduce the exact results reported by the authors in all originally re‐
ported scenarios. However, extended results on larger Wide Residual Networks have
demonstrated the limitations of the newly proposed learning rate rewinding – we ob‐
served a previously unreported accuracy degradation in low sparsity ranges. Neverthe‐
less, the general conclusion of the paper still holds and was indeed reproduced.

Copyright © 2022 S. Mikler, released under a Creative Commons Attribution 4.0 International license.
Correspondence should be addressed to Szymon Mikler (sjmikler@gmail.com)
The authors have declared that no competing interests exist.
Code is available at https://github.com/gahaalt/reproducing-comparing-rewinding-and-finetuning – DOI 10.5281/zenodo.6519109. – SWH
swh:1:dir:886a4c9a0bdecdbf65f2cab3ae7404a6796bc451.
Open peer review is available at https://openreview.net/forum?id=HxWEL2zQ3AK.
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What was easy
Re‐implementation of pruning and retraining methods was technically easy, as it is
based on a popular and simple pruning criterion – magnitude pruning. Original work
was descriptive enough to reproduce the results with satisfying results without consult‐
ing the code.

What was difficult
Not every design choice was mentioned in the paper, thus reproducing the exact re‐
sults was rather difficult and required a meticulous choice of hyper‐parameters. Exper‐
iments on ImageNet andWMT16 datasets were time consuming and required extensive
resources, thus we did not verify them.

Communication with original authors
We did not consult the original authors, as there was no need to.
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2 Introduction

Neural network pruning is an algorithm that intends to decrease the size of a network,
usually by removing someof its connections or setting theirweights to 0. This procedure
generally allows obtaining smaller and more efficient models. It often turns out that
these smaller networks are as accurate as their bigger counterparts or the accuracy loss
is negligible. A common way to obtain such high quality sparse network is to prune it
after the training has finished [2], [4]. Networks that have already converged are easier
to prune than randomly initialized networks [5], [4]. After pruning, more training is
usually required to restore the lost accuracy. Although there are a few ways to retrain
the network, finetuning might be the easiest and most often chosen by researchers and
practitioners [1], [4].
Lottery Ticket Hypothesis from [2] formulates a hypothesis that for every non‐pruned
neural network, there exists a smaller subnetwork that matches or exceeds results of
the original. The algorithm originally used to obtain examples of such networks is iter‐
ative magnitude pruning with weight rewinding, and it is one of the three methods of
retraining after pruning compared in this work.

2.1 Structured and Unstructured Pruning
One of the first papers about neural network pruning [6] focused solely on unstructured
pruning. However, current hardware limitations do not allow to take full advantage of
this form of pruning. Structured pruning is a workaround to this problem. In struc‐
tured pruning, we remove the basic building blocks of a network instead of single con‐
nections. In the case of dense linear neural networks, these structures are neurons and
their connections – neuron’s inputs and outputs. Depending on the network’s type, this
can be something else. In every case, it should be a minimal unit such that the remain‐
ing neural network can be represented as a smaller, but still dense (non‐pruned) neural
network. In the case of structured pruning of convolutional neural networks, whole
channels and their corresponding parameters in convolutional filters are removed.

3 Scope of reproducibility

Our reproducibility study tries to confirm claims from [1]. Following claims were for‐
mulated:

Claim 1: Widely usedmethod of training after pruning: finetuning yieldsworse results than
rewinding based methods (supported by figures 2, 3, 1, 4 and Table 5)

Claim 2: Newly introduced learning rate rewindingworks as goodor better asweight rewind‐
ing in all scenarios (supported by figures 2, 3, 1, 4 and Table 5, but not supported
by Figure 5)

Claim 3: Iterative pruning with learning rate rewinding matches state‐of‐the‐art pruning
methods
(supported by figures 2, 3, 1, 4 and Table 5, but not supported by Figure 5)

4 Methodology

We aimed to compare three retraining approaches: 1) finetuning, 2) weight rewinding
and 3) learning rate rewinding. Our general strategy that repeated across all experi‐
ments was as follows:

1. train a neural network to convergence,
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2. prune the network using magnitude criterion: remove parameters with the small‐
est absolute value,

3. retrain the network using one of the three retraining approaches.

In the case of structured pruning: in step 2, we removed structures (either neurons or
convolutional channels) with the smallest L1 norm [7], rather than removing separate
connections.
In the case of iterative pruning: the network in step 1 was not randomly initialized, but
instead: weights from a model from a previous iterative pruning step were loaded as
the starting point. Then the three steps were repeated. On the other hand, one‐shot
pruning is a procedure where pruning is done only once, so there was only one cycle. In
some methods, this might be done on a randomly initialized neural network, like in [5].
Here, however, one‐shot pruning is done after the network reaches convergence. So the
three steps are not repeated in case of one‐shot pruning.
We trained all our networks using Stochastic Gradient Descent with Nesterov Momen‐
tum [8]. The learning rate was decreased in a piecewisemanner during the training, but
momentum coefficient was constant and equal to 0.9.

5 Model descriptions

In this report, wewere focusing on an image recognition task using convolutional neural
networks [9]. For most of our experiments, we chose to use identical architectures as [1]
to better validate their claims and double‐check their results, rather than only provide
additional ones. Therefore, most of the used networks are residual networks, which
were originally proposed in [10]. Additionally, to verify the general usefulness of pruning
and retrainingmethods proposed in [1]we extend the list of tested network architectures
to much larger wide residual networks from [3].

5.1 Residual networks (ResNet)
Just as [1], we chose to use the original version of ResNet as described in [10] rather
than the more widely used, improved version (with preactivated blocks) from [11]. We
created the models ourselves, using TensorFlow [12] and Keras. We strove to replicate
the exact architectures used by [1] and [10] and train them from scratch.

Model Trainable parameters Kernel parameters CIFAR‐10 CIFAR‐100

ResNet‐20 272 282 270 896 92.46% –

ResNet‐56 855 578 851 504 93.71% 71.90%

ResNet‐110 1 730 522 1 722 416 94.29% 72.21%

Table 1. ResNets architecture summary, including baseline accuracy across datasets.

ResNet hyperparameters — Learning rate started with 0.1 and was multiplied by 0.1 twice,
after 36 000 and 54 000 iterations. One training cycle had 72 000 iterations in total. For all
batch normalization layers, we set the batch norm decay to 0.997, following [1], which
is also the default used in the original TensorFlow implementation1. We initialize net‐
work’s weights with what is known as He uniform initialization from [13]. We regularize

1https://github.com/tensorflow/models/blob/r1.13.0/official/resnet/resnet_model.py
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ResNets, during both training and finetuning, usingL2 penalty with 10−4 coefficient. In
other words, the loss function (from which we calculate the gradients) looks as follows:

L = CC(y, p) + 10−4 ×
∑
i∈W

w2
i (1)

where:

L = value of the final loss function

CC = categorical crossentropy loss function

y = ground truth label of a sample or batch

p = model’s prediction

W = parameters of the model

5.2 Wide Residual Networks (Wide ResNet, WRN)
WRN networks were introduced in [3]. They are residual networks created by simply
increasing the number of filters in preactivated ResNet networks [11].

Model Trainable parameters Kernel parameters CIFAR‐10

WRN‐16‐8 10 961 370 10 954 160 95.72%

Table 2. Wide ResNet architecture summary.

WRN hyperparameters — AsWide ResNets are newer andmuch larger than ResNets, hyper‐
parameters are slightly different. To choose them, we follow [3]. Learning rate starts
with 0.1 and multiplied by 0.2 thrice: after 32 000, 48 000 and 64 000 iterations. Training
lasts for 80 000 iterations. For all batch normalization layers, we use hyper‐parameters
from the newer TensorFlow implementation2 with batch norm decay set to 0.9. Follow‐
ing [3], we use larger L2 penalty for this network: 2× 10−4. Finally, the loss function is
as follows:

L = CC(y, p) + 2× 10−4 ×
∑
i∈W

w2
i (2)

where:

L = value of the final loss function

CC = categorical crossentropy loss function

y = ground truth label of a sample or batch

p = model’s prediction

W = parameters of the model

2https://github.com/tensorflow/models/blob/r2.5.0/official/vision/image_classification/resnet/resnet_model.py
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5.3 Datasets
CIFAR‐10 and CIFAR‐100 are image classification datasets introduced in [14]. Following
[1], we use all (50 000) training examples to train the model.

Dataset Training examples Validation examples Classes Resolution

CIFAR‐10 50 000 10 000 10 32×32

CIFAR‐100 50 000 10 000 100 32×32

Table 3. CIFAR datasets description.

5.4 Preprocessing and data augmentation
We used a standard data processing for both CIFAR‐10 and CIFAR‐100 datasets [1], [2],
[3]. During training and just before passing data to the model, we:

1. standardized the input by subtracting the mean and dividing by the std of RGB
channels (calculated on training dataset),

2. randomly flipped in horizontal axis,

3. added a four pixel reflection padding,

4. randomly cropped the image to its original resolution.

During the validation, we did only the first step of the above.

5.5 Experimental setup and code
Our ready‐to‐use code, which includes experiment definitions, can be found at https:
//github.com/gahaalt/reproducing-comparing-rewinding-and-finetuning. It’s written using Tensor‐
Flow [12] version 2.4.2 in Python. More details are included in the repository.

5.6 Computational requirements
Recreating the experiments required amodern GPU, training all models on CPUwas vir‐
tually impossible. Training time varies depending on a lot of factors: network variation
and size, exact version of the deep learning library, and even the operating system. In
our case, using TensorFlow 2.4.2 on Ubuntu and a single RTX 3080 GPU, the smallest
of the used models, ResNet‐20, takes about 20 minutes to train on CIFAR‐10 dataset. To
replicate our experiments, training at least a single baseline network and then, once
more, a single pruned network, is required. To reduce computational requirements, we
reused one non‐pruned baseline for multiple compression ratios. Approximated train‐
ing time requirements can be seen in the table below.
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Model Dataset Number of updates Updates per second Training time

ResNet‐20 CIFAR‐10 72 000 59.0 22 min

ResNet‐56 CIFAR‐10 72 000 28.6 43 min

ResNet‐110 CIFAR‐10 72 000 15.9 77 min

WRN‐16‐8 CIFAR‐10 80 000 17.4 78 min

Table 4. Time requirements for replicating or running experiments from this report. Reported
times are obtained using a single RTX 3080 GPU in Linux environment, using TensorFlow in ver‐
sion 2.4.2.

For all our experiments together, we estimate the total number of GPU hours spent to
be around 540.

6 Method description

We compare three methods of retraining after pruning. For all of them, the starting
point is a network that was already trained to convergence, then pruned to a desired
sparsity. The difference between the three retraining methods is what follows after it.

6.1 Fine-tuning
Fine‐tuning is retraining with a small, constant learning rate – in our case, whenever
fine‐tuning was used, the learning rate was set to 0.001 as in [1]. We finetune the net‐
work for the same number of iterations as the baseline – 72 000 iterations in the case
of the original ResNet architecture. In this method, such long retraining would not be
necessary in practical applications, since the network converges much faster.

6.2 Weight rewinding
Weight rewinding restores the network’s weights from a previous point (possibly begin‐
ning) in the training history and then continues training from this point using the origi‐
nal training schedule – in our case a piecewise constant decaying learning rate schedule.
When rewinding a network to iteration K that originally trained for N iterations: first
prune the non‐pruned network that was trained forN iterations. Then, for connections
that survived, restore their values toK‐th iteration from the training history. Then train
to the convergence for the remaining N −K iterations.

6.3 Learning rate rewinding
Learning rate rewinding continues training with weights that have already converged,
but restores the learning rate schedule to the beginning, just as if we were training from
scratch, and then trains to the convergence once again. This reminds the cyclical learn‐
ing rates from [15]. Learning rate rewinding really is weight rewinding for K = N , but
the final retraining is always for N iterations.

7 Results reproducing original paper

In most of our experiment, just as [1], we investigate how does the trade‐off between
prediction accuracy and compression ratio look like. In one of the experiments (Table 5)
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we verify only one compression ratio, but for the rest, we verify multiple. We report a
median result out of 2 up to 12 trials for each compression ratio. To better utilize our
compute capabilities, wedecided to spendmore training cycles in situationswhere there
is no clear winner between the compared methods. On each plot, we include error bars
showing 80% confidence intervals.
In this section, we include experiments that we successfully reproduced. Most of them
match the original ones within 1% error margin. We noticed some of our results were
slightly better than authors of [1] originally reported.
Across all scenarios where finetuning was tested, it was by far the worst of the three
methods, which directly supports claim 1 (Section 3). Weight rewinding and learning
rate rewinding most often are equally matched, but in some cases learning rate rewind‐
ing works a little better.

7.1 ResNets on CIFAR-10 dataset
Results we observe here are consistent with what we see in [1], [2]. Iterative pruning
is better than one‐shot pruning, but more time consuming. In extreme cases, iterative
pruning requires 20 times as many iterations than one‐shot pruning to complete. But it
is not as bad for moderate sparsity pruning. Larger networks work better than smaller
ones. Even when the number of parameters left after pruning is the same – originally
larger network will outperform the smaller one.
Out of the retraining methods, weight rewinding and learning rate rewinding seem to
be similar, but finetuning is visibly worse. In some cases, learning rate rewinding out‐
performs weight rewinding. Similar conclusions can be drawn from both structured
and unstructured pruning results.

1.0× 1.75× 3.06× 5.35× 9.35×
Compression ratio
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weight rewinding LR rewinding finetuning

Figure 1. Results of ResNet‐20 (Table 1) on CIFAR‐10 (Table 3) with structured, one‐shot, magnitude
pruning. Results show varying compression ratios. Maximal compression ratio (9.35×) means
that there are only 29 000 non‐zero kernel parameters left in ResNet‐20.
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Figure 2. Results of ResNet‐20 (Table 1) on CIFAR‐10 (Table 3) with unstructured, magnitude prun‐
ing in versions: one‐shot and iterative. Results show varying compression ratios. Maximal com‐
pression ratio (9.35×) means that there are only 29 000 non‐zero kernel parameters left. This ex‐
periment supports claims 1, 2, 3 (Section 3).
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Figure 3. Results of ResNet‐56 (Table 1) on CIFAR‐10 (Table 3) with unstructured, magnitude prun‐
ing in versions: one‐shot and iterative. Results with varying compression ratios. Maximal com‐
pression ratio means (22.73×) that there are only 37 600 non‐zero kernel parameters left. This
experiment supports claims 1, 2, 3 (Section 3).

Network Dataset Retraining Sparsity Test Accuracy

ResNet‐110 CIFAR‐10 None 0% 94.29%

ResNet‐110 CIFAR‐10 LR rewinding 89.3% 93.74%

ResNet‐110 CIFAR‐10 weight rewinding 89.3% 93.73%

ResNet‐110 CIFAR‐10 finetuning 89.3% 93.32%

Table 5. Results of ResNet‐110 (Table 1) trained on CIFAR‐10 (Table 3) with unstructured, one‐shot
magnitude pruning. Sparsity 89.3% corresponds to 9.35× compression ratio. This experiment
supports claims 1, 2, 3 (Section 3).
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8 Results beyond original paper

8.1 ResNets on CIFAR-100 dataset
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Figure 4. Results of ResNet‐56 (Table 1) on CIFAR‐100 (Table 3) with unstructured, one‐shot, mag‐
nitude pruning. Results with varying compression ratios. Maximal compression ratio (9.35×)
means that there are only 91 500 non‐zero kernel parameters left. This experiment supports claims
1, 2, 3 (Section 3) even though this scenario wasn’t originally tested in [1].

8.2 WRN-16-8 on CIFAR-10 dataset
WRN‐16‐8 shows consistent behaviour – accuracy in the low sparsity regime is reduced
in comparison to the baseline. In the case of iterative pruning, where each step is an‐
other pruning in the low sparsity regime, it leads to a large difference between the two
retraining methods. Since for WRN‐16‐8 one‐shot, low sparsity pruning shows a small
accuracy regression in comparison to the baseline, this regression accumulates when
pruning multiple times, which we do in iterative pruning. We think that the degrada‐
tion we observe in the case of iterative pruning is an effect of stacking multiple smaller
defects that we observe in the case of one‐shot pruning. This can be seen in Figure 5.

Figure 5. Results of WRN‐16‐8 (Table 2) on CIFAR‐10 (Table 3) with unstructured, magnitude prun‐
ing in versions: one‐shot and iterative. Results with varying compression ratios. Maximal com‐
pression ratio (100×) leaves 109 500 non‐zero kernel parameters while achieving around 94% accu‐
racy or around 95% when leaving 153 400 non‐zero parameters. One can see catastrophic effects
of high‐sparsity pruning when using learning rate rewinding procedure.
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For iterative pruning (figures 2, 3, 5) we used a nonstandard step size of 30% per itera‐
tive pruning iteration, which was a way to reduce the computational requirements. We
believe this choice does not change the validity of the claims, and to support it, we pro‐
vide a comparison of our step size to themore commonly used 20%. We show that there
is virtually no difference between both versions and the aforementioned catastrophic
degradation occurs in both cases, as long as the step size is in the low sparsity regime.
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Figure 6. Results of WRN‐16‐8 (Table 2) on CIFAR‐10 (Table 3) with unstructured, iterative, magni‐
tude pruningwith two different step sizes. Results show varying compression ratios and accuracy.

9 Discussion

We were able to confirm the general conclusion of [1]. Fine‐tuning can be mostly re‐
placed by other retraining techniques, e.g., by weight rewinding as it was done by [2].
We confirmed that learning rate rewinding worked even better in some scenarios. How‐
ever, we have also shown in Figure 5 that the newly proposed learning rate rewinding is
a poor choice when we are pruning large networks – in our case that is WRN‐16‐8. We
believe this should be examined further as theremight exist a simpleworkaround to this
problem – a retraining procedure between weight rewinding and learning rate rewind‐
ing, which works even for larger networks. Furthermore, it would be interesting to see
what happens in the network when this catastrophic accuracy degradation occurs. Per‐
haps, the reason for it not occurring with the original ResNet, but occurring with larger
architectures, is the degree to which the larger networks overtrain – larger networks
tend to overfit more. And such an overfitted network might be not a good starting point
for the retraining.
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