RESCIENCE C

Edited by
Koustuv Sinha,
Sharath Chandra Raparthy

Reviewed by
Anonymous Reviewers

Received
04 February 2022

Published
23 May 2022

DOI
10.5281/zenodo.6574675

Replication / ML Reproducibility Challenge 2021

[Re] Projection-based Algorithm for Updating the
TruncatedSVD of Evolving Matrices

Andy Chen® ", Shion Matsumoto® ", and Rohan Sinha Varma® "
University of Michigan, Ann Arbor, Michigan, USA

Reproducibility Summary

Scope of Reproducibility

Kalantzis et al. [1] present a method to update the rank-k truncated SVD of matrices
where the matrices are subject to periodic additions of rows or columns. The main
claim of the original paper states that the presented algorithms outperform other state-
of-the-art approaches in terms of accuracy and speed. However, no results were given
comparing the proposed methods to other state-of-the-art methods. Accordingly, we
reproduce their results and compare it to the state-of-the-art FrequentDirections
streaming algorithm [2].

Methodology

We re-implemented the algorithm in Python and evaluated the performance on five
datasets. All experiments were run on a MacBook Pro and the code is available on
GitHub!. The accuracy of the methods were evaluated using the same metrics as in
the paper.

Results

We successfuly reproduced the task-agnostic experiments of the original paper, finding
our results to strongly match with the original results. We also carried out a comparison
with FrequentDirections but found the evaluation metrics of the original paper to
be ill-suited to compare - setting up for further work on developing fair comparisons.

What was easy

The benchmark algorithm was fairly simple to implement. Furthermore, running the
experiments did not place any computational resource burden as all experiments could
be run on a laptop.

Thttps://github.com/andyzfchen/truncatedSVD

Copyright © 2022 A. Chen, S. Matsumoto and R.S. Varma, released under a Creative Commons Attribution 4.0 International license.
Correspondence should be addressed to Andy Chen (andych@umich.edu)

The authors have declared that no competing interests exist.

Code is available at https:/github.com/andyzfchen/truncatedSVD. — SWH swh:1:dir:4116fecf6ec4ac207cdad025ec62h25839a75678.
Open peer review is available at https:/openreview.net/forum?id=HN2xWpMQ30K.

ReScience C 8.2 (#25) — Chen, Matsumoto and Varma 2022 1


https://orcid.org/0000-0001-9973-7966
https://orcid.org/0000-0003-2758-669X
https://orcid.org/0000-0003-0510-1268
mailto:andych@umich.edu
https://github.com/andyzfchen/truncatedSVD
https://archive.softwareheritage.org/swh:1:dir:4116fecf6ec4ac207cdad025ec62b25839a75678/
https://openreview.net/forum?id=HN2xWpMQ30K
https://rescience.github.io/

[Re] Projection-based Algorithm for Updating the TruncatedSVD of Evolving Matrices

What was difficult

The most difficult part of the reproduction study was understanding the justification
underlying the construction of the algorithm as it involved several complex proofs from
numerical linear algebra to provide bounds on the accuracy. Demystifying the specifics
of constructing the projection matrix for the main algorithm the author’s propose was
also initially difficult until we gained access to their code.

Communication with original authors

We contacted one of the authors by email and received their data and MATLAB imple-
mentation of the algorithm and experiments.

ReScience C 8.2 (#25) — Chen, Matsumoto and Varma 2022 2


https://rescience.github.io/

[Re] Projection-based Algorithm for Updating the TruncatedSVD of Evolving Matrices

Introduction

The singular value decomposition (SVD) remains a fundamental dimensionality reduc-
tion technique in machine learning and continues to be used in a variety of applications.
In a traditional formulation, the entirety of the matrix to be decomposed is available
at the time of application of the SVD. However, certain applications, such as latent se-
mantic indexing (LSI) and recommender systems, have matrices that are subject to the
periodic addition of new rows and/or columns. A naive solution is to recalculate the
SVD each time the matrix is updated, but such an approach quickly becomes impracti-
cal when updates are frequent. For this reason, algorithms that exploit information on
the previous SVD of the matrix to calculate the SVD of the updated matrix are crucial.
Such schemes have been proposed for both the full SVD and rank-k SVD. The algorithm
presented in [1], which is the focus of our study, is for the rank-k truncated SVD case.

Following the notation introduced in [1], the problem of updating the rank-k truncated
SVD of an updated matrixis as follows. Let B € C™*™ be a matrix for which a rank-k SVD
By = UpS, ViH = Z?Zl ojuld) (VU where Uy = [u®, ... .u®], Vi = [v®, ... v®)],
and ¥y = diag(oy,...,0k) Where oy > o9 > -+ > o > 0is known. The goal is
to approximate the rank-k SVD Ay = UpS,VE = Z?Zl 5;ul9) (@U))H of the updated

matrix
B
A= (E)’ orA= (B E)

where E € C**™ or E € C™*® is the matrix containing the newly added rows or columns,
respectively. We focus on the row-update case in this study as is the case in [1].

The remainder of this study is outlined as follows. In Section 2, we introduce the central
claim of the original paper that we tested in our study. Following that, in Section 3,
we introduce the necessary background prior to describing the proposed algorithm. In
Section 4, we describe the experimental setup: our implementation of the algorithm,
datasets used, and experiments run. We present the experimental results in Section 5
along with our interpretation of the results and thoughts on the overall study in Section
6.

Scope of reproducibility

In this study, we aimed to verify the central claim of the original paper, which stated
that the proposed algorithm outperforms other state-of-the-art approaches at calculat-
ing the truncated SVD of evolving matrices. In particular, they claimed that the method
had especially high accuracy for the singular triplets with the largest modulus singular
values. We sought to verify this claim by evaluating two metrics using our implemen-
tation of the method as well as with FrequentDirections, a state-of-the-art matrix
sketching and streaming algorithm [2]:

1. Relative approximation error rel_err of leading k singular values of A (Equa-
tion 1) is smaller when using the proposed algorithm compared to previous meth-
ods. R

o; — 0y

@

rel_err =

i

2. Scaled residual norm res_norm of leading k singular triplets {u(?, 9", 5} (Equa-
tion 2) is smaller when using the proposed algorithm compared to previous meth-
ods.

40— a9

g;

2)

res_norm=

Additionally, we also sought to verify the original paper’s claims about the runtime per-
formance of the proposed algorithm.

ReScience C 8.2 (#25) — Chen, Matsumoto and Varma 2022 3


https://rescience.github.io/

[Re] Projection-based Algorithm for Updating the TruncatedSVD of Evolving Matrices

Projection-based update algorithm

In the following sections, we first introduce the original zha-simon algorithm, then
introduce the proposed projection-based update algorithm. Note that there are two im-
plementations to the proposed algorithm: one which uses the same projection matrix
as the zha-simon algorithm (Algorithm 2.1) and another that uses an enhanced projec-
tion matrix (Algorithm 2.2).

Zha-Simon algorithm

As motivated in the introduction, an update algorithm that uses prior knowledge re-
garding the SVD of the matrix is crucial for it to be useful in practice. The algorithm
proposed in [1] is based on an algorithm proposed in [3], the latter of which we will re-
fer to as the zha-simon algorithm (Algorithm 1). Using zha-simon in the row-update

case A = (g), the QR decomposition of the row space of F that is not captured by the

range of the right singular vectors Vj, can be expressed as (I — V,V)EH = QR. Using
this result and the previously known rank-k SVD By, = Uy Xx V2, the updated matrix A
can be decomposed approximately as follows:

B G W) o

If we let FOGH be the compact SVD of ( ) then Equation 3 can be further

EV, RH
decomposed as follows:

An (U’f Is> (FOGH) <g’£> = ((Uk IS> F) o(vi Q&) )

The key here is to notice that the approximation of the rank-k truncated SVD of A us-
ing the zha-simon algorithm does not require access to the previous matrix B - only
the rank-k SVD By = UX; Vi of the matrix from the previous iteration is needed.
We can further simplify Equation 4 and see that it approximates the SVD of A as A =~

(ZF)O(WG)H where Z = (Uk I) and WH = (V, Q)H are orthonormal matrices

with ranges that approximately capture ra nge(Uy) and range(‘Aka ), respectively.

Algorithm 1 zha-simon algorithm Algorithm 2 Proposed row-update algo-
Require: A, B, Uy, i, Vi, k rithm
Ug Require: B, E,k

L Z+ I, 1: [Uk,Zk,Vk] + svd(B, k)

2 [Q,R] + qr(I — ViV EH 2. Construct projection matrix Z

2 W (Vi Q) 3. [Fy,01] < svd(ZH A k) where A =

4 [Fy, O, Gi] «— svd(ZH AW, k) B

5: Uy « ZFy, \E

6ik(—@k 43gk<_ZFk

7 Vi = WGy 5 X+ Oy
Ensure: UkNUk,EkNEk,VkNVk 6: Vk<—A UkEk

Ensure: U ~ Uk,Ek ~ Ek,Vk ~ Vk

Proposed row-update algorithm

In practice, computing the rank-k truncated SVD of A using Algorithm 1is expensive due
to the QR (Step 2) and SVD (Step 4) steps and possibly inaccurate based on the structure

ReScience C 8.2 (#25) — Chen, Matsumoto and Varma 2022 4


https://rescience.github.io/

[Re] Projection-based Algorithm for Updating the TruncatedSVD of Evolving Matrices

of A [1]. The cost of the QR decomposition can be mitigated by setting W = I,, by
observing that " C range(I,) fori = 1,...,n. Therefore, Z# AW in Step 4 can be
replaced with Z# A and the QR decomposition in Step 2 can be eliminated. With these
modifications, we have the new proposed row-update algorithm (Algorithm 2). Note that
Step 2 has intentionally not been specified as the authors proposed two options for the
construction of the projection matrix Z.

The first option (Algorithm 2.1) uses the same Z matrix as in Algorithm. Although the
construction of Z and Z A are presented in two separate steps in Algorithm 2, Z* A for
Step 3 is directly computed as 1. Below are the expressions for Z and Z A for Algorithm

2.1.
_ (Uk
7 = < Is> (5a)
H 4 _ Zk VkH
Z"A = ( o (5b)
Inthe case where the rank of Bislarger than k and the singular values o 41, . - ., Omin(m,n)

are not small, the approximation returned by Algorithm 2.1 can be of poor accuracy. Al-
gorithm 2.2 addresses this by using an enhanced version of the projection matrix by
adding a term —B(A\)BE* in the Z matrix such that

Z:<Uk —~B(\)BEH Is> ©)

Setting X = —B(\)BE¥  the additional term is equal to the matrix X that satisfies the
equation
—(BBf —\I,)X = (I, - UyUF)BE", 7)

which can be computed using the block conjugate gradient (BCG) method [4]. To ensure
that the matrix —(BBH — \I,,,) is positive definite for BCG, a lower bound of A > o is
imposed. The leading singular value can be estimated using a few iterations of truncated
SVD. However, to reduce the number of columns in X and keep Z manageable, the
randomized rank-r SVD of X can be taken so that

—B(A)BE"R ~ X, ;Sx, Yy ®)

where R is a matrix with at least r columns whose entries are 1.i.d. Gaussian random
variables with zero mean and unit variance. With X ., the Z and Z* A matrices can be
calculated as

Z:(Uk Xor ) 92)
I,
S VH
Z"A= | XI.B (9b)
E

For more detailed explanations and derivations of the algorithms and their associated
proofs, we refer readers to [1].

Methodology

Professor Vassilis Kalantzis, who we contacted via email, generously provided us with
the relevant MATLAB code and data; however, we chose to re-implement the algorithm
from scratch in Python with standard packages (NumPy [5], SciPy [6], and scikit-learn
[7]) and used the MATLAB code to confirm our implementation. We compared the per-
formance of Algorithms 2.1 and 2.2 with FrequentDirections [2], a state-of-the-art
streaming algorithm. Experiments were conducted on a MacBook Pro with a 2.3 GHz

ReScience C 8.2 (#25) — Chen, Matsumoto and Varma 2022 5


https://rescience.github.io/

[Re] Projection-based Algorithm for Updating the TruncatedSVD of Evolving Matrices

Dual-Core Intel Core i5 processor with 16 GB of RAM, and the code is publicly available
on GitHub?. All plots were generated using Matplotlib [8].

Implementation

We chose to implement the three truncated SVD update algorithms as methods of an
EvolvingMatrix class, which we will refer to as EM from here on out. With each ex-
periment, the EM class was initialized with various parameters (initial matrix, matrix to
be appended, number of batches, etc.) and updates were carried out using one of the up-
date methods. A simplified version of the experiment is shown in Listing 1. Algorithms
2.1 and 2.2 were written based on the pseudo-code presented in Algorithm 2, where the
Z and ZH A matrices were calculated using their respective formulas.

# Initialize EM object with initial matrix, number of batches, and
desired rank
model = EM(initial_matrix, n_batches, k_dim)

# Set entire matrix to be appended
model.set_append_matrix(E)

# Update over specified number of batches

for i in range(n_batches):
model.evolve() # append rows to matrix
model.update_svd() # update truncated SVD

# Calculate metrics for pre-selected updates

if model.phi in phis2plot:
model.calculate_true_svd()
model.save_metrics()

Listing 1. Simplified experiment structure

Algorithm 2.1 The Z and Z* A matrices were constructed as in Equations 5a and 5b,
respectively.

Algorithm 2.2 The main difficulty in implementing Algorithm 2.2 was in the calcula-
tion of X, ,. We chose to solve for X in Equation 7 using the block Conjugate Gradi-
ent method (BCG) [4] as recommended in [1]. Though [1] specified, at maximum, one
iteration of BCG, we found that the MATLAB code set the limit to two iterations. As
the additional iteration did not greatly increase the computational cost, we chose to
run BCG a maximum of two iterations as well. Once X was calculated, we calculated
X, as per Equation 8 using randomized SVD [9]. For this, we used the scikit-learn
randomized_svd implementation [7]. Based on the description for calculating X ..
in [1], we set n_components= r, n_oversamples= 2r, and n_iter= 0. The X,
returned was then used to calculate Z and ZH A as in Equations 9a and 9b, respectively.

Frequent Directions A modified version of FrequentDirections® wasincorporated
as an update method into the EM class. Since FrequentDirections is a line-by-line
update method as opposed to a batch update method, the update method in the EM class
was constructed to receive a matrix E containing the rows to be added and performs
the FrequentDirections algorithms for each row of the E. Any form of error metric

2https://anonymous.4open.science/r/truncatedSVD70162/
Shttps://github.com/edoliberty/frequent-directions

ReScience C 8.2 (#25) — Chen, Matsumoto and Varma 2022 6


https://rescience.github.io/

[Re] Projection-based Algorithm for Updating the TruncatedSVD of Evolving Matrices

calculation or subsequent update is performed only after the entire matrix F has been
processed using the line-by-line update method.

Since the updated matrix B for the FrequentDirections method has constant dimen-
sions throughout the update process, the residual norm error calculation is modified to
measure the error between B and A’ where A’ is a truncated version of A that only holds
the first 2 singular vectors and values of A and where 2[ is the number of rows in B.

Datasets

In total, we conducted experiments on five datasets. MED, CRAN, CISI, and Reuters-
21578 are term-document matrices from latent semantic indexing applications [10, 11,
12, 13, 14] and ML1M is a movie rating dataset from Movielens [15]. Table 1 lists the
dimensions of the matrices as well as the average number of nonzero (nnz) entries per
row and Figure 1 shows the leading 100 singular values for each matrix. It should be
noted that the matrices used for CISI, CRAN, and MED in [1] had slightly different di-
mensions compared to what was listed on [10]. We received these datasets along with
the MATLAB code and chose to use their versions of the data for ease of comparison; as
we were interested in the accuracy of singular value reconstruction we determined that
somewhat corrupted data merely introduced a different set of singular values to recon-
struct. Furthermore, as the Reuters and ML1M datasets were intact, we used them as
controls against the corruption of the other sets.

Leading 100 Singular Values

— ClIsl
103 CRAN -
—— MED ]
—— MLIM
—— Reuters

200 40 60 80 100

Figure 1. Leading 100 singular values for each dataset.

Dataset Rows Columns nnz(A)/row
CISI [10] 5609 1460 12.17
CRAN [10] 4612 1398 18.06
MED [10] 5831 1033 8.92
MLIM [15] 6040 3952 165.60
Reuters-21578 [11, 12, 13, 14] 18933 8293 20.57

Table 1. Number of rows, columns, and average non-zero elements in each row for datasets.

ReScience C 8.2 (#25) — Chen, Matsumoto and Varma 2022 7


https://rescience.github.io/

[Re] Projection-based Algorithm for Updating the TruncatedSVD of Evolving Matrices

Experiments

We conducted two sets of experiments: one to confirm the results of [1] in a series of re-
producibility studies and another to further measure the performance of the algorithms
using two additional metrics as well as observing the effect of the number of batches on
the runtime and performance.

Update method comparison As a first step, we sought to reproduce the results in Fig-
ures 3 and 4 of [1]. To do this, we conducted the sequence updates experiment. The
initial matrix B = A(® was set equal to the first u rows of A € C™*™ and the remain-
ing m — pu rows of A were appended to the initial matrix over a sequence of ¢ updates,
each with 7 = [(m — u)/¢] rows. Following the notation of [1], the i-th update would
: ; B = AG-D

yield A® = E=A(p+(G—D7+1:pu+ir:)
which is likely to have fewer rows in E. After each update, the rank-k truncated SVD
was calculated by one of the three algorithms.

The parameters used in [1], and thus in our experiments as well were u = [m/10] rows,
¢ = 10 updates, and rank k£ = 50. The relative errors and residual norms were reported
for the k = 50 leading singular triplets for ¢ = 1,5,10. For Algorithm 2.2, we set the
coefficient A = 1.015% and r = 10.

) with the exception of the last update

Algorithm 2.2 r parameter study Next, we varied the r parameter in Algorithm 2.2 to
evaluate its effect on the accuracy as was presented in Table 4 by [1]. For this, we set
uw = [m/10], ¢ = 10, and k = 50 for all three update methods as with the previous
experiment and set r = 10, 20, 30, 40, 50 for Algorithm 2.2.

Runtime comparison We compared the runtimes of the algorithms for the CRAN, CISI,
and MED as a function of the rank k = 25,25, 50, 75, 100, 125 and the total number of
updates ¢ = 2,4, 6, 8,10 (Figure 2 left and middle plots in [1]).

Varying number of batches and desired rank In addition to the experiments that we
replicated based on [1], we also varied the number of batches ¢ = 2,4,6,8,10 and the
desired rank k = 25, 50, 75, 100, 125 of the truncated SVD and evaluated the performance
of each of the update methods to further observe the effects of each of these parameters
on the methods’ performances.

Results

Relative error and residual norms of singular triplets The relative error and residual
norm of the leading k¥ = 50 singular triplets for the CRAN dataset at ¢ = 1,5,10 us-
ing Algorithms 2.1, 2.2, and FrequentDirections are shown in Figure 2. Due to the
large number of figures, the complete set of plots for the standard experiments are pre-
sented in Sections A to E in the Supplementary Materials. When comparing the relative
error and residual norm plots for Algorithm 2.1 on CRAN, CISI, and MED, our results
matched those of [1] exactly. For Algorithm 2.2, the plots did not match exactly, though
the differences never exceeded half an order of magnitude and are attributable to the
randomness inherent in Algorithm 2.2.

Our comparison of the relative error and residual norm of the k = 50-th singular triplet
for Algorithm 2.2 with various values of r revealed a similar result to [1] - across the
three methods, Algorithm 2.2 had the lowest errors, and within variations of Algorithm
2.2, larger values of r yielded higher accuracy.

ReScience C 8.2 (#25) — Chen, Matsumoto and Varma 2022 8


https://rescience.github.io/

[Re] Projection-based Algorithm for Updating the TruncatedSVD of Evolving Matrices

10-1 CRAN, Z =[Uy, 0;0, /] CRAN, Z =[Uk, Xa,r; 0, 5] (r=10) CRAN, FD
. _ 102 .
e e e 10-1
5 1072 = =
[ [ 10_3 [
= = =
© T, ©
21073 —— Update(1) 2 10 —— Update(1) 2 —— Update(1)
—— Update(5) —— Update(5) —— Update(5)
—— Update(10) 10-5 —— Update(10) — Update(10)
10 20 30 40 50 10 20 30 40 50 10 20 30 40 50
Singular Value Index Singular Value Index Singular Value Index
(@) CRAN relative error (Alg. 2.1)  (b) CRAN relative error (Alg. 2.2) (c) CRAN relative error (FD)
CRAN, Z =[Uy, 0;0,s] CRAN, Z = [Uk, Xa,; 0, /5] (r=10)
CRAN, FD
1S £ £ 135x10°
S 210! 5 13x10°
© © Z 125%10°
‘g -1 'g g 1.2x10°
-aﬁ; 107 E % .
2 & &) 1.15 x 10' A
3 —— Update(1) T 102 —— Update(1) 3 11x10° 2 Update(@)
o —— Update(5) © —— Update(5) o L05x10° —— Update(5)
8 —— Update(10) S — Update(10) 3 100 —— Update(10)
10 20 30 40 50 10 20 30 40 50 10 20 30 40 50
Singular Value Index Singular Value Index Singular Value Index

(d) CRAN residual norm (Alg. 2.1)  (e) CRAN residual norm (Alg. 2.2) (f) CRAN residual norm (FD)

Figure 2. Relative errors and residual norms at ¢ = 1,5, 10 for CRAN with Algorithm 2.1, Algorithm
2.2, and FD.

MED CRAN CISI

r err. res. err. res. err. res.

10 0.037 0.204 0.031 0.174 0.038 0.224

U X 20 0.028 0.172 0.021 0.144 0.019 0.149

Z = ( k ar I) 30 0.021 0.154 0.012 0.113 0.014 0.119
8 40 0.015 0.133 0.010 0.107 0.011 0.105

50 0.013 0.121 0.008 0.097 0.009 0.096

Z:(Uk I) - 0.101 0.294 0.074 0.295 0.080 0.382

FrequentDirections - 0.212 1.031 0.216 1.045 0.205 1.032

Table 2. Relative error and residual norm of approximation of the singular triplet (a®®®, 5% G50)

Runtime For all three of the datasets which we measured runtimes on, we found Algo-
rithm 2.2 to require a substantially longer amount of time to complete all of its updates.
Algorithm 2.1 and FrequentDirections required a similar length of time, though
Algorithm 2.1 was consistently faster than FrequentDirections by a small margin.
The runtime plots for the standard experiments are shown in Section F of the Supple-
mentary Materials.

Number of batches and rank Due to space-related constraints, we chose to only in-
clude two examples from the array of plots generated (Figure 4). Despite the large varia-
tion in the parameters, we can see that the residual norm for overlapping update num-
bers and k share very similar values.

ReScience C 8.2 (#25) — Chen, Matsumoto and Varma 2022 9


https://rescience.github.io/

[Re] Projection-based Algorithm for Updating the TruncatedSVD of Evolving Matrices

CRAN Runtimes (No. of Batches=10) CRAN Runtimes (k=50)

10tf .——.\."_’.—. ] 1otr \_/ ]
6 x10° 6 x10°
) @
o 4x10° v 4x10°
£ £
£ 3x10° g— ° ° —— 5 2 3x10°
& &
2x10° '/"__’/’//, 2 x10°
20 40 60 80 100 120 2 4 6 8 10
Rank (k) Number of Batches
—8— Z=[Ux X3 0,/s] —@— FrequentDirections —8— Z=[Un X3 0,/s] —@— FrequentDirections
—0— Z=[Uk 0;0,/s] —0— Z=[U0;0,Is]
(@) Runtime vs. k (b) Runtime vs. number of batches

Figure 3. CRAN runtimes as a function of rank & (left) and number of batch splits (right).

CRAN, Z=[Uy, 0; 0, /5] CRAN, Z =[Uy, 0; 0, 5]

£ £

2 2

© T 10-1

§ 10-1 '3 10

3 3

E —— Update(1) E —— Update(1)

0 —— Update(5) n —— Update(5)

—— Update(6) —— Update(10)
10 20 30 40 50 20 40 60 80 100
Singular Value Index Singular Value Index

(a) 6 batches, k = 50 (b) 10 batches, & = 100

Figure 4. Examples of residual norm for experimental parameters outside of what was investigated
by [1].

Discussion

Ultimately, the reproduced results confirm the original results. Specifically, Table 2
verifies that Algorithm 2.2 outperforms Algorithm 2.1 in terms of accuracy. Further-
more, Figure 3 clearly demonstrates that Algorithm 2.1 far outperforms Algorithm 2.2
with respects to wall clock speed. However, as there were no benchmarks, we viewed
the comparison with FrequentDirections as a much stronger barometer. At first
glance, Table 2 and Figures 2c and 2f suggest that both Algorithm 2.1 and 2.2 outperform
FrequentDirections in terms of accuracy. However, upon considering the steps in-
volved in FrequentDirections (namely the step involving the thresholding of the sin-
gular values), we realize that the relative error and residual norm of singular triplets may
not be an applicable metric for FrequentDirections. This is further demonstrated
by the irregular profile of the residual norm as a function of the singular value index
(Figure 2f)). Thus it cannot conclusively be said that FrequentDirections is signif-
icantly under-performing the paper’s proposed algorithms. Consequently, the overall
conclusion becomes that while the results presented in the paper are sound, there is
still need for further benchmarking to determine where the proposed algorithms stand
relative to the state-of-the-art in the field.

ReScience C 8.2 (#25) — Chen, Matsumoto and Varma 2022 10


https://rescience.github.io/

[Re] Projection-based Algorithm for Updating the TruncatedSVD of Evolving Matrices

Future Work

We believe a weakness of the paper to be the lack of benchmarking - and as discussed
above, our results do not conclusively resolve this. However, they do motivate the need
for metrics that will allow for a fair comparison between the proposed algorithm and
state-of-the-art algorithms such as FrequentDirections.

What was easy

Algorithm 1.1 was quite simple to understand and implement, and was exactly repro-
duced quite early on. Once we received code, implementation of Algorithm 2.2 and the
evaluation metrics was simplified.

What was difficult

Inaddition to the challenges constructing X ,. for Algorithm 2.2, another challenging/time-
consuming aspect was designing the experiments as sweeping through various combi-
nations of the parameters required thorough planning for data management.

References

1. V. Kalantzis, G. Kollias, S. Ubaru, A. N. Nikolakopoulos, L. Horesh, and K. L. Clarkson. “Projection techniques
to update the truncated SVD of evolving matrices with applications.” In: Proceedings of the 38th International
Conference on Machine Learning. Ed. by M. Meila and T. Zhang. PMLR, July 2021, pp. 5236-5246. URL: https:
//proceedings.mir.press/v139/kalantzis21a.html.

2. M.Ghashami,E. Liberty, J. M. Phillips, and D. P Woodruff. “Frequent Directions: Simple and Deterministic Matrix
Sketching.” In: SIAM Journal on Computing 45.5 (Jan. 2016), pp. 1762-1792. pol: 10.1137/15M1009718. URL:
http://epubs.siam.org/doi/10.1137/15M1009718.

3. H.ZhaandH.D. Simon. “Timely communication on updating problems in latent semantic indexing." In: Society
for Industrial and Applied Mathematics 21.2 (1999), pp. 782-791. URL: http://www.siam.org/journals/sisc/21-
2/32926.html.

4. D. P O'Leary. “The block conjugate gradient algorithm and related methods.” In: Linear Algebra and its Appli-
cations 29 (Feb. 1980), pp. 293-322. pol: 10.1016/0024-3795(80)90247-5. URL: https://linkinghub.elsevier.
com/retrieve/pii/0024379580902475.

5. C.R. Harris et al. Array programming with NumPy. Sept. 2020. pol: 10.1038/s41586-020-2649-2.

6. P Virtanen et al. “SciPy 1.0: fundamental algorithms for scientific computing in Python." In: Nature Methods
17.3 (Mar. 2020), pp. 261-272. por: 10.1038/s41592-019-0686-2.

7. F Pedregosa et al. “Scikit-learn: Machine Learning in Python." In: Journal of Machine Learning Research 12.85
(Oct. 2017), pp. 2825-2830.

8. J.D. Hunter. “Matplotlib: A 2D Graphics Environment." In: Computing in Science Engineering 9.3 (2007), pp. 90—
95. pol: 10.1109/MCSE.2007.55.

9. N. Halko, P G. Martinsson, and J. A. Tropp. “Finding structure with randomness: Probabilistic algorithms
for constructing approximate matrix decompositions.” In: SIAM Review 53.2 (2011), pp. 217-288. Dot
10.1137/090771806.

10. M. W.Berry and S. T. Dumais. Latent Semantic Indexing Web Site. URL: http://web.eecs.utk.edu/research/Isi/.

11. D. Cai, X. He, and J. Han. “Document clustering using locality preserving indexing." In: IEEE Transactions on
Knowledge and Data Engineering 17.12 (Dec. 2005), pp. 1624-1637. pol: 10.1109/TKDE.2005.198.

12. D. Cai, X. He, W. V. Zhang, and J. Han. “Reqularized locality preserving indexing via spectral regression." In:
Proceedings of the sixteenth ACM conference on Conference on information and knowledge management - CIKM
'07. New York, New York, USA: ACM Press, 2007, p. 741. pol: 10.1145/1321440.1321544.

13.  D.Cai, Q. Mei, J. Han, and C. Zhai. “Modeling hidden topics on document manifold.” In: Proceeding of the 17th
ACM conference on Information and knowledge mining - CIKM '08. New York, New York, USA: ACM Press, 2008,
p.911. por: 10.1145/1458082.1458202.

14.  D.Cai,X. Wang, and X. He. “Probabilistic dyadic data analysis with local and global consistency.” In: Proceedings
of the 26th Annual International Conference on Machine Learning - ICML ‘09. New York, New York, USA: ACM
Press, 2009, pp. 1-8. poI: 10.1145/1553374.1553388. URL: http://portal.acm . org/ citation . cfm ? doid =
1553374.1553388.

ReScience C 8.2 (#25) — Chen, Matsumoto and Varma 2022 n


https://proceedings.mlr.press/v139/kalantzis21a.html
https://proceedings.mlr.press/v139/kalantzis21a.html
https://oadoi.org/10.1137/15M1009718
http://epubs.siam.org/doi/10.1137/15M1009718
http://www.siam.org/journals/sisc/21-2/32926.html
http://www.siam.org/journals/sisc/21-2/32926.html
https://oadoi.org/10.1016/0024-3795(80)90247-5
https://linkinghub.elsevier.com/retrieve/pii/0024379580902475
https://linkinghub.elsevier.com/retrieve/pii/0024379580902475
https://oadoi.org/10.1038/s41586-020-2649-2
https://oadoi.org/10.1038/s41592-019-0686-2
https://oadoi.org/10.1109/MCSE.2007.55
https://oadoi.org/10.1137/090771806
http://web.eecs.utk.edu/research/lsi/
https://oadoi.org/10.1109/TKDE.2005.198
https://oadoi.org/10.1145/1321440.1321544
https://oadoi.org/10.1145/1458082.1458202
https://oadoi.org/10.1145/1553374.1553388
http://portal.acm.org/citation.cfm?doid=1553374.1553388
http://portal.acm.org/citation.cfm?doid=1553374.1553388
https://rescience.github.io/

[Re] Projection-based Algorithm for Updating the TruncatedSVD of Evolving Matrices

15. F. M. Harper and J. A. Konstan. “The movielens datasets: History and context." In: ACM Transactions on Inter-
active Intelligent Systems 5.4 (Dec. 2015). DoI: 10.1145/2827872.

ReScience C 8.2 (#25) — Chen, Matsumoto and Varma 2022 12


https://oadoi.org/10.1145/2827872
https://rescience.github.io/

	Introduction
	Scope of reproducibility
	Projection-based update algorithm
	Zha-Simon algorithm
	Proposed row-update algorithm

	Methodology
	Implementation
	Datasets
	Experiments

	Results
	Discussion
	Future Work
	What was easy
	What was difficult


