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Reproducibility Summary

Scope of Reproducibility
This report covers our reproduction of the paper ‘Thompson Sampling for Bandits with
Clustered Arms’ by Carlsson et al. (IJCAI 2021) [1]. The authors propose a new set of al‐
gorithms for the stochasticmulti‐armed bandit problem (and its contextual variant with
linear expected rewards) in settings when the arms are clustered. They show both theo‐
retically and empirically that exploiting the cluster structure significantly improves the
obtained regret over the traditional assumption with non‐clustered arms. Furthermore,
they compare the proposed algorithms to previously proposed and well‐known bench‐
marks for the bandit problem. We aim to reproduce just the empirical evaluations.

Methodology
Given that no code was provided alongside the original paper (and neither for any of the
benchmarks used for comparison), we implement everything from scratch. We write
our code in R [2], the well‐known programming language for statistical computing, and
use some of its basic libraries. We run the experiments on a laptopwith a dual‐core Intel
i7 processor and 8 GB of RAM. We don’t use a GPU.

Results
There are no exact numbers in the original paper to reproduce, rather the main claims
are supported with some visualisations. With this in mind, our reproduction confirms
the advantage provided by clustering over the assumption of independent arms, as well
as the newly proposed algorithms outperforming the referenced benchmarks. We re‐
peat all the experimentswithmultiple seeds to obtain robust estimates of the algorithms’
performance and reduce the risk of drawing any conclusions out of results obtained by
chance.

What was easy
The authors have included in the paper all the necessary details to reimplement their
proposed algorithms, recreate the synthetic datasets, and reproduce the experiments
for the first part, i.e. the traditional multi‐armed bandits setting.

Copyright © 2022 A. De Luisa, released under a Creative Commons Attribution 4.0 International license.
Correspondence should be addressed to Andraž De Luisa (ad9366@student.uni-lj.si)
The authors have declared that no competing interests exist.
Code is available at https://github.com/andrazdeluisa/reproducibility_challenge – DOI 10.5281/zenodo.6498328. – SWH
swh:1:dir:d1d7fa93e952cf14154d5415f253b6507af22833.
Open peer review is available at https://openreview.net/forum?id=r5LS3fmh0t.
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[Re] Thompson Sampling for Bandits with Clustered Arms

What was difficult
It is much harder to reimplement some of the referenced benchmarks. The main rea‐
sons for these struggles are the inconsistent nomenclature, important details missing
in the referenced papers, and some of the compared benchmarks being originally de‐
signed to run in a different setting. Furthermore, some additional research into the field
of contextual bandits is needed to reproduce the second part of the experiments.

Communication with original authors
There has been no communication neither with the authors of the original article nor
with any authors of the referenced papers.

1 Introduction

Themulti‐armed bandit is a classical reinforcement learning problem, formally defined
for the first time already by Robbins in 1952 [3], focused on the exploration versus ex‐
ploitation trade‐off. Its name is derived from gambling: imagine a gambler sitting in
front of a row of slot machines, deciding which arm to pull next hoping to maximise
the prize money (to minimise his loss, actually). The same name is used for whatever
problem involves a learner and a fixed set ofN actions to repeatedly choose from, with
each action returning a stochastic reward. The learner aims to maximise its obtained
reward in a finite number of steps T . He does therefore repeatedly face the dilemma of
whether to exploit what he believes to be themost convenient action, or to explore other
actions, hoping to find an even better one. In the beginning the learnermight have been
provided with some additional info about the available actions or not, it depends on the
setting of the problem. Anyway, he constantly updates his knowledge about the actions
based on the obtained rewards.
An interesting and useful generalisation is the contextual bandit. At each iteration the
learner gets an additional context vector which he can use, in addition to the past re‐
wards, to choose his next action. His goal over time is to get enough information about
how the context vectors and rewards are related, to be able to predict the best arm by
looking at feature vectors.
Both mentioned types of multi‐armed bandits are analysed also in the paper we aim to
reproduce, Thompson Sampling for Bandits with Clustered Arms by Carlsson et al. [1]. The
problems defined in the article have an additional, defining characteristic: the arms are
clustered (both in the analysed classical and contextual bandits). The leading idea is to
understand howmuch can the obtained reward be optimised if the learner can leverage
the additional knowledge on the relations between arms.
Themulti‐armed bandit problem (with itsmultiple variants) can be successfully applied
to some common usecases. Let’s take a recommender system on an e‐commerce web‐
site as an example to better explain all the mentioned settings. When a user visits the
homepage of the website, an agent in the background has to decide which product to
show him first, hoping he will eventually buy it (thus obtaining a reward). Without any
additional knowledge about the user, this example represents a classical multi‐armed
bandit. However, the items on sale are not completely unrelated between them. If they
can be grouped in meaningful clusters, for which we expect similar selling success, the
problem translates to a multi‐armed bandit with clustered arms. These clusters might
even be hierarchically structured (e.g. the items are clustered into electronics and clothes,
with the latter further divided into sports and elegant clothing). Furthermore, if some
data about the user is also available (i.e. a context vector), we talk about a contextual
multi‐armed problem, with the context influencing the obtained reward (since users’
preferences vary).
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2 Scope of reproducibility

The main goal of the original paper is “to show, both theoretically and empirically, how ex-
ploiting a given cluster structure can significantly improve the regret and computational cost
compared to using standard Thompson sampling” [1]. To achieve it, new algorithms based
on a multi‐level Thompson sampling scheme [4] are proposed. These algorithms are de‐
signed to solve the stochastic multi‐armed bandit with clustered arms (MABC) problem
and its contextual variant (CBC) with linear expected rewards (linearly dependent on
the given context vector). Under some specific assumptions (mainly strong dominance
of the best cluster and Bernoulli distributed arm rewards), theoretical bounds on the
regret are provided, with the dependence on the number of armsN removed in favor of
dependence on the properties of the selected clustering. The algorithms are then tested
on some specifically constructed datasets that meet the assumptions, as well as com‐
pared with other recently proposed algorithms that solve the MABC and CBC problems
even in settings where the theoretical assumptions are violated. The results indicate the
theoretical guarantees hold true and the proposed algorithms are at least comparable
with the evaluated baselines (and most often outperforming them).
In this work, we aim to fully reproduce all the experiments described in the paper. We
divide the claims we focus our work on into three subsections for clearness.

1. ClassicalMABC settingwith clusterings thatmeet the required theoretical assump‐
tions

• In flat clusterings, the proposed algorithm (TSC) outperforms the baseline
(Thompson sampling – TS).

• In hierarchical clusterings, the proposed algorithm (HTS) outperforms the
baseline (TS).

• Regret does only depend on the clustering quality, not on the number of arms
N .

2. Classical MABC setting with clustering that violates the defined assumptions

• The proposed algorithms (TSC, HTS) still perform better than TS (in both flat
and hierarchical settings).

• TSC and HTS are at least comparable (and most often better) than other, re‐
cently proposed algorithms that also solve the MABC problem.

3. Contextual bandits variant (CBC)

• The proposed algorithm LinTSC outperforms the baseline LinTS.
• LinTSC is at least comparable and most often better than other, recently pro‐
posed algorithms that also solve the CBC problem.

3 Methodology

Given that no code was provided alongside the original paper (and neither with any of
the articles where the benchmarks used for comparison are described), we implement
everything from scratch 1. Additional details about the proposed algorithms and how
we implement them follow in the next section 4.

1The code required to reproduce all the experiments is available on the GitHub repository https://github.com/
andrazdeluisa/reproducibility_challenge
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3.1 Datasets
We don’t use any externally provided dataset, all the experiments are run with synthet‐
ically generated data, following the instructions in the paper. For each experiment we
prepare a separate dataset. The multi‐armed bandit is a special case of a reinforcement
learning problem, and as such doesn’t require any split into training or test data, the
agents learn and take actions simultaneously.

3.2 Computational requirements
We write our code exclusively in R [2], the well‐known programming language for sta‐
tistical computing, and use some of its basic libraries for data manipulation and visu‐
alisation (ggplot2 [5], stats [2], mvtnorm [6]). We run the experiments on a laptop with a
dual‐core Intel i7 6th generation processor and 8 GB of RAM. We don’t use a GPU. The
computational resources are very limited, but the nature of the problem doesn’t require
huge processing, thus allowing us to smoothly run all the required experiments. Some
slow down is observed in the runs with a higher number of arms and actions, but we
still manage to evaluate the models over multiple (up to 100) seeds in a couple of hours,
which is crucial to get accurate estimations of their performance.

4 Experiments

As described in [1], a standard multi‐armed bandit (MAB) problem is defined with a set
of N arms A, a finite number of steps T and reward functions rt(at) which depend on
the played arm at at the timestep t, but might as well depend on the timestep t itself. In
MABC and CBC problems, the arms are additionally divided into (flat/disjoint or hierar‐
chical) clusters. Rewards are drawn from some distribution rt ∼ Dat , with an unknown
mean EDat

[rt] = µat
. The goal of the learner is to maximise the expected cumulative

reward over a sequence of T time steps or, equivalently, to minimise its expected cu‐
mulative regret E[Rt] w.r.t. the optimal arm at∗ = argmaxat∈Aµat

∀t ≤ T (the cumula‐
tive regret represents how much reward did the learner lose due to not always playing
the best arm 2). Rewards might be drawn from arbitrarily chosen distributions, but to
simplify the derivation and proof of theoretical bounds for the cumulative regret, only
Bernoulli and uniformly distributed rewards are used in the original paper. Since the
reward functions differ in different MAB settings, we provide additional details about
them in the following sections.

4.1 Classical MABC
In the experiments with classical MABC problems, all the rewards are drawn from a
Bernoulli distribution rt(at) ∼ Bernoulli(θat). The parameters θa are defined in ad‐
vance (but not known to the learner) and constant for each arm a, therefore the cumu‐
lative regret can be defined as R =

∑T
t=1 θa∗ − rt(at), where θa∗ = maxa∈Aθa is the

expected reward for playing the best arm. The arms are divided into clusters based on
their θ value. These clusters might be disjoint (each arm gets assigned to exactly one
cluster) or hierarchical (each arm gets assigned to exactly one leaf in a clustering tree).
Not all algorithms can solve both types of the MABC problem.
The baseline algorithm that solves a MAB problem is Thompson sampling (TS) [4], first
designed by Thompson in 1933 (much before the MAB problem was even formalised).
It doesn’t take into account any clustering information (thus being able to solve all the
proposed MABC settings). The main idea behind it is to select which arm to play at the

2Notice that the regret might be (and often is) negative at single timesteps when positive rewards are ob‐
served.
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current step probabilistically, i.e. with respect to the current belief about the arms re‐
ward distributions. The learner starts with assigning uninformative Beta(1, 1) priors
over expected rewards θa ∈ [0, 1] to each arm a (the Beta distribution was chosen due
to its conjugate characteristic). Then, at each step, it takes a random sample from the
Beta(St(a), Ft(a)) distribution for each arm, and plays (greedily) the arm with the high‐
est sampled expected reward. The posterior belief in that arm’s true θ value is then up‐
dated according to the observed reward r: St+1(a) = St(a)+r, Ft+1(a) = Ft(a)+(1−r).
Since the learner doesn’t get any information about the arms that were not played, the
other posteriors are not updated.
The newly proposed algorithm that exploits the disjoint clustering structure (TSC [1]) is
based on the exact same idea as TS, but adds an additional level to the selection of the
arm to play. Instead of sampling from the arms’ priors directly, it keeps prior beliefs for
the clusters too and samples from themfirst. When the cluster with the highest sampled
expected reward is selected using TS, the procedure is repeated for the arms within that
cluster. Then the posteriors (both for the selected cluster and played arm) are updated
according to the observed reward.
The proposed algorithm for theMABC problemwith hierarchically clustered arms (HTS
[1]) is a natural extension of TSC: it applies the Thompson sampling at each node to
select in which subtree to search for the arm to play. TSC is basically a HTS on a tree
with depth 2, while TS is a HTS on a tree with depth 1 (a single node with N leaves).
The assumptions on the clustering structures required for the theoretical regret bounds
to hold are quite tight, assuming strong dominance (and hierarchical strong dominance)
between the clusters. This actually means that every arm from the optimal cluster must
have a higher expected reward than any other arm from the other clusters (in the hier‐
archical structure, this condition is applied at each node level). The authors, therefore,
provide precise instructions for the construction of synthetic datasets on which the al‐
gorithms are tested.
To build a strongly dominant disjoint clustering structure on which to test the proposed
algorithms, we need to define the following hyperparameters:

• the number of arms N ,

• the number of clustersK,

• the size of the optimal cluster A∗,

• the width of the optimal cluster w∗,

• the distance of the other clusters to the optimal one d,

• and the number of timesteps T .

The arms are divided into clusters randomly. The probabilities assigned to the arms in
the optimal cluster are sampled uniformly from U(0.6 − w∗, 0.6), while those in the
other clusters are sampled from U(0.5 − w∗ − d, 0.6 − w∗ − d). In all the clusters, two
arms get assigned the upper and lower bound of the interval their values were sampled
from (e.g. the highest expected reward is always 0.6). In the Results section 5, we show
how those hyperparameters influence the obtained cumulative regret.
The hierarchical datasets are built in a completely different way (and require fewer hy‐
perparameters). The probabilities assigned to the arms are sampled uniformly from
U(0.1, 0.8) and then recursively sorted and merged into a balanced binary tree that
meets the hierarchical strong dominance assumptions (i.e. at each node, the top half
of the arms gets assigned to a subnode and the bottom half to the other). Other than
the number of arms N and timesteps T , the defining hyperparameter is the number of
levels L 3.

3Notice that a single‐level tree represents a MAB, and a two‐level one a MABC problem.
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Classical MABC with violated assumptions — The strong dominance condition is difficult to
meet in real‐life scenarios, therefore we evaluate the performance of the proposed al‐
gorithm also on datasets where this assumption is not met, and compare them to other
well‐knownalgorithms that solve theMABCproblem. Wegenerate the synthetic datasets
in a completely different way: we assign a parameter xa ∼ U(0, 1) to each arm, group
them intoK clusters using the K‐means algorithm and then convert their parameters to
probabilities with θa = f(xa), where f(x) = 1

2 (sin (13x) sin (27x) + 1). The function is
smooth, therefore arms in the same cluster have similar expected rewards, but its peri‐
odicity ensures there are no strongly dominant clusters. For the hierarchical structure,
we repeat the same process at each level.
The proposed algorithms based on Thompson sampling are compared to the following
ones:

• The UCB1 [7] (Upper Confidence Bound) algorithm solves the MAB problem (ig‐
nores the clustering structure). It is based on a deterministic policy, which at each
step selects the arm that maximises the expression r̄a + cp

√
2lnn
na

, where r̄a is the
average reward obtained from arm a so far, na the number of times a was played
and n the total number of plays. Each arm needs to be played once at the begin‐
ning for initialisation.

• The UCBC algorithm (designed as TLP – Two Level Policy – by Pandey et al. [8],
named UCBC in [9]) is an extension of UCB1 to clusters. It uses a two‐level selec‐
tion schema, with first selecting the best cluster with respect to the UCB1 formula,
and then playing the best arm from the cluster. A policy on how to represent the
clusters need to be chosen. Since the authors of [1] don’t mention which one they
use, we choose to implement the MAX policy (which [8] states to perform best).
With the MAX policy, each cluster is represented by its best arm (other proposed
policies are MEAN and PMAX).

• The TSMax algorithm (named HTS when first proposed in [10], renamed to avoid
misunderstandings) is extremely similar to the TSC. The only difference is that
the clusters’ posterior beliefs are defined as the posterior of the current best arm
inside the cluster.

• The UCT algorithm (Upper Confidence Bound for Trees [11]) is an extension of the
UCB1 algorithm to hierarchical clustering structures. It applies theUCB1 selection
procedure recursively at each node and selects the most promising one until a
single arm is selected.

4.2 Contextual CBC
In the experiments with CBC problems, the expected values of the rewards are linearly
dependent on the context vector xt ∈ Rd and arm parameters θa ∈ Rd: E[rt(a)|xt] =
xT
t θa. The parameters θa are defined in advance (but not known to the learner) and re‐

main constant throughout the experiment, while a different context xt is observed at
each timestep t ≤ T . The rewards are uniformly distributed rt(at) ∼ U(0, 2xT

t θat
). The

cumulative regret is defined as
∑T

t=1 x
T
t θa∗

t
− rt(at), where θa∗

t
= argmaxa∈A xT

t θa is
the best arm for the given context (the best arm is not always the same). The arms are
grouped into clusters based on their θa parameter vector. We use only disjoint cluster‐
ings in our experiments.
A baseline algorithm, derived from Thompson sampling, that solves the CBCwith linear
expected rewards is the LinTS (first mentioned by Agrawal et al. [12]). It’s similar to TS
in the MABC setting: at every step it samples from the prior distributions of the arms’
parameters, plays the arm with the highest sampled expected reward and it doesn’t use
any clustering information. The learner startswith uninformative standardmultivariate
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normalN(0, I) priors for parameter θa distributions (the Gaussian distribution was cho‐
sen due to its conjugate characteristic). At each step it samples fromN(xT

t µa, x
T
t B

−1
a xt)

for each arm, and plays (greedily) the arm with the highest sampled expected reward.
The posterior belief in that arm’s θc value is then updated according to the observed
context and obtained reward: Bat = Bat + xtx

T
t , fat = fat + rxt, µat = B−1

at
fat . The

posteriors for the other arms are not updated.
The newly proposed algorithm that exploits the disjoint clustering structure (LinTSC [1])
is based on the same idea as LinTS, but adds an additional level to the selection of which
arm to play (it keeps prior beliefs also for each cluster, and updates them according to
the obtained rewards). LinTSC relates to LinTS in the same way as TSC relates to TS.
The proposed algorithms based on Thompson sampling are compared to the following
ones:

• The LinUCB (Linear Upper Confidence Bound [13]) algorithm solves the CBC prob‐
lem (it ignores the clustering structure). The arm selection procedure is inspired
by its MABC counterpart: the learner plays the arm that maximises the expres‐
sion: xT

t θa α
√
xT
t Baxt. It basically applies online ridge regression to estimate the

parameters. The values for θa and Ba are computed and updated in the same way
as in LinTS.

• The LinUCBC (Linear Upper Confidence Bound for Clusters [9]) algorithm is an
extension of LinUCB to clustered set of arms. It is based on the LinUCB algorithm,
but adds another level to the arm selection procedure: it first selects which cluster
and then which arm to play next.

There are no strict assumptions that the synthetic datasets for CBC problems should
meet. Contextual data is generated in the same way as in [9]: we have N arms and
K clusters, each arm j is uniformly randomly assigned to a cluster i. For each cluster
we sample a centroid θci ∼ N(0, I5) and assign the parameters to its arms as follows:
θj = θci + ϵν, ν ∼ N(0, I5). We control the expected diameter of a cluster by varying ϵ.
We generate the context at each timestep as is described in [9], sampling them from a
multivariate standard normal distribution.

5 Results

There are no exact numbers in the original paper to reproduce, rather the main claims
are supported with visualisations. With this in mind, our reproduction confirms the
advantage provided by clustering over the assumption of independent arms, as well as
the newly proposed algorithms outperforming the referenced benchmarks. We repeat
all the experiments with multiple seeds to obtain robust estimates of the algorithms’
performance and reduce the risk of drawing any conclusions out of results obtained by
chance. We show the obtained results in Figures 1 and 2 (the estimates are obtained
with evaluations over multiple – 25 to 100 – random seeds). We provide details on single
reproduced claims (as defined in Section 2) in the following subsections.

5.1 Classical MABC
In Figure 1 we show all the obtained results from the experiments within the classical
MABC problem setting (as described in the previous section), with plots 1a ‐ 1e present‐
ing the disjoint and plot 1f the hierarchical clustering. The results clearly show that
taking into account the clustering structure of the arms significantly increases perfor‐
mance (i.e. lowers the cumulative regret). Our results are perfectly in line with those
reported in the original paper. In each one of the plots we show how a dataset’s hyper‐
parameter affects the learner’s performance:
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Figure 1. Strong and Hierarchical Strong Dominance. The error bars correspond to ±1 standard
deviation.

• Figure 1a: an increase in the distance d between the optimal and the other clusters
lowers the regret – and its variance – in TSC (it speeds up the recognition of the
best cluster), but increases it in TS (most of the arms get a lower expected reward
assigned).

• Figure 1b: an increase in the best cluster’s widthw doesn’t affect TSC performance,
but negatively affects TS.

• Figure 1c: one of the goals of the original paper was to remove the cumulative
regret’s dependence onN . This plot doesn’t show a precisely constant TSC perfor‐
mance, but we can still observe a dramatic improvement over TS.

• Figure 1d: TS doesn’t use any clustering information, therefore varying the num‐
ber of clusters K doesn’t affect it at all. On the other hand, increasing K drops
TSC performance for the same reason why increasing N negatively affects TS.

• Figure 1e: with more arms in the best cluster, there is a higher chance even for TS
to play one of them, therefore we can observe similar performances where half of
the arms are grouped into the optimal cluster.

• Figure 1f: number of arms N effect on HTS learner’s performance drops with the
number of levels in the hierarchical clustering. Starting with no levels (equivalent
to TS), the obtained regret heavily depends on N , with its effect on HTS perfor‐
mance dropping to zero in a full binary tree (clustering with log2(N) levels).

5.2 Classical MABC with violated assumptions
In Figures 2a ‐ 2c we show comparisons of the newly proposed algorithms with some
baselines within the classical MABC problem setting with violated assumptions. Here
we get some slightly different results than those reported in the original paper:

• Figure 2a: UCB‐based algorithms (UCB1 and UCBC) perform much worse that TS‐
based ones. We observe much better results for TSMax than those reported in the
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Figure 2. CBC and violation of assumptions in MABC. The error bars correspond to ±1 standard
deviation.

paper. Since TSMax does also exploits clustering and just slightly differs from TSC,
we believe the authorsmust havemade somemistakes in its implementation (they
report a worse performance than UCBC).

• Figure 2b: TSC clearly stands out from the others in term of performance when
we significantly increase the number of arms N . Again we observe better TSMax
performance than reported.

• Figure 2c: UCT algorithm performmuch worse than HTS (note that TSC is an HTS
with L = 1). The obtained regrets are in line with the original paper, but we ob‐
serve higher uncertainty in our estimations (although we repeated each experi‐
ment the same number of times and show the errorbars in the same way – ± 1
standard deviation).

5.3 Contextual CBC
In Figures 2d ‐ 2f we show the results of our experiments with the contextual bandits
algorithms. The single plots present the evaluations on datasets generated with differ‐
ent hyperparameters, however they all have the same shape, hence we can analyse all
of them together. We can see that in the CBC problem, the algorithms that leverage the
clustering information heavily outperform the others, while there is no significant dif‐
ference between UCB‐ and TS‐based methods. The authors of the original paper here
claim that LinTSC slightly outperforms LinUCBC, but fromour results we definitely can’t
draw the same conclusion.

6 Discussion

With our work we are able to successfully reproduce the results obtained by the authors
of the original paper. As explained in the previous section, some of our results differ
slightly from those reported in the paper mostly with respect to variance of the esti‐
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mates, but they still support the main claims. However, we have to point out a couple
of potential issues that we identified in their work.
First of all, Upper Confidence Bound algorithms rely on the initialisation step during
which each arm should be played once. If we look again at Figures 2b or 2c, we see that
those learners spent a significant amount of the allocated time just playing each arm
one by one. Furthermore, for t < 1000, the presented numbers are just the result of
playing the first N arms, therefore determined by their ordering.
Some more concerns arise when dealing with the CBC problem. In the original paper,
each arm has its own parameter vector θa that we want to learn from the obtained re‐
wards and given contexts xt. They mimic the same setting as in Bouneffouf et al. [9].
However, the other two algorithms (LinTS and LinUCB) are designed for a different set‐
ting, where a different context is given for each arm at every timestep. Furthermore, per
[9], the expected reward should be linearly dependent on the context and played arm’s
feature vector, but the reward itself should lie inside [0, 1]. This is clearly in contrast
with our CBC setting, where both negative and larger rewards are possible (and actually
really common too). We can’t expect dot products of normally sampled vectors to always
fulfill these conditions.

6.1 What was easy
The authors have included in the paper all the necessary details to reimplement their
proposed algorithms, recreate the synthetic datasets, and reproduce the experiments
for the first part, i.e. the classical MABC setting.

6.2 What was difficult
It is much harder to reimplement some of the referenced benchmarks. The main rea‐
sons for these struggles are the inconsistent nomenclature (the referencedpaper presents
multiple algorithmswhichwere designedwith a different name than the one used in the
reproduced paper), important details missing in the referenced papers, no code avail‐
able whatsoever and some of the compared benchmarks being originally designed to
run in a different setting (especially true for CBC problems). Furthermore, some addi‐
tional research into the field of contextual bandits is needed to reproduce the CBC part
of the experiments, since due to all the inconsistencies between the different papers,
we had a hard time understanding how are contextual bandits supposed to work.

6.3 Communication with original authors
There has been no communication neither with the authors of the original article nor
with any authors of the referenced papers.
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