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Reproducibility Summary

The presented study evaluates ”Exacerbating Algorithmic Bias through Fairness Attacks” by
Mehrabi et al. [1] within the scope of theML Reproducibility Challenge 2021. We find it not pos-
sible to reproduce the original results from sole use of the paper, and difficult even in possession
of the provided codebase. Yet, we managed to obtain similar findings that supported three out
of the five main claims of the publication, albeit using partial re-implementations and numer-
ous assumptions. On top of the reproducibility study, we also extend the work of the authors
by implementing a different stopping method, which changes the effectiveness of the proposed
attacks.

Scope of Reproducibility
The paper presents twonovel kinds of adversarial attacks against fairness: the IAF attack
and the anchoring attacks. Our goal is to reproduce the five main claims of the paper.
The first claim states that using the novel IAF attack we can directly control the trade‐
off between the test error and fairness bias metrics when attacking. Claims two to five
suggest a superior performance of the novel IAF and anchoring attacks over the two
baseline models. We also extend the work of the authors by implementing a different
stopping method, which changes the effectiveness of some attacks.

Methodology
To reproduce the results, we use the open‐source implementation provided by the au‐
thors as the main resource, although many modifications were necessary. Additionally,
we implement the two baseline attacks which we compare to the novel proposed attacks.
Since the assumed classifier model is a support vector machine, it is not computation‐
ally expensive to train. Therefore, we used a modern local machine and performed all
of the attacks on the CPU.

Results
Due tomanymissing implementation details, it is not possible to reproduce the original
results using the paper alone. However, in a specific setting motivated by the authors’
code (more details in section 3), we managed to obtain results that support 3 out of 5
claims. Even though the IAF and anchoring attacks outperform the baselines in certain
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scenarios, our findings suggest that the superiority of the proposed attacks is not as
strong as presented in the original paper.

What was easy
The novel attacks proposed in the paper are presented intuitively, so even with the lack
of background in topics such as fairness, we managed to easily grasp the core ideas of
the paper.

What was difficult
The reproduction of the results requires much more details than presented in the pa‐
per. Thus, we were forced to make many educated guesses regarding classifier details,
defense mechanisms, and many hyperparameters. The authors also provide an open‐
source implementation of the code, but the code uses outdated dependencies and has
many implementation faults, which made it hard to use as given.

Communication with original authors
Contact was made with the authors on two occasions. First, we asked for some clarifica‐
tions regarding the provided environment. They promptly repliedwith lengthy answers,
which allowed us to correctly run their code. Then, we requested additional details con‐
cerning the pre‐processing of the datasets. The authors pointed at some of their previ‐
ous projects, where we could find further information on the processing pipeline.

1 Introduction

Machine Learning models have shown impressive performance in countless domains
in the last decade. However, it has been demonstrated that an adversary can input
carefully‐crafted perturbations to subvert the predictions of these models. The area of
Adversarial Machine Learning has emerged to study vulnerabilities of machine learn‐
ing approaches in adversarial settings and to develop techniques that make them robust
against malicious attacks.
Most of the research has focused on studying malign interventions that degrade the
accuracy of a system: imagine, for example, the consequences of inducing wrong pre‐
dictions in an autonomous driving system. Only recently, fairness has become a rising
concern for the performance of machine learning models, especially for sensitive fields
such as criminal justice and loan decisions. Along these lines, “Exacerbating Algorith‐
mic Bias through Fairness Attacks” [1] proposes two families of poisoning attacks that
inject malicious points into the models’ training sets and intentionally target the fair‐
ness of a classification model.
The first, the influence attack, extends the optimization‐based technique introduced by
Koh, Steinhardt, and Liang [2] by incorporating in the loss function a constraint for fair
classification. An attacker can hence harm both accuracy and fairness simultaneously,
with a trade‐off regularized via a parameter λ. The second type of attack, the anchoring
attack, affects solely fairness and aims to place poisoned data points to bias the decision
boundary without modifying the attacker loss. Depending on whether the target point
is chosen at random, anchoring attacks are classified as random or non-random.

2 Scope of reproducibility

This report investigates the reproducibility of the original paper by Mehrabi et al. [1]
and aims to verify its main claims. Since these heavily rely on the datasets and metrics
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used by the authors, the reader is invited to consult Sections 3.2 and 3.3 – respectively –
for a refresh of such concepts. Then, the main claims can be summarized as follows:
– Influence Attack on Fairness (IAF):

• Claim 1: Increasing the parameter λ results in stronger attacks against fairness.
Contrarily, for lower values themodel acts similarly to the original influence attack
[2] targeted towards accuracy;

• Claim2: Theproposed IAFoutperforms the attack of Koh, Steinhardt, andLiang [2]
in affecting both fairness metrics (SPD and EOD), on all three datasets;

• Claim 3: The proposed IAF also outperforms the attack based on the loss function
proposed by Solans, Biggio, and Castillo [3] in affecting SPD and EOD, on all tested
datasets.

– Anchoring Attack:

• Claim 4: Both randomandnon‐randomanchoring attacks (RAA andNRAA, respec‐
tively) outperform Koh, Steinhardt, and Liang [2] in degrading the SPD and EOD
of the classification model, on all three datasets;

• Claim 5: On the German and Drug Consumption datasets, RNAA and NRAA have a
greater impact on fairnessmetrics (SPD and EOD) compared to the attack based on
Solans, Biggio, and Castillo [3]. However, the latter outperforms the proposed an‐
choring attack in affecting fairness when classification is performed on the COM‐
PAS dataset.

3 Methodology

The authors provided an open‐source implementation of their code on GitHub [4]. Un‐
fortunately, the repository has several issues: dependencies are not sufficiently speci‐
fied, and simply running the code in the given environment results in conflicts. Further‐
more, the code does not provide an option to run baseline methods used in the paper,
nor does it include the essential hyperparameter λ, which is used in the experiments.
The majority of the code is based on Koh, Steinhardt, and Liang [2]’s public implemen‐
tation [5], and a code coverage analysis revealed that more than 50% is not used for
running experiments related to this paper1. Moreover, the repository comes with pre‐
processed datasets and while this may sound advantageous, there is no mention of the
processing procedure in the paper nor on GitHub. Finally, the code is generally complex
and hard to understand due to insufficient comments and documentation.
Therefore, we used the codebase provided by the authors and customized it for our pur‐
poses. First, to aid maintainability and scalability, as well as to ensure future repro‐
ducibility of the original experiments, the code was modernized and made compatible
with the latest version of every dependency. This involved major changes to migrate
from Tensorflow 1.12.0 to 2.6.2 and to update CVXpy from version 0.4.11 to
1.1.182. Secondly, datasets were downloaded from the original sources [7, 8] and pro‐
cessed from scratch. The procedure is thoroughly reported in Section 3.2. Furthermore,
the codewas trimmed down to the essential, and the userwas given the option to choose
any of the available models and the corresponding parameters. Lastly, we added com‐
prehensive documentation to make the code more interpretable.

3.1 Model descriptions
It appears that the authors of the original paper donot specify themodel that they use for
the given classification task. From the implementation details given in Koh, Steinhardt,

1The coverage.py tool [6] was used to measure code coverage, and the study was performed considering
all possible attacks‐datasets combinations.

2In our repository we provide a YAML configuration file to quickly set up the required environment.
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and Liang [2], as well as from [1]’s codebase, we assume the use of a Support Vector
Machine (SVM) trained with a smooth hinge loss and L2 regularization (refer to [2] for
further details). Additionally, the optimization algorithm is not indicated; we assumed
it to beNewtons Conjugate Gradient (Newton‐CG)method, as suggested by the codebase.
Such a method is used for both the minimization of the parameters on the training set
and the update step of the poisoned points (for attacks utilizing an adversarial loss). The
gradient is computed using the full datasets, i.e., without using mini‐batches. Although
hardly recognizable, this follows the implementation of the original paper: from our
interpretation of the code, it seems that the authors define a variable containing the
size of the mini‐batch size and the necessary functionality, but then never use it.
Our base algorithmic setup for the IAF, RAA, and NRAA attacks is described in theMeth-
ods section of the original paper. However, the authors omitted important details that
we consequently had to assume based on more or less concrete evidence. First, an ad‐
vantaged and disadvantaged group for the sensitive attribute (i.e., gender, as per the
original work) has to be specified for all attacks. Since the rationale behind this choice
does not seem to be included in the paper, we infer from the codebase that the authors
did it automatically and deduced it from the datasets. More specifically, we assume that
the advantaged group is chosen as the group with the highest ratio of data points with
positive label (y = 1), regardless of the actual class label it corresponds to. This method
is simple yet fallacious: for instance, itmeans that the group taking on the label ”likely to
perform a crime soon” more often (in the context of the COMPAS dataset) is considered
”advantaged” in terms of the algorithm.
Secondly, for the computation of the feasible set using an anomaly detector B, we as‐
sume that the intersection of the Slab defense and the L2 defense was originally em‐
ployed, as described in Koh, Steinhardt, and Liang [2]. For reprojecting poisoned data
points into the feasible set, we again use the approach of [2], which incorporates LP
rounding for discrete variables.
Moreover, we implement twobaselines. The three proposed attacks are compared against
the original accuracy‐targeting attack proposed by Koh, Steinhardt, and Liang [2], and
another attack that uses a loss function proposed by Solans, Biggio, and Castillo [3],
which targets fairness3. Lastly, themodel‐specific changes/improvements are presented
below:

IAF. As mentioned before, we modified the code to include the hyperparameter λ
which controls the trade‐off between the accuracy and the fairness loss in the adver‐
sarial loss.

Koh attack. We were not able to find a way of running this baseline attack using the
given codebase. Wehave decided to implement it from scratch, treating it as the limiting
case of the IAF attack when λ = 0 (meaning no fairness loss in the adversarial loss
function). Consequently, it is not exactly as presented in [2]: in the original Koh attack
sampling, the initial poisoned points are not drawn from advantaged and disadvantaged
groups, contrary to the IAF attack. However, we argue that equalizing the sampling
method provides a stronger comparison between the two methods, as we alleviate the
issue of the missing inductive bias from the original Koh influence attack.

Solans attack. This attack serves as the second baseline. We could not find it in the
codebase, thus we implemented it by replacing the adversarial loss in the IAF attack
with a weighted sum loss, as presented in [3]. Implementing this change posed a bigger
issue than expected, due to the inflexibility of the TensorFlow‐based implementation.
Thus, major revisions were required.

3For simplicity, we will refer to the influence attack presented in [2] as the Koh attack, and we will also
refer to the attack presented in [3] as the Solans attack.
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3.2 Datasets
The authors provide compressed npz files of the three real‐world datasets used for their
experiments – the German Credit Dataset [7], the COMPAS Dataset [8] and the Drug Con‐
sumption Dataset [7]. However, these are already pre‐processed, and the processing
procedure is not reported nor documented in the code. This constitutes an important re‐
producibility barrier, because raw datasets4 are not directly usable with the given code‐
base.
In this section, we present our pre‐processing pipeline, which was mainly determined
by reverse engineering of the given files. Like the authors, we provide a set of npz
files containing already‐processed data to run our implementation, but we also include
the scripts used to pre‐process each dataset in the Custom_data_preprocessing di‐
rectory. Lastly, to run the attacks, we assume that the advantaged and disadvantaged
groups are males and females respectively. We accordingly map them to 0 and 1 to cre‐
ate the group_label binary array.
In the rest of this section, we outline our dataset‐specific details of the pre‐processing
pipeline and the assumptions that were made for the sake of reproducibility of the orig‐
inal results.

GermanCredit Dataset. The dataset contains the credit profile of 1000 individuals with
20 attributes associated with each person. In our experiments, we use all of them, as
in [1]. The attributes are both numerical and categorical, and we assumed the original
authors used one-hot representations to encode the latter. The assumptionwas based on
an extensive study of the provided datasets, with particular attention to their shapes. We
then autonomously standardize the data, as it is common practice inMachine Learning,
and split the data into an 80‐20 train and test split, as indicated in the original paper.

COMPAS Dataset. ProPublica’s COMPAS dataset [8] contains information about 7214
defendants from Broward County. We use the features specified in Table 1 of [1]. In
this case, based on the provided dataset, we concluded that the authors must have used
numerical label encoding to represent the categorical attributes. Finally, we standardize
the data and split it into an 80‐20 train and test split.

DrugConsumptionDataset. Thedataset contains information about the drug consump‐
tion of 1885 individuals [9]. We use the attributes indicated in Table 1 of the original pa‐
per. The pre‐processing procedure is as follows: first, we binarize the categorical data
linked to cocaine consumption into users and non-users. Intuitively, non‐users should be
mapped to 0 (and 1 in the opposite case), but an inspection of the provided npz file sug‐
gests that the authors reversed the mapping. We decided to adhere to their choice for
the sake of reproducibility. Moreover, we suspect that the dataset was shuffled before
splitting it into training and test sets5. By doing so, we obtain similar results in the ex‐
periments. Finally, we standardize the data. The original processing of this dataset was
particularly difficult to replicate, because contrary to what was reported in the paper,
the authors did not follow an exact 80‐20 train and test split. Rather, the two contained
1500 and 385 data points respectively.
To conclude, it is noteworthy that even the pre‐processed datasets provided by the au‐
thors are not immediately usable: the position (specified as index) of the sensitive fea‐
ture (i.e., gender) is different for each dataset and is only given for the German dataset
in the running instructions. To account for this unnecessary confusion, our custom
pre‐processing procedure includes the moving of the gender column to the 0th index,

4The German Credit Dataset and the Drug Consumption Dataset can be downloaded from the UCImachine
learning repository [7], while the COMPAS can be found in the corresponding GitHub repository[8].

5The main author followed a similar pre‐processing procedure in another project that is publicly available
on their GitHub [10].
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which is taken as default by the main function. In this way, we simplify the running
instructions and make them coherent across datasets. Still, the user is given the ability
to pass the sensitive feature index as an argument, to facilitate future experiments on
different and untested data.

3.3 Metrics
The attacks are evaluated in terms of accuracy and fairness. Along with classification
(test) error, the original paper uses two importantmetrics to evaluate the attack in terms
of fairness: Statistical Parity Difference and Equality of Opportunity Difference.

Statistical Parity Difference. Statistical Parity Difference (SPD) was first introduced by
Dwork et al. [11] and is used to capture the predictive outcome differences between
different (advantaged and disadvantaged) demographic groups. The mathematical for‐
mulation is reported in Equation 1.

SPD =
∣∣∣ p(Ŷ = +1 | x ∈ Da

)
− p

(
Ŷ = +1 | x ∈ Dd

)∣∣∣ (1)

where Da denotes the advantageous group and Dd denotes the disadvantageous group.

Equality of Opportunity Difference. Equality of Opportunity Difference (EOD) (Hardt,
Price, and Srebro [12]) captures differences in the true positive rate between different
(advantaged anddisadvantaged) demographic groups. It is defined as shown inEquation
2.

EOD =
∣∣∣ p(Ŷ = +1 | x ∈ Da, Y = +1

)
− p

(
Ŷ = +1 | x ∈ Dd, Y = +1

)∣∣∣ (2)

3.4 Experimental setup and hyperparameters
All experiments shown in this paper can easily be reproduced using our code, which is
publicly available on GitHub6. There we also provide technical details on how to run
experiments and test different attacks in various settings. In this section, however, we
list some additional details necessary to replicate the exact setup.

• The original code constrains themaximum iterations of an attack to 10000 anduses
early stopping to interrupt training if the accuracy on the test set does not decrease
for a specific number of iterations, which is hardcoded to be 2. We follow this
strategy but adapt it for our experiments. First, we implement early stopping on
both accuracy and fairness, meaning that the user can also choose to stop training
in the absence of changes in fairness. Weutilize average fairness (SPD+EOD)/2 as
the stopping criteria7 since the twometrics have similar behavior and equal range
[0, 1]. Then, we set the early stopping patience as a controllable hyperparameter.

• It is unclear from the paper how the best‐performing model was selected by the
authors. The code suggests theusage of themodel after the last attack iteration and
training of themodel parameters. Instead, we decided to save the best‐performing
model on the test set according to the chosen stopping metric (average fairness
or accuracy), to better reflect the actual best performance. By selecting the best
model based on fairness, we hope to choose more relevant states of the poisoned
data affecting the fairness metrics. We compare the results in Section 4.

• The computation of the feasible set and the reprojection of poisoned points onto it
is handled as a convex optimization problem (see [2]). Since we upgraded CVXpy

6https://github.com/imandrealombardo/FACT-AI
7In the rest of the paper, we might refer to it simply as the fairness stopping metric.
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to its newest version, we can let the library select the most appropriate solver for
the given problem, instead of specifying one (the authors of [1] seem to have used
the SCS solver).

• Following the original implementation, we utilize the fmin_ncg optimizer of the
scipy library [13] for theNewton‐CG optimization. We complywith the choices of
the authors and set the convergence threshold of the fmin optimizer to 10−8, and
the maximum number of iterations to 100. We follow the implementation details
specified in [2] for computing the inverse Hessian‐vector.

• During training, the temperature of the smooth hinge loss is chosen to be 0.001, as
found hardcoded in the original implementation. The value for the weight decay
is set to 0.09 for all datasets (apart from the code of the authors, this assumption
is also backed up by the main experiments of Koh, Steinhardt, and Liang [2]). The
step size utilized in the IAF algorithm (and thus also in the Koh and Solans attack)
is set to 0.1 for all experiments, as found in the codebase.

• The threshold of the anomaly detector (see [2]) is controlled by a hyperparameter
named ”percentile”, which specifies the percentage of the data left after apply‐
ing the anomaly detector. We first experimented with a value of 95 as suggested by
Koh, Steinhardt, and Liang [2] but, as this seemed to lead to some training failings,
we settled on 90 (the default value given in the codebase).

• The number of injected poisoned points is proportional to the number of clean
data points, such that |Dp| = ϵ|Dp| (where Dc and Dp are the set of clean and
poisoned data points respectively). The authors control such quantity by using
the proportionality factor ϵ as a changeable parameter. Accordingly, we do the
same and also make λ a controllable parameter.

• After careful inspection and testing of the authors’ code, the EOD metric calcula‐
tionwas found to be faulty andwas consequently re‐implemented. Our adaptation
is based on the paper that originally proposed it [12] and inspired by the implemen‐
tation found in the AIF360 library [14].

• Finally, the distance to original points in anchoring attacks τ was set to 0 for all
experiments, as in the original paper.

• The random seed in all experiments was set to 1.

3.5 Computational requirements
To give a complete overview of our experimental setup, we collect the average runtimes
per iteration for different datasets and types of attacks. These are presented in Table
1. All models have been trained on a local machine with an AMD Ryzen 5 5600x CPU (6
cores, Base clock 3.7 GHz). Since the datasets are small, there is no need for more than
4Gb of RAM. In this sense, training should be virtually possible on any entry‐level PC.

4 Results

4.1 Results reproducing original paper
As stated in Section 2, five main claims were identified in the original paper. In our
specific setting, we were able to reproduce three of these, as summarized in Table 2. In
this section we elaborate on our reproduction results: first, in section 4.1.1 we show the
effect of the hyperparameter λ on variousmetrics (Claim 1). In section 4.1.2 we compare
the newly proposed attacks and the baselines (Claims 2-5).

ReScience C 8.2 (#22) – Tafuro et al. 2022 7

https://rescience.github.io/


[Re] Exacerbating Algorithmic Bias through Fairness Attacks

Attack German dataset [s] COMPAS dataset [s] Drug dataset [s]

IAF 0.870 0.265 0.312
NRAA 1.123 106.23 3.678
RAA 0.934 0.306 0.324
Koh 0.474 0.267 0.201
Solans 0.862 0.332 0.262

Table 1. Average runtime per iteration for different attack types
and datasets. All values are stated in units of seconds.

Claim Reproducible?

Claim 1 Yes
Claim 2 Yes
Claim 3 No
Claim 4 Yes
Claim 5 No

Table 2. Summary of the
claims investigation under
our specific setup.
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Figure 1. Influence of λ on the different metrics for different ϵ on the German dataset, using accu‐
racy as the stopping criteria during training.

Effect ofλ on the differentmetrics — To verifyClaim1, we conducted the same experiment as
the authors. We run an IAF attack for each dataset using different ϵ values and increas‐
ing λ, to recreate Figure 3 of the original paper (see Appendix B.3, Fig. 8). However,
compared to the original experiment we test a larger range of λ values (from 0.0 to 2.0)
to gain better insights into its effects. As depicted in Figure 1, increasing λ does result
in stronger attacks against fairness. Here we use the German dataset and accuracy as
the stopping metric, but similar trends were observed on the other datasets and using
fairness for early stopping. The plots are included in Appendix B.1 for the sake of com‐
pleteness. Therefore in this specific setup, we were able to reproduce the claim.

Comparison between the proposed attacks and the baselines — To investigate Claims 2-5 we de‐
sign an experiment that is heavily inspired by the work of the authors. We perform each
attack on each dataset, fixing λ = 1 and gradually increasing ϵ (from 0.0 to 1.0, with steps
of 0.1), and repeat this procedure for each stopping metric. The results essentially repli‐
cate Figure 2 of the original paper (as seen in Appendix B.3, Fig. 7) and are collected
in Figures 5 and 6 of Appendix B.2. However, to facilitate a comparative study between
the proposed attacks and the baselines, we average the metrics over the ϵ values and
report the results in Table 3. In this way, we can base our observations on quantifiable
measures instead of solely using visual inspection.
Assuming that the authors used accuracy as the early stopping criteria, the correspond‐
ing values in the table reveal that – in this specific setting:

• Claim 2 is reproducible. On average, IAF has a much stronger influence on SPD
and EOD compared to Koh’s attack, on all three datasets.

• Claim 3 is not reproducible, because Solan’s attack outperformed IAF in affecting
the EOD on the Compas dataset.

• Claim4 is reproducible. NRAAandRAAwere found to degrade the fairnessmetrics
(SPD and EOD) more than Koh’s attack, on all three datasets.
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German Dataset Compas Dataset Drug Dataset

Attack Test error SPD EOD Test Error SPD EOD Test error SPD EOD
(Stopping metric: Fairness / Accuracy) (Stopping metric: Fairness / Accuracy) (Stopping metric: Fairness / Accuracy)

IAF 0.40/0.47 0.84/0.68 0.88/0.74 0.46/0.47 0.83/0.75 0.87/0.77 0.43/0.45 0.89/0.75 0.90/0.76
NRAA 0.26/0.26 0.26/0.25 0.36/0.33 0.41/0.42 0.59/0.59 0.64/0.64 0.39/0.39 0.53/0.53 0.53/0.53
RAA 0.27/0.28 0.24/0.17 0.36/0.19 0.47/0.47 0.84/0.73 0.87/0.75 0.42/0.44 0.66/0.55 0.68/0.57
Koh 0.27/0.61 0.17/0.08 0.13/0.12 0.45/0.53 0.81/0.46 0.85/0.48 0.40/0.56 0.56/0.26 0.56/0.29
Solans 0.40/0.48 0.65/0.44 0.49/0.16 0.44/0.45 0.76/0.73 0.83/0.78 0.40/0.56 0.53/0.28 0.55/0.32

Table 3. Average metrics over ϵ values, obtained for each measure‐attack combination and each
dataset. We report one pair of values in each entry, corresponding to the two stopping criteria
(average fairness and accuracy), and highlight the greatest one.
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Figure 2. Difference between the two stopping metrics
(accuracy and average fairness) for the Solans attack
on the German dataset (left), IAF attack on the Drug
dataset (right).

Value German
(Solans)

Drug
(IAF)

Min. test accuracy 0.465 0.506

Avg. fairness at the point
of min. accuracy 0.229 0.822

Actual max. average
fairness 0.619 1.000

Table 4. Minimum accuracy, the value
of the average fairness at the point
of minimum accuracy, and maximum
achievable average fairness of the plots
of Figure 2.

• Claim 5 is not reproducible. Solans’ attack had a greater impact on the SPD than
NRAA on the German and greater impact than NRAA on both SPD and EOD on the
Compas dataset. It also has a greater impact on the EOD than the RAA attack on
the Compas dataset.

4.2 Results beyond the original paper: using fairness as the early stopping metric
While the original codebase seems to use accuracy as the early stopping metric (and
hence for selecting and saving the best model), we investigate the change in the results
if fairness is used instead. The main motivation behind such an experiment lies in the
assumption that interrupting training based on the fairnessmeasures supposedly yields
more relevant states of the poisoned data, effectively resulting in more efficient attacks
against fairness. Since the SPD and EOD have similar behavior and equal range [0, 1],
we employ average fairness (SPD + EOD)/2 for the task at hand.
Figure 2 depicts the test accuracy and the average fairness over epochs for two differ‐
ent dataset‐attack combinations. An analysis of the curves confirms that the maximum
achievable average fairness is much greater than the same measure at the point of min‐
imal accuracy (see Table 4). The same phenomenon is observed for any dataset‐attack
combinations, as reported in Table 3: fairness undergoes a stronger degradation if av‐
erage fairness is used to interrupt the training process and save the best model. This
is reflected in the corresponding values of the fairness measures, which appear much
higher compared to when accuracy is used.

5 Discussion

Our reproduction reveals that although the proposed methods represent valid novel at‐
tacks against the fairness of a model, they are not always superior to other methods
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in the literature. IAF showed important performance in terms of SPD and EOD degra‐
dation, but anchoring attacks were outperformed by the baseline models on multiple
occasions. This result conflicts with the findings of the main paper (see Appendix B.3,
Fig.7)where the baselines are generally inferior to the proposed attacks. Wehad tomake
several assumptions to solve issues and inconsistencies between the original paper and
corresponding implementation (many of which have already been mentioned through‐
out the report, but we systematically collect them in Appendix A). These assumptions
are, by definition, uncertain andmight have been the cause of the discrepant results. To
better understand the source of discrepancy, we initially planned to perform an ablation
study, which would have also unveiled more information regarding the model’s behav‐
ior. This was ultimately not possible, given the time constraints and the contingencies
encountered in the reproduction process.
In the remainder of this section, we elaborate on the main claims and our ability to
reproduce them. We then present some personal reflections on the overall execution of
the work and conclude with a summary and look into future works.

5.1 Discussion of the results
The first claim was found to be reproducible under our experimental setup, as we ex‐
pected. The parameter λ is specifically designed to control the trade‐off between accu‐
racy and fairness, hence a rejection of the claim would have implied a major flaw in
the core idea of the paper. The other claims focused on the comparison with the two
baselines and, while the results presented in Section 4.1.2 are explicative enough, some
remarks are still noteworthy.
In general, better statistics of the results would give us a clearer insight into the relative
performance of the models. However, only four weeks were allocated for this project
and we were unable to re‐run the experiments with multiple seeds. For example, the
Solans attack outperformed the IAF attack in terms of EODmetric on theCompas dataset
(when using accuracy as the stopping method) and led to the non‐reproducibility of
Claim 3. Yet, this difference is relatively small and a measure of uncertainty could po‐
tentially reverse our decision.
Furthermore, it was shown that the final fairness metrics can highly vary depending
on the chosen stopping method. This is especially prominent for Claim 4, which was
accepted under the assumption that accuracy was used for stopping and saving the best
model. In reality, Koh attack outperforms NRAA on both Compas and Drug datasets in
the terms of SPD/EODmetrics, if fairness is used instead. Since the validity of the claim
depends on the stopping metric of choice, we argue that the claim is much weaker than
originally proposed. Similarly, compare the IAF and the Koh attack in terms of fairness
measures, using accuracy as the stopping criteria. On the Drug dataset, IAF’s SPD/EOD
metrics are respectively 2.89×/2.62× higher than Koh’s. This gap tightens if fairness is
used: IAF’s SPD/EOD metrics become 1.022×/1.024× higher. Although these numbers
indicate the same result, we find the claim to be weaker than proposed, as the superior
performance of the IAF attack is diminished by the use of a different stopping metric.
Finally it is important to notice the different behavior of the test accuracy and the aver‐
age fairness (Fig. 2) used as stopping criteria. While the latter has a relatively high vari‐
ance, the former is pretty constant, meaning that using fairness as the stopping metric
does not result in significant variations in the model’s accuracy. Contrarily, as empiri‐
cally proved by our experiments, it can be highly beneficial for the fairness measures.

5.2 Reflection: What was easy? What was difficult?
The new methods presented in the paper were described both intuitively and formally,
with a clear mathematical structure. The authors also provided figures to aid the in‐
tuition on how new attacks can affect decision boundaries, which allowed us to easily
understand the core novel ideas presented in the publication.
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However, it was not trivial to re‐implement the proposed methods, because many de‐
tails required for the implementation do not appear in the paper. The provided open‐
source implementationwas ultimately hard to follow due to its convoluted organization,
lack of documentation, poorly named functions/variables, and abundance of unused
code. Even setting up a working environment using the authors‐given dependencies
took longer than one would expect, prompting us to get help from the authors. Eventu‐
ally, the hope to aid future experiments motivated the decision to make the code com‐
patible with up‐to‐date dependencies. This was one of the biggest struggles because the
codebase heavily relies on packages that underwent major updates (e.g. TensorFlow
and CVXpy).
The authors also provided pre‐processed datasets. We spent a considerable amount of
time trying to replicate their exact pipeline through reverse‐engineering of the given
files. Additionally, after recognizing some imperfections in the code and inconsisten‐
cies with the paper, we verified all of the existing implementation details to make sure
that no further errors were made. This was a daunting task, given the complete lack of
documentation and intuitive variable use.

5.3 Communication with original authors
To reiterate, we have initially contacted the main author to aid us with the dependency
issues, who helped us with setting up a working environment. We then had additional
contacts regarding the dataset pre‐processing procedure. The author provided us with
some indications on the pipeline and pointed at some useful resources. Eventually, we
decided to gain a better understanding of the datasets through reverse‐engineering.

5.4 Conclusion
In this paper, we have presented a reproducibility study of ”Exacerbating Algorithmic
Bias through Fairness Attacks”, whereon we can draw some conclusions. Due to all the
mentioned issues and inconsistencies (collected in Appendix A), we find it not possi‐
ble to reproduce the original results from sole use of the paper, and difficult even in
possession of the provided codebase. Yet, we managed to obtain similar findings that
supported three out of the five main claims of the publication, albeit using partial re‐
implementations and numerous assumptions. Ascertaining the validity of such assump‐
tions is therefore important for future works. Moreover, further studies could extend
the classifier to work with multiple demographic groups and investigate the results us‐
ing different fairness metrics.
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Appendix

A Table of issues

Issue Our contribution

Running the code in the given environment results
in conflicts

Codemodernized andmade compatible with the lat‐
est version of every dependency

The code is generally complex and hard to under‐
stand due to insufficient comments and documen‐
tation as well as leftover code

Trimmed down the code to the essential, included
option to choose any of the availablemodels and the
corresponding parameters. Added comprehensive
documentation tomake the codemore interpretable

It appears that the pre‐processing pipeline of the
given datasets is not specified

Made the scriptsweused to pre‐process eachdataset
available as well as a detailed description

It appears that the position (i.e. index) of the sensi‐
tive feature for the COMPAS and Drug Consumption
datasets is not indicated, posing a challenge to re‐
produce the authors’ results

Moved the sensitive feature (i.e. gender) of every
dataset to the 0th index, which is taken as default
by the main function

The advantaged and disadvantaged groups for the
sensitive attribute (gender) has not be specified for
any attack

Assumed from the codebase that the authors did
this automatically and inferred it from the dataset
(the advantaged group is chosen as the group with
a higher ratio of datapoints with the positive label
(y=1), regardless of the actual class label it corre‐
sponds to) to be specified for all attacks

The code does not provide an option to run baseline
methods used in the paper, nor does it include the
hyperparameter λ

Included option to run baseline methods (Koh at‐
tack, Solans attack) and to include λ in IAF attack

The code implements a deterministic point sam‐
pling in the anchoring attacks (RAA, NRAA) due to
the same seed being reset in every attack iteration.
Thus the sampling yields the same point every iter‐
ation not properly applying the randomness

Fixed the issue so that randomness takes effect

The code makes use of a faulty EOD metric calcula‐
tion

Re‐implemented the EOD metric calculation to fix
the issue

The paper specifies the feasible set computation to
be done on the union of the clean dataset and the
initial poisoned points. The original code however
does this on the clean data only when using the run‐
ning commands given by the authors

Implemented the feasible set as specified in the pa‐
per

It appears that the model used for the given classifi‐
cation task is not specified

Assumed they used a Support VectorMachine (SVM)
trained with a smooth hinge loss and L2 regulariza‐
tion

The optimization algorithm is not indicated Assumed it to be Newtons Conjugate Gradient
(Newton‐CG) method, as suggested by the codebase

It is unclear how the best performing model was se‐
lected

Saved best performing model on the test set accord‐
ing to the chosen stopping metric

B Additional figures

Here we collect additional figures that support the results discussed above.

B.1 Effect of λ on the different metrics
Figure 3 shows the influence of λ on the different metrics when accuracy is used as the
stopping criteria. The experiment is repeated using average fairness as the stopping met‐
ric, and the results are collected in Figure 4. These results support Claim 1 of Section 2,
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effectively proving it.

B.2 Comparative study between the proposed attacks and the baselines
We report the results of the experiment designed to support Claims 2-5 of Section 2. We
perform each attack (IAF, NRAA, RAA, Koh, Solans) on each dataset (German, Compas,
Drug), fixingλ = 1 and gradually increasing ϵ from0.0 to 1.0, with steps of 0.1. We repeat
this procedure for each stoppingmetric (average fairness and accuracy). The results are
respectively collected in Figures 4 and 5.

B.3 Figures of the original paper
For the sake of self‐containedness of this reproducibility study, we report the two main
figures of the original paper. Figures 7 and 8 correspond – respectively – to Figures 2
and 3 of ”Exacerbating Algorithmic Bias through Fairness Attacks” [1].
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Figure 3. Results obtained for different attacks with regards to accuracy (test error) and fairness
(SPD and EOD) measures on German Credit, COMPAS, and Drug Consumption databases with
different ϵ values and with accuracy as the stopping method.

0.0 0.2 0.4 0.6 0.8 1.0
Epsilon ( )

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 E
rro

r

German Dataset
IAF
NRAA

RAA
Koh

Solans

0.0 0.2 0.4 0.6 0.8 1.0
Epsilon ( )

0.0

0.2

0.4

0.6

0.8

1.0

St
at

ist
ica

l P
ar

ity
 D

iff
er

en
ce

 (S
PD

)

German Dataset
IAF
NRAA

RAA
Koh

Solans

0.0 0.2 0.4 0.6 0.8 1.0
Epsilon ( )

0.0

0.2

0.4

0.6

0.8

1.0

Eq
ua

lit
y 

of
 O

pp
or

tu
ni

ty
 D

iff
er

en
ce

 (E
OD

)

German Dataset
IAF
NRAA

RAA
Koh

Solans

0.0 0.2 0.4 0.6 0.8 1.0
Epsilon ( )

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 E
rro

r

Compas Dataset
IAF
NRAA

RAA
Koh

Solans

0.0 0.2 0.4 0.6 0.8 1.0
Epsilon ( )

0.0

0.2

0.4

0.6

0.8

1.0

St
at

ist
ica

l P
ar

ity
 D

iff
er

en
ce

 (S
PD

)

Compas Dataset
IAF
NRAA

RAA
Koh

Solans

0.0 0.2 0.4 0.6 0.8 1.0
Epsilon ( )

0.0

0.2

0.4

0.6

0.8

1.0

Eq
ua

lit
y 

of
 O

pp
or

tu
ni

ty
 D

iff
er

en
ce

 (E
OD

)

Compas Dataset
IAF
NRAA

RAA
Koh

Solans

0.0 0.2 0.4 0.6 0.8 1.0
Epsilon ( )

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 E
rro

r

Drug Dataset
IAF
NRAA

RAA
Koh

Solans

0.0 0.2 0.4 0.6 0.8 1.0
Epsilon ( )

0.0

0.2

0.4

0.6

0.8

1.0

St
at

ist
ica

l P
ar

ity
 D

iff
er

en
ce

 (S
PD

)

Drug Dataset
IAF
NRAA

RAA
Koh

Solans

0.0 0.2 0.4 0.6 0.8 1.0
Epsilon ( )

0.0

0.2

0.4

0.6

0.8

1.0

Eq
ua

lit
y 

of
 O

pp
or

tu
ni

ty
 D

iff
er

en
ce

 (E
OD

)

Drug Dataset
IAF
NRAA

RAA
Koh

Solans

Stopping metric: fairness

Figure 4. Results obtained for different attacks with regards to accuracy (test error) and fairness
(SPD and EOD) measures on German Credit, COMPAS, and Drug Consumption databases with
different ϵ values and with average fairness as the stopping method.
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Stopping metric: accuracy

Figure 5. Accuracy (test error) and fairness (SPD and EOD) measures obtained after the IAF attack
the on German Credit, COMPAS, and Drug Consumption databases for different ϵ and increasing
λ values, with accuracy as the stopping method.
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Figure 6. Accuracy (test error) and fairness (SPD and EOD) measures obtained after the IAF attack
the on German Credit, COMPAS, and Drug Consumption databases for different ϵ and increasing
λ values, with average fairness as the stopping method.
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Figure 2: Results obtained for different attacks with regards to different fairness (SPD and EOD) and accuracy (test error)
measures on three different datasets (German Credit, COMPAS, and Drug Consumption) with different ✏ values.

effective since more poisoned points may be needed in order
to achieve the goal of infecting many points and shifting the
decision boundary. In our experiments we set ⌧ = 0.

Influence Attack (Koh et al.) This is a type of attack that
is targeted only toward affecting accuracy (Koh, Steinhardt,
and Liang 2018; Koh and Liang 2017). The reason we include
this type of attack along with attacks targeted toward fairness
is that it can help us understand how attacks targeting only
accuracy affect fairness measures. Attacks of this nature can
also serve as a good comparison because they show the effect
of attacks on accuracy; because this attack is specifically
designed to target accuracy, it can be a strong method to
compare against.

Poisoning Attack Against Algorithmic Fairness

(Solans et al.) In (Solans, Biggio, and Castillo 2020), the
authors propose a loss function that claims to target fairness
measures. We utilized the loss introduced in this paper as
depicted below in equation (3) in the influence attack from
(Koh, Steinhardt, and Liang 2018; Koh and Liang 2017) and
compared it to our proposed attacks. The goal of (Solans,
Biggio, and Castillo 2020) was to incorporate the loss in
(3) into an attack strategy that would maximize the loss;

thus, we incorporated this loss into the influence attack (Koh,
Steinhardt, and Liang 2018; Koh and Liang 2017), which we
found to be a strong attack strategy in maximizing the loss
and also the same attack strategy used in our influence attack
on fairness. In our experiments, we utilized the same � value
as proposed in (Solans, Biggio, and Castillo 2020) to balance
the class priors.

Ladv(✓̂;Dtest) =
pX

k=1

`(✓̂;xk, yk)

| {z }
disadvantaged

+�
mX

j=1

`(✓̂;xj , yj)

| {z }
advantaged

where � =
p

m
. (3)

Results

The results in Figure 2 demonstrate that the influence at-
tack (Koh et al.), although performing remarkably well in
attacking accuracy, does not attack fairness well. The results
also confirm that our influence attack on fairness method out-
performs (Solans et al.) (Solans, Biggio, and Castillo 2020)
in affecting fairness measures, and anchoring attack outper-
forms (Solans et al.) (Solans, Biggio, and Castillo 2020) in

Figure 7. Results of the original paper obtained for different attacks with regards to different fair‐
ness (SPD and EOD) and accuracy (test error)measures on three different datasets (German Credit,
COMPAS, and Drug Consumption) with different ϵ values. Retrieved from [1].

Figure 3: Results obtained for different lambda values for the IAF attack with regards to different fairness (SPD and EOD) and
accuracy (test error) measures on three different datasets (German Credit, COMPAS, and Drug Consumption) with different ✏.

affecting fairness measures in most of the cases. One can
observe that influence attack on fairness is the most effective
amongst all the attacks in attacking fairness measures.

Due to the nature of our influence attack on fairness loss
function and its controlling parameter on accuracy and fair-
ness, it can be utilized in scenarios where the adversary wants
to maliciously harm the system in terms of accuracy, or fair-
ness, or both. On the other hand, anchoring attacks can be
utilized in places where the adversary wants to subtly harm
accuracy with an effective harm on fairness. These types of
attacks can be used by, e.g., adversaries who would want to
gain profit off of biasing decisions for their benefit; thus, to
remain less detectable they do not harm accuracy. Although
it is possible that anchoring attack can harm accuracy to a
higher degree, as shown empirically in our results, it is less
likely that anchoring attack is able to degrade accuracy by a
large amount in practice for real world datasets.

In addition, in Figure 3 we demonstrate the effect of our
regularized loss in the influence attack on fairness. The re-
sults show that with the increase of lambda the attack affects
fairness measures more as expected from the loss; however,
for the lower lambda values the attack acts similar to the orig-

inal influence attack targeted towards accuracy. The results
also show that higher epsilon values highlight the behavior
of the loss more as expected such that for high epsilon value
of 1 the changes are more significant with modifications to
the lambda value in the loss function, while less subtle for
lower epsilon values such as 0.1.

Related Work

Here, we cover related work from both fair machine learning
as well as adversarial machine learning research.

Adversarial Machine Learning

Research in adversarial machine learning is mostly focused
on designing defenses and attacks against machine learning
models (Steinhardt, Koh, and Liang 2017; Chakraborty et al.
2018; Li et al. 2018). Ultimately, the goal is for machine
learning models to be robust toward malicious activities de-
signed by adversaries. Thus, it is important to consider both
sides of the spectrum in terms of designing the attacks and de-
fenses that can overcome the attacks. In adversarial machine
learning, different types of attacks, such as data poisoning
and evasion attacks, exist. In evasion attacks, the goal is to

Figure 8. Results of the original paper obtained for different λ values for the IAF attackwith regards
to different fairness (SPD and EOD) and accuracy (test error) measures on three different datasets
(German Credit, COMPAS, and Drug Consumption) with different ϵ. Retrieved from [1].

ReScience C 8.2 (#22) – Tafuro et al. 2022 17

https://rescience.github.io/

	Introduction
	Scope of reproducibility
	Methodology
	Model descriptions
	Datasets
	Metrics
	Experimental setup and hyperparameters
	Computational requirements

	Results
	Results reproducing original paper
	Effect of  on the different metrics
	Comparison between the proposed attacks and the baselines

	Results beyond the original paper: using fairness as the early stopping metric

	Discussion
	Discussion of the results
	Reflection: What was easy? What was difficult?
	Communication with original authors
	Conclusion

	Table of issues
	Additional figures
	Effect of  on the different metrics
	Comparative study between the proposed attacks and the baselines
	Figures of the original paper


