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1 Reproducibility Summary

Scope of Reproducibility
The goal of this paper is to assess the reproducibility of experiments and results in the
paper ’Exacerbating Algorithmic Bias through Fairness Attacks’ by [1], from which the
following claims are evaluated:

− Claim 1: The anchoring attacks reduce the fairness of anMLmodel trained on the
three data sets German Credit, COMPAS and Drug consumption.

− Claim 2: The influence attack reduces the fairness of an ML model trained on the
three data sets German Credit, COMPAS and Drug consumption.

Methodology
We used the code the authors published alongside their paper as a resource to under‐
stand the methodology of their experiments, which was only briefly touched upon in
the original paper. Our contribution is to extrapolate the original method using the pro‐
vided code and to use this to recreate the experiments, successfully obtaining similar
results as the paper and supporting their claims.

Results
Our results followed similar patterns as those of the authors, which backs up their
claims regarding the attacks. However, our results did slightly deviate from their re‐
sults, meaning the original paper has some reproducibility issues in the context of our
experimental setup.

What was easy and what was difficult
It was difficult to understand the experiments from the paper. In our specific setting it
was not possible to obtain similar results following only the methodology of their paper.
Recreating the data sets required several assumptions. Reorganizing the code was a
challenge in and of itself, owing to a lack of documentation within the original code.
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Communication with original authors
We had no direct contact with the authors. However, other research teams working on
reproducing the samework provided us with a digital environment file supplied to them
by the authors.
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2 Introduction

Recent years have seen a rising interest in algorithmic fairness, which has led to differ‐
ent measures and definitions for characterizing fairness ([2, 3, 4, 5, 6]). Areas in which
algorithmic fairness has become prevalent include predicting whether prisoners are
likely to re‐offend upon release ([7]) or whether an individual is likely to default on a
loan payment ([8]).
In ’Exacerbating Algorithmic Bias through Fairness Attacks’ by [1] it is claimed that ma‐
chine learning (ML) models are not only susceptible to various malicious adversarial
attacks targeting their accuracy, but also to those targeting the fairness of ML models.
Mehrabi argues that a model’s fairness is as important as its accuracy and research into
adversarial attacks specifically designed to attack fairness is thereforewarranted. To test
the robustness of fairness methods intended to increase the fairness of an ML model,
the researchers propose two novel data poising attacks on fairness, those being the an‐
choring attack and the influence attack.
The anchoring attack has two variations; random and non‐random. The core concept is
to place poisoned points near real data points of a data set, to skew the decision bound‐
ary of an ML model. These poisoned points are identical to the point they are placed
close to, but with the opposite target label. The influence attack on fairness (IAF) aims
to lower the fairness of an ML model by introducing fairness loss to the loss function.
Maximizing for this loss functionmaximizes the covariance between the distance to the
decision boundary and the sensitive features.
This paper investigates the reproducibility of the research of [1]. Additionally, their
claims regarding the two proposed fairness attacks the fairness of a targeted ML model
will be tested, analyzed, and evaluated.

3 Scope of reproducibility

Themain contribution of [1] is presenting twonovel fairness attacks, called (randomand
non‐random) anchoring attacks and influence attacks, and showing that these attacks
more negatively impact the fairness scores of MLmodels than adversarial attacks on ac‐
curacy. To reproduce to work of the the original paper, the code and altered versions of
three data sets, German Credit, Drug Consumption and COMPAS data sets accompany‐
ing the paper, which is publicly available on GitHub1, are utilized. Fairness is quantified
using the metrics statistical parity difference (SPD) ([2]) and equality of opportunity dif‐
ference (EOD) ([3]), following the approach of [1].
The following are the main claims made within the original paper by [1]:

− Claim 1: The anchoring attacks reduce the fairness of anMLmodel trained on the
three data sets German Credit, COMPAS and Drug consumption.

− Claim 2: The influence attack reduces the fairness of an ML model trained on the
three data sets German Credit, COMPAS and Drug consumption.

− Claim 3: Poisoning attacks designed to attack the accuracy of anMLmodel are not
suitable as a fairness attack.

Claim 3 will not be considered in this paper, as the original authors mention it only
briefly. They only evaluated whether influence attacks on accuracy had any effect on
a model’s fairness, without evaluating any other form of accuracy attack. In order to
obtain results that can reject or support this claim, one would have to consider other
adversarial attacks on accuracy, which is beyond the scope of this paper.
To demonstrate the effectiveness of their fairness attacks, the authors compare it to a
fairness attack inspired by [9]. However, to thoroughly evaluate the effectiveness of the

1https://github.com/Ninarehm/attack
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novel attacks, one would have to compare against multiple other concurrent works on
adversarial attacks on fairness. Since we were only allocated four weeks for this project,
this is also beyond the scope of this paper.
The focus of this paper will thus solely be on reproducing the novel attacks introduced
by [1] and evaluating claims 1 and 2.

4 Methodology

The authors’ code, provided alongside the paper, includes a clear entry point as well
as the data sets used for the discussed experiments. However, there were several is‐
sues with reproducing the experiments, such as a reliance on outdated Python libraries
of which the new versions are not backwards‐compatible. This is likely a result of the
code being a combination of the code of previous papers that [1] based their research
on, which resulted in a lack of documentation. Furthermore, information about data
pre‐processing is missing from the original paper, causing reproducibility issues. Only
the attributes and the classification goal for each data set were clearly reported. Addi‐
tionally, the number of features we discovered in the data sets provided by the authors
did not match the number of features described in their paper. These issues required
us to make multiple assumptions as we aimed to recreate these modified data sets from
the original raw versions. The exact nature of these assumptions is further detailed in
section 4.2. A list of all made assumptions is found in the Appendix. As a result of this
obscurity regarding both the originalmethod and the number of assumptions necessary
to reconstruct the method, we decided not to re‐implement the code in its entirety, in‐
stead making adjustments and additions to the original code to reproduce the original
implementation. This is discussed in the next section.
To increase the scalability and maintainability of the code base, the intent was to em‐
ploy the PyTorch framework instead of the TensorFlow framework used by the origi‐
nal authors. However, there were no straighforward substitutions for some TensorFlow
functions, such as tf.truncated_normal_initializer and tf.variable. This would necessi‐
tate a change to some of the code’s fundamental structures. As our approach is centered
aroundutilizing the code provided by the authors, which, due to its complexity, required
a significant amount of time to understand, therewas a limited amount of time available
for making such substantial modifications to the code.

4.1 Model descriptions
The model that the authors used to minimize the classification loss was not specified
in the original paper. The authors’ code, however, revealed that SciPy’s fmin optimizer2
was utilized as a minimizer for the experiments, which minimizes the loss by applying
the Nelder‐Mead algorithm ([10]).
A data poisoning attack (DPA) has the goal of creating poisoned data set Dp using the
original clean data setDc, such that the defender’s test loss function L(θ̂;Dtest) is maxi‐
mized. To do so, iterative gradient steps are taken on each of the features of the poisoned
data points Dp. The poisoned points are then projected to the feasible set Fβ to avoid
being detected by the defender’s anomaly detector. According to the paper, as well as
the algorithms in Figure 11, the feasible set is obtained by applying anomaly detector B;
Fb ← B(Dc∪Dp). However, the anomaly detector B is not described in detail. Observing
the code led to the assumption that the feasible set is determined by simply projecting
the data onto a slab in close proximity to the target, shielding the attacker from anomaly
detection.
This is not the first time that such gradient‐oriented poisoning of data was implemented,
as it was first explored using SVMs ([11]), and in the following years extended to linear

2https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.fmin.html
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Figure 1. The shape of the data points represents the sensitive attribute, and the color their labels.
The decision boundary is represented by the black line.

and logistic regression ([12]), topic modeling ([13]), collaborative filtering ([14]), and neu‐
ral networks ([15, 16, 17]). [15] called this the projected gradient ascent method since it
calculates the gradient during training, but instead of changing themodel parameters to
decrease the loss, it poisons the data to increase the loss. This attack on accuracy can be
defined as the following optimization problem, where ϵ is a hyperparameter discussed
in section 4.4.

max
Dp

Ladv

(
θ̂;Dtest

)
s.t. |Dp| = ϵ |Dc| with Dp ⊆ Fβ

where θ̂ = argminL (θ;Dc ∪ Dp) .

(1)

Influence Attack on Fairness (IAF) is a DPA inspired by the influence attack on accu‐
racy ([15]) and the work of [18], which introduced a loss function for fair classification
involving a fairness constraint, called decision boundary covariance. Decision bound‐
ary covariance is the covariance between the sensitive feature z, which is gender in this
case, and the signed distance from the feature vector to the decision boundary dθ(x)).

Cov(z, dθ(x)) ≈
1

N

N∑
i=1

(zi − z)dθ(xi) (2)

If class labels in the training set are correlatedwith one ormore sensitive attributes ziNi=1

(e.g. gender, race), the percentage of samples with a certain sensitive attribute having
dθ(xi) ≥ 0 may differ drastically from the percentage of users without this sensitive at‐
tribute value having dθ(xi) ≥ 0. The intuition behind decision boundary covariance is
that the sensitive attributes should not determine which side of the decision boundary a
point is on, and thus which label it receives. The left side of Figure 1 shows an instance
where the sensitive attribute (shape) and assigned label (color) have zero covariance, in‐
dicating that the sensitive attribute has no influence on classification. On the right, the
covariance is either extremely positive or extremely negative, indicating that the sensi‐
tive attribute does correlate with the classification result.
The goal of the adversary is to maximize the covariance between z and dθ(xi), which
will decrease the fairness of the classification. It is worth noting that this covariance
can happen even if sensitive attributes aren’t utilized to construct the decision boundary,
because sensitive attributes can be correlated with one or more of the other features.
IAF is a variant of the influence attack by [19] and [15] that includes demographic in‐
formation. This demographic information, specifically gender, is used to decide which
group is advantaged and disadvantaged, calledDa andDd respectively, during sampling.
Similar to the convention in [19], one positive and one negative instance are sampled uni‐
formly at random, after which |Dc| instances are created to act as poisoned points Dp.
The poisoneddata points are inversely proportional to the class balance, such that (|D+

c |)
positive poisoned data points are sampled from Da and (|D+

c |) negative poisoned data
points are sampled from Dd, in which |D+

c | and |D−
c | represent the number of positive

and negative points in the clean data respectively.

ReScience C 8.2 (#19) – Kirca et al. 2022 5

https://rescience.github.io/


[¬Re] Reproducibility Study of ’Exacerbating Algorithmic Bias through Fairness Attacks’

Figure 2. The left figure show a data set before attack and the right figure is an anchoring attack
representation displaying how poisoned points are placed in close vicinity (depicted by the large
solid circle) to the target points ([1]).

The loss function of IAF, combines ℓfairness with the loss function of the influence at‐
tack, ℓacc as defined in Equation 3, with hyperparameter λ controlling the impact of the
fairness loss on the adversarial loss.

Ladv(θ;Dtest) = ℓacc + λℓfairness where lfairness =
1

N

N∑
i=1

(zi − z)dθ(xi) (3)

Algorithm 1, as shown in Figure 11, details the implementation of this poisoning attack,
using the aforementioned parameters.
Anchoring Attack is another DPA and its objective is to target some points and cloud
their labels with poisoned points with opposing labels, resulting in a skewed decision
boundary. In contrast to IAF, the loss of the model is not used, meaning this attack can
be used in combination with any model and loss function.
A target point xtarget is sampled in one of twoways, as demonstrated in Figure 11. In the
random anchoring attack (RAA), these anchor points are chosen uniformly at random
for each demographic group, while in the non‐random instance (NRAA) they are picked
based on their popularity, which is defined as the amount of similar data points in their
vicinity. Next, poisoned points are created and are placed in close vicinity of xtarget,
resulting in them having the same demographic as xtarget, but the opposite label. This
will skew the decision boundary, causing more advantaged points to have a predictive
outcome of +1 and more disadvantaged points to have a predictive outcome of ‐1, as
depicted in Figure 2.

4.2 Data sets
The data sets listed below were used in both the original paper’s experiment and our
own. The data is split 80‐20 between the training and test set and and gender has been
chosen as the sensitive attribute for each data set.
German Credit data set3 This data set is from the UCI ML repository ([20]). It contains
credit profiles with 20 attributes for 1000 individuals. The classification goal is to predict
whether an individual has a good or bad credit score. The pre‐processed German data
provided with the paper has the same number of samples, but 58 attributes instead of
20. Based on data exploration we made the assumption that this is the result of one‐hot‐
encoding of categorical features.
COMPAS data set4 This data set is provided by ProPublica ([21]). It consists of profiles
with 52 attributes such as criminal history, jail time and demographics about 7214 defen‐
dants from Broward County. In this case the classification goal is to predict whether an
individual will re‐offend within two years after being released5. The original paper only

3https://archive.ics.uci.edu/ml/datasets/statlog+(german+credit+data)
4https://www.propublica.org/datastore/dataset/compas‐recidivism‐risk‐score‐data‐and‐analysis
5Therefore, COMPAS‐scores‐two‐years.csv is the relevant data set
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looked at the eight attributes specified in Table 1. The pre‐processed COMPAS data pro‐
vided with the paper has the same number of samples as the original but 16 attributes,
again due to one‐hot‐encoding.
Drug Consumption data set6 This data set is also from the UCI ML repository ([20]). It
contains profiles of 1885 individuals, consisting of 32 attributes. The classification goal
is to predict whether or not an individual has consumed cocaine at some point in their
lifetime. Only the 13 attributes specified in Table 1 are used in the original experiments
and our own. The pre‐processed drug data provided with the code had 1885 samples
and 13 attributes, like the original.

COMPAS Drug
sex age_cat ID Age Gender SS

juv_fel_count juv_misd_count Education Country Ethnicity
priors_count c_charge_degree Nscore Escore Oscore

race juv_other_count Ascore Cscore Impulsive

Table 1. The features used for the COMPAS and Drug data set

The authors provide pre‐processed versions of the aforementioned data sets without a
description of the pre‐processing methodology. As such, we made the decision to pre‐
process the raw data we obtained from the original sources and will further refer to
these as the recreated data sets.
Our pre‐processing procedure is based on data exploration of the data sets provided
by the authors. To run the code, the sensitive feature index must be specified. Data
exploration revealed that the sensitive feature indexes are 36, 4 and 12 respectively for
German, COMPAS and Drug. For the sake of simplicity, the sensitive feature is always
moved to index 0 in the recreated data sets. Furthermore, males were represented with
0 and females with 1, as this is how they were labeled in the code. After finding out that
the number of attributes in the recreated data set did notmatch the number of attributes
of the authors’ data, it was discovered that one‐hot encoding was used for categorical
features, which could explain the reason these data sets contained more attributes than
indicated in their paper. Thereafter the data was standardized, with a mean of 0 and a
standard deviation of 1. To seewhether the attribute valuesmatched the attribute values
of the authors’ data, all the attributes were compared and popped once they matched.
This procedure revealed the index of the sensitive features as well. Finally, the data was
shuffled as this is common practice.

4.3 Extension
Our contribution to the existing work is making the original paper more reproducible,
by documenting how we reproduced the findings for their novel fairness attacks. This
is done by providing the pre‐processing procedure of the data7, which was discussed
in section 4.2. Furthermore, we organized the code by removing unnecessary code and
adding somedocumentation. This paper also covers all the assumptionsmade and infor‐
mation obtained from the code that was used to reproduce the results, shown in section
5. This is accumulated into a more comprehensive model description in section 4.1 and
experimental setup in section 4.4.

4.4 Experimental setup and Computational requirements
The hyperparameters for this experiment are ϵ and λ. ϵ determines the size of the poi‐
soned data set as a fraction of the clean data and λ controls the trade‐off between accu‐

6https://archive.ics.uci.edu/ml/datasets/Drug+consumption+%28quantified%29
7https://github.com/DCHamerslag/FACT
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racy loss and fairness loss, in the loss function of IAF; Ladv = ℓacc + λℓfairness.
Statistical Parity Difference captures the difference in predictive outcome between dif‐
ferent (advantaged and disadvantaged) demographic groups. It is defined as:

SPD = |p(Ŷ = +1|x ∈ Da)− p(Ŷ = +1|x ∈ Dd)| (4)

Equality of Opportunity Difference captures the difference in the true positive rate be‐
tween different (advantaged and disadvantaged) demographic groups. It is defined as:

EOD = |p(Ŷ = +1|x ∈ Da, Y = +1)− p(Ŷ = +1|x ∈ Dd, Y = +1)| (5)

As in the original paper, we evaluate the attacks by plotting accuracy and the aforemen‐
tioned SPD and EOD fairness criteria. The model becomes more unfair as SPD and EOD
get closer to 1. Despite the fact that the authors do not indicate the seed used in their
experiment or if they averaged numerous seeds, the code revealed a default seed for
each attack setup. In our experiment, three runs were executed for each type of fair‐
ness attack and data set. The used seeds for each attack and data set combination were
the default seed, the default seed plus 1 and the default seed plus 2. Each run examined
ϵ values ranging from 0.0 to 1.0, with 0.1 increments. λ was set to 1.0 for all runs with
IAF, like in the original work. Because the original results are only presented as graphs,
instead of numbers, we examine the difference between the original and reproduced
plots to assess if the reproduced results are similar to the results in the original paper.
It was not specified whether the average accuracy, max accuracy or the last iteration’s
accuracy was taken over multiple runs. We plotted the results for each instance ‐ an
example is given in Figure 6 in the Appendix ‐ and observed that the last of the metrics,
accuracy, SPD and EOD is most similar to the results in the original paper. Therefore,
metrics of the last iteration are used in Section 5.
Furthermore, the code is not optimised to utilize a GPU, so the experiments are executed
on a MacBook Pro (2017) with a 3.3 GHz Dual‐Core Intel Core i5 processor and 16 GB
memory. The training time was about five minutes for IFA with 30 to 200 iterations, less
than oneminute for RAA with 29 iterations and less than twominutes for NRAAwith 29
iterations. However, the training time for NRAA on the COMPAS data set was about 90
minutes. See Table 3 in the Appendix for further specifics regarding run times.

5 Results

5.1 Results reproducing the original paper
The results in Figure 3 display the last iteration’s accuracy, SPD and EOD, obtained using
the data providedwith the default seed. The influence attack andboth anchoring attacks
are presented in the same plot. The reproduced results are similar to those presented by
the authors, see Figure 5 in the Appendix. Because the SPD and EOD scores are relatively
high for IAF, RAA and NRAA, the results support both claims 1 and 2 from Section 3.

5.2 Results beyond original paper
The results in Figure 4 display the last iteration’s accuracy, SPD and EOD of the recreated
data sets, with the default seed. Although the results differ from the results obtained
when using the data provided by the authors, the SPD and EOD scores are relatively high
for IAF, RAA andNRAA and therefore, these results also support claim 1 and 2 in section
3. Furthermore, the results for the last iteration’s accuracy, SPD and EOD with different
seeds for both the authors’ data as well as the recreated data are shown in figures 7, 8, 9
and 10.
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Figure 3. Results obtained for the novel fairness attacks using the default seed and data sets pro‐
vided by [1]

Figure 4. Results obtained for the novel fairness attacks using the default seed and the recreated
data sets

6 Discussion

Upon visual inspection, the results obtained using the authors’ data sets, seen in Figure
3, are similar to those presented in their paper, with the graphs following similar pat‐
terns as those in the original paper. Small differencesmay be caused by our assumption
that the default seed was used and not an average over various seeds. The results ob‐
tained from the recreated data sets, seen in Figure 4, do not appear very similar to those
in the original paper. This could be the result of any of the assumptions that needed
to be made to recreate the authors’ altered data sets, such as the assumption that the
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data had been shuffled. If any of our assumptions are incorrect, this could well explain
the differences. They do, however, follow a similar pattern. It can thus be stated that
claims 1 and 2 of the authors are supported by our experimental results.
Future work could be to test the robustness of fairnessmethods using the novel fairness
attacks. This was beyond the scope of the work done in [1], but would be a sensible next
step to take, as they were designed for this purpose. Another way in which this work
can be expanded upon is by thoroughly comparing these results to those of attacks on
accuracy to test claim 3 as listed in Section 3. Also, these results can be compared with
the results of other fairness attacks to better contextualize the performances of the novel
attacks. Additionally, it can be of interest to test the fairness performance of the novel
attacks on different data sets with sensitive attributes other than gender to see how well
the attacks generalize.

6.1 What was easy and what was difficult
Once the digital environment was received from the authors, we were able to run the
code with the provided data sets and obtain results similar to those given in the original
paper, see Figure 5.1.
However, the lack of documentation in the method regarding the type of model used,
the data pre‐processing procedure, a lack of details regarding SVM and hinge loss make
the original paper unnecessarily time‐consuming to reproduce. A significant amount of
the information about the implementation, needed to reproduce the experiments from
scratch, was provided by the code they released and their reference materials, such as
[19] and [18].

6.2 Communication with original authors
There was no direct communication between us and the original authors. However,
we communicated with other research teams working on reproducing the same work
and they provided us with a digital environment file supplied by the authors that is not
publicly available. Its content is listed in the Appendix.

7 Conclusion

It can be concluded that the main claims of [1] regarding the effectiveness of their fair‐
ness attacks are correct. However, fully reproducing their results proved too difficult
with our setup. The main obstacles we encountered were a lack of documentation re‐
garding their data pre‐processing and their used model. Future work would do well to
focus on several areas, such as comparisons with other attacks or experimentation with
different data sets.
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Appendix

More details
List of used dependencies

• Python 3.6

• PIP 20.3.1

• setuptools 19.2 (in most of the cases you have to downgrade)

• Tensorflow 1.12.3

• scikit‐learn 0.23.1

• tensorboard 1.12.2

• cvxpy 0.4.11 [cvxpy 1.0+ is not backwards compatible, therefore the downgrade of
setuptools]

• CVXcanon 0.1.1

• scs 2.1.2

• scipy 1.1.0

• numpy 1.16.2

• pandas 1.1.4

• Matplotlib 3.3.3

• tabulate 0.8.9

• seaborn 0.11.0

• tqdm 4.62.3

• IPython 7.16.1

• pillow 8.0.1

List of Assumptions Made

• The seed used by the authors is the default seed observed in the code.

• Data was shuffled before use

• Categorical features were one‐hot encoded except the sensitive feature.

• Female is represented with the value 1 and male with the value 0.

• Data was standardized with a mean of 0 and a standard deviation of 1

• Results were based on the test error, SPD and EOD of the last iteration.

• The feasible set is assumed to be decided by simply projecting the data to a sphere
or slab within the vicinity of the target
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Abbreviation Meaning Page
ML Machine learning 3
SPD Statistical parity difference 3
EOD Equality of oppurtunity difference 3
IAF Influence attack on fairness 3
DPA Data poisoning attack 4
RAA Random anchoring attack 4
NRAA Non‐random anchoring attack 4

Table 2. Summary of Abbreviations

Figure 5. Results obtained for different attacks ([1]
)

IAF RAA NRAA
Time (s) # iters Time (s) # iters Time (s) # iters

COMPAS 88.0 77.0 33.0 28.0 5411.0 28.0
Drug consumption 50.0 67.0 20.0 28.0 170.0 28.0
German 203.0 143.0 30.0 28.0 67.0 28.0

Table 3. Summary of time and iterations needed to run each data set
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Figure 6. Results obtained for different attacks with different metrics: mean, max and last.

Figure 7. Results obtained for different attacks using seed 1 and data sets provided by [1]
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Figure 8. Results obtained for different attacks using seed 2 and data sets provided by [1]

Figure 9. Results obtained for the novel fairness attacks using seed 1 and the recreated data sets
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Figure 10. Results obtained for the novel fairness attacks using seed 2 and the recreated data sets

Figure 11. Left: IAF algorithm. Right: Anchoring attack algorithm, as described in [1]
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