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Reproducibility Summary

We reproduced the results of the paper ”Domain GeneralizationUsing CausalMatching.”
The standard supervised learning framework considers that the labels assigned to in‐
stances seen in the testing process must have appeared during the training phase. How‐
ever, real‐world designs may violate these considerations. For instance, in e‐commerce,
new products are released every day with different labels, and the labels may not be
part of the model training. A generalized framework should be capable of detecting un‐
seen labels. If a framework fails to detect unseen labels, it may face challenges in open
domains and thus may not be generalizable.
The objective of domain generalization is to learn representations independent of the
domain. Previous works model this objective by learning representations by condition‐
ing on the class label. The authors provide counterexamples to show that the objective
is not sufficient and propose a new objective to learn representations of inputs across
domains such that they have the same representations if derived from the same object.

Methodology
The open‐source code of the paper has been used. The authors provided detailed in‐
structions to reproduce the results on their GitHub page. We reproduced almost every
table in the main text and a few of them from the appendix. In case of a mismatch of
the results, we also investigated the cause and proposed possible explanations for such
behavior. For the extensions, we wrote extra functions to check the paper’s claim on
other open‐source standard datasets. We mainly used the infrastructure offered by the
publicly available GPUs offered by Google Colab and GPU‐assisted desktop computers
to train the models.

Results
Most of our results closelymatch the reported results in the original paper for theRotated‐
MNIST [1], Fashion‐MNIST [2], PACS [3, 4], and Chest‐Xray [5] datasets. However, in
some cases, as described later, we obtained better results quantitatively than the ones
reported in the paper. By investigating the root cause of such mismatches, we provide
a possible reason to avoid such a gap. We performed additional experiments by making
necessary modifications for the Rotated‐MNIST and Rotated Fashion‐MNIST dataset. In
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[Re] Domain Generalization using Causal Matching

general, our results still support the main claim of the original paper, even though the
results differ for some of the training/testing instances.

What was easy
The authorized GitHub page of the paper has the open‐source code, which was bene‐
ficial as it was well organized into multiple files. Thus, it was easy to follow. The ex‐
periments described in the paper were done on widely‐used benchmark open‐source
datasets. Therefore, implementing each experiment was relatively easy to do. Likewise,
since most of the parameters were reported in the scripts, we did not needmuch tuning
in most experimentations.

What was difficult
Though running each experiment is relatively simple, the numerosity of experiments
was a demanding task. In particular, each experiment in the actual setting requires
training a network for a significant number of iterations. Having restricted access to
computational resources and time, we sometimes changed the settings, sacrificing gran‐
ularity. Nevertheless, these changes did not impact the interpretability of the final re‐
sults.

Communication with original authors
We emailed the authors and received prompt responses to our questions regarding the
provided Jupyter reproduction notebooks. Some tables had multiple runs for the same
technique, but it was unclear how to execute the alternative runs.

1 Introduction

Learning is a dynamic process in an open environment where some new labels may not
belong to any training set; therefore, recognizing these novel labels during classifica‐
tion presents a vital problem. The purpose of domain generalization is to learn a single
classifier with training data sampled from M domains that generalize well to data from
unseen domains. For example, a prototype trained on certain attributes of one region
may be deployed to another, or an image classifier may be deployed on slightly rotated
images. This proposition assumes that stable (causal) features lead to an optimal classi‐
fier uniform to the domains.
The paper illustrates that the class‐conditional domain invariant objective for represen‐
tations is not always sufficient. They provide simple counterexamples to validate the
class‐conditional domain invariance deficit theoretically and empirically. Differing dis‐
tributions of stable causal features within the same class label are commonly observed
in real‐world datasets, e.g., in digit recognition, the stable feature like shape may differ
based on people’s handwriting, or medical images may have variations due to differing
body characteristics in the sample. The paper proposes the importance of assuming
within‐class variation in stable features.
This report repeats the original paper’s experiments and compares them with the re‐
ported results. Also, we expand the original paper results by investigating the effect of
data augmentation on Rotated‐MNIST and Rotated Fashion‐MNIST datasets under vari‐
ous settings. We report and discuss our results in later sections.
Domain generalization is a phenomenon that can generalize to unseen data distribu‐
tions after training on more than one data distribution. For example, a model trained
on one domain may be deployed to another, i.e., domain adaptability, or an image clas‐
sifier may be deployed on slightly rotated images. The goal is to ”learn representations
independent of the domain after conditioning on the class label” [6].
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The paper analyzes the observation through a structural causal model (SCM) and dis‐
cusses the importance of modeling within‐class variations for generalization. The au‐
thors [6] propose newmethods RandMatch, MatchDG, andMDGHybrid to increase per‐
formance over the previous state‐of‐the‐art methods for various ML problems. In ad‐
dition to reproducing the original paper’s results, we propose different state‐of‐the‐art
datasets where the analogy can be implemented and evaluate the efficacy of the propo‐
sition.

2 Scope of reproducibility

The paper broadly dives into the issue of spurious correlation, where some predictive
attributes in the training time might not be predictive at the test time. For example, in
Figure 1, we can observe the two different domains in which a cow could appear and/or
be trained. If a learning algorithm does not use domain‐independent attributes and has
most if not all training images of an object in one domain, it may fail when attempting
to identify it in other domains.

Figure 1. Cow in different domains can’t be correctly identified due to lack of causal feature usage
within the learning model [7]

Hence, there is a need to design ways to prevent machine learning models from retain‐
ing these spurious correlations, confining their generalization capability. Since amodel
cannot generalize to any arbitrary unseen domains, therefore an assumption has been
made by the authors that we have an invariant predictor based on the stable causal fea‐
tures across domains.
Prior works like [8] propose an additional domain classifier trained from the representa‐
tions learned by the feature extractor module. The network is then trained to minimize
the label prediction loss and maximize the domain classification loss hence learning
domain invariant representations. However, it has been seen that the domain invariant
representations fail when the domain and the label are correlated.
We investigate the subsequent claims from the original paper:

• Claim 1: The paper proposes an object invariant condition to estimate stable fea‐
tures to overcome the loopholes of the prior works.

• Claim 2: The paper proposes a novel 2‐phase iterative algorithm to approximate
the object‐based matches.
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3 Methodology

We utilize the code made available by the original authors for our study. Our major
emphasis was to verify that the providedmodels and descriptions stay true to the claims
made in the paper. We further retrain their models on the provided dataset of Rotated‐
MNIST and Rotated Fashion‐MNIST.

3.1 Method descriptions
The problem statement that the paper is trying to solve is domain generalization, where
we have access to data from numerous domains and distributions. The objective is to
generalize to unseen domains during the testing phase. In order to overcome the flaws
of the priorworks, the authors in thepaper further analyzewhether the class conditional
domain invariance objective is sufficient or not.

Figure 2. Slab Dataset (Slab (y‐axis) is the stable feature) [6]

An easy counterexample has been shown in Figure 2, which illustrates a binary predic‐
tion task with two class labels on the slab dataset [9]. It has two types of features where
the first kind of feature, X1, leads to a linear classifier separating the labels from the slab.
The second feature, X2, leads to a more complex piecewise linear classifier splitting the
labels. The slab feature also has a little noise represented by the low density of the oppo‐
site label. Overall, all the odd numbers slab correspond to the red colored points, and
all the even numbers slab correspond to the blue colored points. The noise in the slab
feature does not alter across domains. On the other hand, the linear feature X1 has very
low noise in the source domain, but it is completely noisy in the target domain. Due to
the simplicity of the linear feature, a model might still learn the spurious linear feature
over the stable slab feature.
One of the proposed methods is perfmatch. The method of perfmatch involves mini‐
mizing the loss L across m‐dimensions of the mapping function h of the learnt repre‐
sentation of X (denoted as Φ(X)) to the output Y . The function also minimizes the
distance between the learnt representations Φ() objects of the same class j, k that exist
in different domains d, d′ where the learnt matching Ω() of the same class objects j, k
Ω(j, k) is 1 for the different domains d ̸= d′.

fperfmatch = argminh,Φ

m∑
d=1

Ld(h(Φ(X)), Y ) + λ ·
∑

Ω(j,k);d ̸=d′

dist((Φ(x
(d)
j )), (Φ(x

(d′)
k )))

The causal diagram in Figure 3 details the backdoor pass from an object to a domain,
with the objects and features separated into two categories, domain‐dependent, and
domain‐independent. From the equation, the objective is to learn the correct Y for a
given X, and this is achieved by using the domain‐independent featuresXc to generalize
across domains.
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Figure 3. Causal graph proposed by the original authors [6] depicting the relation between Ytrue,
the causal features which are domain independentXc and Y

3.2 Datasets
Thepaper assessed thematching‐basedmethods onRotated‐MNIST andFashion‐MNIST,
PACS, and Chest X‐ray datasets.

Figure 4. Datasets used: PACS [3, 4], CheXpert [5] MNIST [1] Fashion‐MNIST[2]

Rotated-MNIST and Fashion-MNIST: It contain rotations of grayscaleMNISThandwritten
digits and fashion images from 0◦ to 90◦ with an interval of 15◦ [10]. Here, each angle
represents a domain, and the task is to predict the class label. Following CSD, the paper
reports the accuracy of 0◦ and 90◦ together as the test domain and the rest as the train
domains.
PACS dataset: It contains a total of 9991 images from four domains: Photos (P), Art paint‐
ing (A), Cartoon (C), and Sketch (S). The task is to classify objects over 7 classes. Inspired
by [3, 4], the paper trains 4 models with each domain as the target using Resnet‐18 [11],
Resnet‐50 [11], and Alexnet [12] network.
Chest X-ray: The paper introduces a harder real‐world dataset based on Chest X‐ray im‐
ages from three different sources: NIH [13], ChexPert [14], and RSNA [15]. The objec‐
tive is to identify patients with pneumonia. The original authors inserted a spurious
correlation in the test domain by vertically translating class 0 in the training domains
downwards, withholding the transformation from the test domain.

3.3 Hyperparameters
We used hyperparameters stated in the original paper for most of our experiments. In
cases where we deviated from the reported values, mostly due to computational re‐
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sources and time limitations, we reported them in the discussion section. If a hyperpa‐
rameter is not reported in the original paper, we either communicated with the authors
to ask about the hyperparameters or try out different values and report the result for all
of them.

3.4 Experimental setup and code
We reran the code of the original authors on both public cloud infrastructures, such as
Google Colab, and private GPUs that were available to us. We closely follow the exper‐
imental setup in the original paper for our experiments. Our scaling extension can be
easily integrated with the source code and optimized similarly. Our implementations
for all the experiments in this work are available in the supplementary material and
further support the reproducible research.

3.5 Computational requirements
We reran the code of the original authors on both public cloud infrastructures, such as
Google Colab, and private GPUs that were available to us. Google Colab provides a single
12GBNVIDIA Tesla K80 GPU that can continuously be used for 12 hours. We also ran the
code locally on two different machines. The first machine: The GPU in question is an
Nvidia GeForce RTX 3080 10Gb GDDR6X. The CPU in thismachine is an AMDRyzen(TM)
7 5800 (8‐Core, 36MB Total Cache, Max Boost Clock of 4.6GHz). The memory used was
32.0 GB DDR4 3466MHz, XMP. The second machine: i9‐9900k, 1080Ti with 128 Gb DDR4
2666Mhz. We followed the setup in the original paper and implemented the network
with the same number of iterations. Evaluating all the results with the saved models
takes a good amount of time. It nearly took two days for some of the tables to generate
the results. In conclusion, the code is not fast, but it can be run on a local machine. A
GPU is heavily recommended because the code is slower without access to GPU.

4 Results

To reproduce the authors’ experiments, we achieve approximately similar results to the
original paper. We describe the results in the following sections:

Result 1 — Table 1 presents an empirical analysis of various algorithms on the slab dataset
to understand which invariance criteria can help to capture the stable (causal) features.
The algorithms are evaluated based on the domain invariance and class conditional do‐
main invariance criteria and experiment with the perfect match’s new approach, which
aims for domain invariance conditioned on the stable features. The results show that
the perfect match approach does better than the domain invariance and class condi‐
tional domain invariance objective in learning stable features, emphasizing the need to
choose the correct invariant criteria. The original authors made the observation that in‐
variant representation learning by unconditional (DANN [8], MMD [16], CORAL [17]) and
conditional distributionmatching (CDANN [18], C‐MMD [16], C‐CORAL [17]), andmatch‐
ing same‐class inputs (Random‐Match [19]) have poor performance for the Target. We
also observed this from our repeated experiment.

Result 2 — Table 2 shows the replicated results for Rotated‐MNIST & Rotated Fashion‐
MNIST for test domains 0◦ & 90◦. MatchDG outperforms the comparison baselines for
most of source distribution(CSD [20], MASF [21], IRM [22]). Source domains having the
following angles (30, 45, 60) for Rotated Fashion‐MNIST, MatchDG achieves an accuracy
of 45.0%, and the next best method, CSD, achieves 38.9%.
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Table 1. Reproduced slab data‐set results (Table 1 from original paper)

Method Source 1 Source 2 Target
ERM 100 (0.00) 95.8 (0.27) 64.6 (4.50)
DANN 99.9 (0.07) 95.1 (0.19) 57.7 (1.69)
MMD 99.9 (0.01) 96.6 (0.25) 70.3 (4.65)
CORAL 99.9 (0.01) 96.6 (0.25) 70.3 (4.53)
RandMatch 100 (0.0) 96.0 (0.30) 66.9 (2.64)
C‐DANN 99.9 (0.07) 95.1 (0.19) 57.8 (1.69)
C‐MMD 99.9 (0.01) 96.6 (0.25) 66.8 (5.93)
C‐CORAL 99.9 (0.01) 96.6 (0.25) 70.2 (4.59)
PerfMatch 99.8 (0.07) 98.2 (0.21) 87.9 (4.26)

Table 2. Rotated‐MNIST and Rotated Fashion‐MNIST to show various angles trained on vs accuracy
achieved (Table 2 from original paper)

Dataset Source ERM MASF CSD IRM Rand‐
Match MatchDg PerfMatch

(Oracle)

Rotated
MNIST

15,30,
45,60,
75

92.0 (0.10) 93.2 (0.20) 94.9 (0.062) 92.5 (0.02) 92.8 (0.28) 94.5 (0.12) 96.5 (0.51)

30,45,
60 75.7 (0.19) 69.4 (1.32) 80.4 (0.27) 76.5 (1.73) 79.6 (1.36) 84.1 (0.43) 91.7 (0.50)

30,45 60.0 (1.84) 60.8 (1.53) 65.3 (0.87) 60.2 (2.46) 66.4 (1.46) 72.0 (2.40) 80.4 (1.71)

Rotated
Fashion
MNIST

15,30,
45,60,
75

78.1 (0.29) 72.4 (2.90) 81.4 (0.35) 77.9 (0.72) 77.0 (0.81) 82.1 (0.23) 81.3 (0.22)

30,45,
60 37.3 (2.18) 29.7 (1.73) 38.9 (1.46) 35.8 (1.38) 35.7 (2.22) 45.0 (1.57) 48.6 (3.90)

30,45 32.2 (0.47) 22.8 (1.26) 29.2 (0.54) 32.1 (1.20) 31.1 (0.53) 35.0 (2.16) 37.7 (1.77)

As of December 2021, the MatchDG algorithm holds the #1 ranking on the PapersWith‐
Code website for Rotated Fashion‐MNIST, with CSD as #2. The results we got for table
2 confirm that MatchDG performs better than the previous state‐of‐art technique CSD
[20].

Result 3 — Table 3 shows the repeated results whereby MatchDG outperforms ERM for
overlap %. The table shows the benefit of PerfMatch for all 3 metrics over the default
MatchDG variant for all metrics, and each metric aligns with the other metrics for all
baselines and models. This aligns with the results from the original authors as well.

Table 3. Overlap with perfect matches. top‐10 overlap and the mean rank for perfect matches
(Table 3 from original paper)

Dataset Method Overlap (%) Top 10 Overlap (%) Mean Rank

MNIST
ERM 14.3 (0.61) 44.8 (2.57) 32.1 (3.20)
MatchDG (Default) 27.9 (0.78) 63.5 (0.77) 18.6 (0.58)
MatchDG (PerfMatch) 41.9 (5.48) 80.5 (2.31) 6.6 (0.36)

Fashion
MNIST

ERM 5.04 (0.09) 20.9 (0.45) 135.9 (2.91)
MatchDG (Default) 44.2 (2.62) 72.8 (1.48) 39.9 (7.36)
MatchDG (PerfMatch) 68.0 (1.94) 89.9 (1.50) 9.5 (2.75)

Result 4 — Table 4 shows that for PACS dataset with ResNet‐18 architecture, the results
are competitive to the authors selected state of the art baselines (JiGen [23], DDAIG [24],
SagNet [25], G2DM [26], CSD [20], RSC [27]) averaged over all domains. The MDGHybrid
has the 3rd highest average, being beaten by DDEC [28] and RSC [27]. The paper reports
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MatchDG and MDGHybrid using a test domain validation, where MDGHybrid obtains
comparable results to the best‐performing baseline.

Table 4. Accuracy on PACSwith Resnet 18 with test domain validation (Table 4 from original paper)

P A C S Average
ERM 95.38 77.68 78.98 74.75 81.70
JiGen 96.00 79.42 75.25 71.35 80.41
G2DM 93.75 77.78 75.54 77.58 81.16
CSD 94.10 78.90 75.80 76.70 81.40
DDAIG 95.30 84.20 78.10 74.70 83.10
SagNet 95.47 83.58 77.66 76.30 83.25
DDEC 96.93 83.01 79.39 78.62 84.46
RSC 95.99 83.43 80.31 80.85 85.15
RandMatch 93.07 77.03 76.82 75.59 80.63
MatchDG 96.17 79.09 79.15 75.88 82.57
MDGHybrid 96.43 81.84 80.52 76.50 83.82
G2DM (Test) 94.63 81.44 79.35 79.52 83.34
RandMatch (Test) 95.21 77.72 79.01 77.17 82.28
MatchDG (Test) 96.55 80.22 80.16 78.93 83.96
MDGHybrid (Test) 95.21 83.14 81.91 78.92 84.79

The authors original results for MatchDG also claim high rankings for the PACS [3, 4]
dataset for both resnet18 and resnet50 on the PapersWithCode website. Our replicated
results confirm these claims.

Result 5 — Table 5 implementMatchDGonResnet50model usedby theERM inDomainBed.
Adding MatchDG loss regularization improves the accuracy of DomainBed, from 84.79
to 87.86 with MDGHybrid. Also, MDGHybrid performs better than the prior approaches
using Resnet50 architecture.

Result 6 — Table 6 provides results for the Chest X‐rays datasets from 3 different sources:
RSNA, ChexPert and NIH. MDGHybrid outperforms other baselines for RSNA and Chex‐
pert. Nevertheless, NIHMDGHybrid is outperformed by both ERM and CSD. The paper
reasons these inconsistent trends due to the intrinsic variability in ”source domains, in‐
dicating the challenges of buildingdomain generalizationmethods for real‐world datasets”.
The replicated results commonly alignwith the original paper, butMDGHybrid exceeded
Chexpert for our results. The original paper underperformed in the same manner that
our results had an under‐performance for NIH even though the original paper MDGHy‐
brid attained the best result for NIH. Generally speaking, the results hold.

Table 5. Reproduced PACS resnet50 results (Table 5 from original paper)

P A C S Average
DomainBed (ResNet50) 97.80 88.10 77.90 79.10 85.70
IRM (ResNet50) 96.70 85.00 77.60 78.50 84.40
CORAL (ResNet50) 97.60 87.70 79.20 79.40 86.00
RSC (ResNet50) 97.92 87.89 82.16 83.35 87.83
RandMatch (ResNet50) 97.84 53.68 49.10 63.43 66.02
MatchDG (ResNet50) 96.71 83.98 82.45 80.74 85.97
MDGHybrid (ResNet50) 97.29 86.58 84.12 83.44 87.86
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Table 6. Chest x‐ray results (Table 6 from original paper)

RSNA ChexPert NIH
ERM 59.4 (2.07) 65.9 (0.93) 61.6 (1.40)
IRM 60.7 (2.87) 66.1 (0.72) 58.0 (1.44)
CSD 65.7 (0.80) 67.4 (0.90) 63.6 (1.07)
RandMatch 60.5 (2.16) 62.7 (2.93) 59.3 (2.21)
MatchDG 66.4 (2.19) 65.3 (0.57) 54.7 (2.18)
MDGHybrid 76.7 (1.73) 67.6 (0.91) 61.4 (0.85)

4.1 Results beyond original paper
In order to study the efficacy of the proposed method, we performed additional exper‐
iments by replicating their method in PyTorch for Rotated MNIST and Rotated Fash‐
ion MNIST. Our Pytorch implementation includes the entire method for train.py and
data_gen_mnist.py under three settings. The first setting consists of the training sam‐
ples for 0◦, 15◦, 30◦, 45◦, 60◦ and test samples for 75◦, 90◦. The second setting includes
the training samples for 0◦, 15◦, 30◦, 45◦ and test samples for 60◦, 75◦, 90◦. Finally, the
third setting includes the training samples for 45◦, 60◦, 75◦, 90◦ and testing samples for
0◦,15◦,30◦. Table 7 reports the accuracy for Rotated‐MNIST and Rotated Fashion‐MNIST
datasets on target domains. For Rotated‐MNIST, MatchDg surpassed all the other base‐
lines; however, for Rotated‐Fashion MNIST, we can see that CSD performs better, fol‐
lowed by MatchDg.

Table 7. Rotated‐MNIST and Rotated‐FashionMNIST to show various angles trained on vs accuracy
achieved (Table 2 from original paper, with out own modifications of angles)

Dataset Source ERM CSD IRM RandMatch MatchDg PerfMatch
(Oracle)

Rotated
MNIST

Train:
0,15,30,45,60
Test:
75,90

84.2 (1.05) 89.1 (0.76) 84.4 (1.84) 87.5 (0.58) 89.8 (0.54) 93.9 (0.29)

Train:
0,15,30,45
Test:
60,75,90

73.0 (0.75) 77.4 (0.51) 72.8 (0.44) 75.7 (1.23) 78.5 (0.67) 88.9 (0.25)

Train:
45,60,75,90
Test:
0,15,30

68.6 (1.00) 73.5 (1.73) 69.19 (1.14) 72.1 (0.19) 77.0 (0.74) 84.9 (0.72)

Rotated
Fashion
MNIST

Train:
0,15,30,45,60
Test:
75,90

53.0 (1.16) 62.5 (1.28) 51.6 (1.42) 53.8 (0.93) 59.3 (0.71) 65.5 (1.73)

Train:
0,15,30,45
Test:
60,75,90

36.6 (0.48) 43.7 (1.97) 36.0 (0.26) 35.9 (1.02) 41.7 (0.55) 50.7 (0.27)

Train:
45,60,75,90
Test:
0,15,30

30.8 (0.96) 34.6 (0.72) 30.3 (1.16) 30.4 (0.76) 33.6 (0.43) 36.7 (1.06)

Additional Result 1 — Table 8 contain the results for Rotated MNIST datasets using the
LeNet architecture [16]. In this setup, there are six domains in total (0◦, 15◦, 30◦, 45◦,
60◦, 75◦). The remaining five domains are used as source training domains for each test
domain. Matching‐based training methods RandMatch andMatchDG outperform prior
work on all the domains.
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Table 8. Accuracy for Rotated MNIST datasets using the LeNet architecture (Table 11 from original
paper)

Algorithm 0 15 30 45 60 75 Average
ERM 90.1 (1.67) 98.9 (0.26) 98.0 (0.37) 98.4 (0.22) 97.9 (0.17) 88.1 (1.25) 95.23
CCSA 84.60 95.60 94.60 82.90 94.80 82.10 89.10
D‐MTAE 82.50 96.30 93.40 78.60 94.20 80.50 87.60
LabelGrad 89.70 97.80 98.00 97.10 96.60 92.10 95.20
DAN 86.70 98.00 97.80 97.40 96.90 89.10 94.30
CrossGrad 88.30 98.60 98.00 97.70 97.70 91.40 95.30
DIVA 93.5 (0.3) 99.3 (0.1) 99.1 (0.1) 99.2 (0.1) 99.3 (0.1) 93.0 (0.4) 97.20
RandMatch 93.7 (1.10) 99.9 (0.05) 99.9 (0.12) 99.8 (0.12) 99.9 (0.05) 93.9 (0.45) 97.84
MatchDG 93.6 (1.16) 99.9 (0.12) 99.7 (0.21) 99.5 (0.12) 99.8 (0.12) 94.0 (0.57) 97.76
PerfMatch 96.2 (0.57) 99.7 (0.05) 99.7 (0.14) 99.5 (0.12) 99.6 (0.09) 95.8 (0.49) 98.42

Tables 9, 10, and 11 contain the results for appendix section results of DomainBed, frac‐
tion of perfect matches and overlap % when training on all domains.

Table 9. Accuracy for Rotated MNIST datasets using the DomainBed (Table 12 from original paper)

Algorithm 0 15 30 45 60 75 Average
ERM 95.4 (0.3) 98.4 (0.1) 98.4 (0.0) 98.5 (0.1) 98.2 (0.0) 92.7 (1.3) 96.93
IRM 95.9 (0.2) 98.9 (0.0) 99.0 (0.0) 98.8 (0.1) 98.9 (0.1) 95.5 (0.3) 97.90
DRO 95.9 (0.1) 98.9 (0.0) 99.0 (0.1) 99.0 (0.0) 99.0 (0.0) 96.9 (0.1) 98.10
Mixup 96.1 (0.2) 99.1 (0.0) 98.9 (0.0) 99.0 (0.0) 99.0 (0.1) 96.6 (0.1) 98.10
MLDG 95.9 (0.2) 98.9 (0.1) 99.0 (0.0) 99.1 (0.0) 99.0 (0.0) 96.0 (0.2) 98.00
CORAL 95.7 (0.2) 99.0 (0.0) 99.1 (0.1) 99.1 (0.0) 99.0 (0.0) 96.7 (0.2) 98.10
MMD 96.6 (0.1) 98.9 (0.0) 98.9 (0.1) 99.1 (0.1) 99.0 (0.0) 96.2 (0.1) 98.10
DANN 95.6 (0.3) 98.9 (0.0) 98.9 (0.0) 99.0 (0.1) 98.9 (0.0) 95.9 (0.5) 97.90
C‐DANN 96.0 (0.5) 98.8 (0.0) 99.0 (0.1) 99.1 (0.0) 98.9 (0.1) 96.5 (0.3) 98.00
RandMatch 95.3 (0.2) 98.4 (0.03) 98.1 (0.2) 98.4 (0.2) 98.2 (0.0) 92.7 (0.4) 96.91
MatchDG 95.7 (0.2) 97.2 (0.1) 98.8 (0.5) 98.8 (0.2) 98.9 (0.1) 96.5 (0.3) 97.65

Table 10. Accuracy results using a fraction of perfect matches during training (Table 13 from orig‐
inal paper)

MNIST Fashion‐MNIST
RandMatch 92.8 (0.52) 76.5 (0.13)
Approx 25% 95.2 (0.12) 77.3 (1.26)
Approx 50% 95.5 (0.46) 77.6 (1.34)
Approx 75% 95.8 (0.21) 79.1 (1.13)
PerfMatch 100% 96.8 (0.32) 82.5 (0.12)

Additional Result 2 — The chars74k [29] dataset in Figure 5 offers an additional dataset to
test the proposed algorithm in the paper. It contains characters A‐Z, a‐z, 0‐9 from several
domains, more specifically 64 classes (0‐9, A‐Z, a‐z), 7705 characters obtained from natu‐
ral images, 3410 hand‐drawn characters using a tablet PC, 62992 synthesized characters
from computer fonts. With the characters gathered from various sources, these sources
can be considered in different domains. Thus, the algorithm should extract the causal
features and be domain‐independent, reflected in the results. Comparison to baselines
should show it has an advantage. Unfortunately, time did not allow this testing, but it
should be easy to see why this would be a fair comparison for domain generalization.
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Table 11. Mean rank, Top‐10 overlap, and overlap metrics for the matches learnt in the classifica‐
tion phase (Phase 2) (Table 14 from original paper)

Dataset Method Overlap (%) Top 10 Overlap (%) Mean Rank

Rotated
MNIST

RandMatch 1.9 (0.14) 11.7 (0.42) 80.5 (0.99)
MatchDG
(Phase 2) 15.7 (0.61) 42.86 (1.56) 40.12 (2.46)

PerfMatch
(Oracle) 71.3 (3.93) 94.9 (1.09) 2.0 (0.36)

Fashion
MNIST
(10k)

RandMatch 1.6 (0.11) 8.3 (0.38) 291.1 (6.27)
MatchDG
(Phase 2) 6.8 (1.77) 23.7 (4.65) 148.8 (26.07)

PerfMatch
(Oracle) 11.0 (1.00) 35.2 (2.22) 89.9 (8.68)

Figure 5. chars74k contains classes from multiple domains [29]

5 Discussion

We observed several problems in the code; for example, in the dataset generation pro‐
cess, the authors randomly flipped the digits of the MNIST dataset during training, i.e.,
when they rotated a digit by 45◦, it is not consistent with whether it will be clockwise
or anticlockwise rotation. The issue was because they were using an inbuilt library of
PyTorch, and because of that, when we modified the code to make the rotation con‐
sistent, the results improved. Also, for Table 1, during code execution, we observed
several errors andmade necessary modifications. For instance, there were errors in the
paths in slab_data.py. The same error was rectified by adding the correct path in the file:
base_dir= os.getcwd() + ’/data/datasets/slab/’. Secondly, during executingdata_gen_syn.py
for preparing slab dataset, datasets with spurr_list of 1.0 were not created. Therefore,
in the file data_gen_syn.py we appended 1.0 i.e., themodified spur_corr_list is [0.0, 0.10,
0.20, 0.90, 1.0]. On Windows machines, a freeze_support() error was encountered, and
thus train.py and test.py needed to have themain()method added (problem is specific to
windows only, believed to be an underlying issue with python). Some basic installations
were needed for the libraries like torchcsprng and opacus.
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5.1 What was easy
The official GitHub page of the paper has the authors’ open source code, which was
helpful. The experiments described in the paper were done on widely‐used standard
datasets. Therefore, implementing each experiment was relatively easy to do. Further‐
more, since many of the parameters were reported in the scripts, we did not needmuch
tuning in most experiments.

5.2 What was difficult
Though implementing each experiment is relatively simple, the numerosity of experi‐
ments proved to be demanding. In particular, each experiment in the original setting
requires training a network for many iterations. We sometimes changed the settings
in these cases. However, these changes did not affect the interpretability of the final
results.

5.3 Communication with original authors
We emailed the authors and received prompt responses to our questions regarding the
provided Jupyter reproduction notebooks. Some tables had multiple runs for the same
technique, but it was unclear how to execute the alternative runs. For reproducing Ta‐
ble 1 in the original paper, it was unclear how we could obtain quantitative values for
source 1, source 2, and target. As per the script, it was producing values for source
and target. Therefore, we communicated with the authors via email and asked them to
explain the condition used in the experiments more clearly. They stated that the num‐
bers obtained are evaluated on the target domain/test dataset under different validation
strategies. Accordingly, we cannot break them down into source 1 and source 2. Execut‐
ing the script with the evaluate flag would evaluate the trained model and provide per
domain accuracy (source 1, source 2).
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