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Reproducibility Summary

Scope of Reproducibility
The authors in [1] claim that with the underlying learning dynamics of BYOL [2] and
SimSiam [3], a new method DirectPred can be derived. We investigate the assumptions
made for this derivation and also compare the quality of the produced encoder repre‐
sentations through linear probing of these networks.

Methodology
We reimplemented BYOL, SimSiam and DirectPred from scratch as well as their ablations
in TensorFlow. We checked original repository in written PyTorch for some implemen‐
tation details. In all experiments we used the CIFAR‐10 train set for training and the test
set for evaluation. We were running our experiments for more than 100 hours on GCP’s
V100 GPU.

Results
Weshow that the theoretical assumption regarding eigenspace alignment and symmetry
hold also for a different dataset other than the oneused in the original paper. In addition,
we reproduce ablations regarding learning rate, weight decay and Exponential Moving
Average.
Since we used CIFAR‐10 in all experiments we can not directly compare accuracies.
However, we show the same relative behaviour of different networks given hyperparam‐
eter changes. We can directly compare performance for one of the experiments (Table 8.
in [1] bottom left part). Our models, namely SGD Baseline, DirectPred (with and without
frequency=5), achieve comparable accuracy which differ by at most 1%. We also con‐
firm the claim thatDirectPred outperforms its one‐layer SGDalternative. Our code canbe
accessedunder the following link: https://anonymous.4open.science/r/SelfSupervisedLearning-FD0F.

What was easy
The architecture of the Siamese network and training schemes were both straightfor‐
ward to implement and easy to understand.

Copyright © 2022 T. Höppe, A. Miszkurka and D.B. Wilkman, released under a Creative Commons Attribution 4.0 International license.
Correspondence should be addressed to Dennis Bogatov Wilkman (dwilkman@kth.se)
The authors have declared that no competing interests exist.
Code is available at https://github.com/miszkur/SelfSupervisedLearning – DOI 10.5281/zenodo.6508184. – SWH
swh:1:dir:ec5169f4713c6c67088d980c76f1c25bc1c399bc.
Data is available at https://www.cs.toronto.edu/~kriz/cifar.html.
Open peer review is available at https://openreview.net/forum?id=r4xe3nMQ3AY.
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What was difficult
We could not run our code on STL‐10 dataset due to time and resource constraints. Due
to differences between PyTorch and TensorFlow libraries, we had to implement some
parts by hand to keep our code as close to the original work as possible. Also, original
repository is not easy to read and does not cover all the experiments (e.g. eigenspace
alignment experiment). Correctly applying data‐augmentation was also a hard task due
to assumptions of how the individual data augmentations functions actually work.

Communication with original authors
We did not contact authors of the paper since we did not encounter any major issues
during the reproducibility study.
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1 Introduction

Self‐Supervised learning has become an important task in many domains, since labeled
data is often rare and expensive to get. Many modern methods of Self‐Supervised learn‐
ing are based on Siamese‐networks [4] which areweight sharingNeural networks for two
or more inputs which representations then will be compared in latent space. The rep‐
resentation created by this approach can then be used for classification by fine‐tuning
on fewer labelled data‐points. Traditionally, during pre‐training positive pairs (same
image, or two images from the same class) and negative pairs (different images or two
images from a different class) are used. The distance of the representation of positive
pairs is minimized while the distance of the representation of negative pairs is maxi‐
mized, which prevents the networks from collapse (i.e mapping all inputs to the same
representation). These methods have shown quite some success in the past [5], [6], [7],
[8]. However, these methods rely on negative pairs, and large batch sizes which makes
the training less feasible.
Recently, new methods have been proposed which rely only on positive pairs and yet
don’t collapse [2], [3]. In the paper ”Understanding Self‐Supervised Learning Dynamics
without Contrastive Pairs” by Tian et.al. [1] the underlying dynamics are explored and
based on the theoretical results, a new method, DirectPred, was proposed which does
not need an update of the predictor via gradient descent but instead is set directly each
iteration.
The focus of this work is to test several assumptionsmade in [1] for the theoretical analy‐
sis and see if they hold. For this, wewill concentrate especially on the eigenvalues of the
predictor network and the eigenspace alignment with its input. Also, we will reproduce
the results from [1], [2] and [3] on CIFAR‐10 to compare their learned representation
using linear probing.

2 Related work

A common approach to representation learning without Siamese networks is genera‐
tive modelling. Typically these methods model a distribution over the data and a la‐
tent space, fromwhich then embeddings can be drawn as data representations. Usually
these approaches rely on Auto‐encoding [9, 10] or Adversarial networks [11, 12]. How‐
ever, generative models are often computationaly heavy and hard to train.
Discriminativemethods using Siamese networks like SimCLR [5, 6] andMoco [7] outper‐
form generative models and have lower computational cost. However, these methods
rely on very large batch sizes since they use contrastive pairs. Most recent methods,
replicated in this work, like BYOL [2] and SimSiam [3], only rely on positive pairs and
therefore can make use of smaller batch sizes. To understand why these methods do
not collapse, the dynamics of these networks are analysed with linear models in [1, 13].
From this analysis, the authors could derive ablations of BYOLwhere part of the network
is directly set to its optimal solution instead of being trained by gradient descent.

3 Method

In this section we will describe the methods of BYOL and SimSiam as well as their suc‐
cessor DirectPred.

3.1 BYOL & SimSiam
The network architecture of the models is shown in Figure 1. First, two augmented
viewsX ′

1 andX ′
2 of an imageX are created and fed into the online networkW and target
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Figure 1. Network architecture for all presented methods

network Wa respectively. Both of these networks have the same architecture, a ResNet‐
18 (W x

enc) as encoder [14], which is supposed to create hidden features and a projector
headW x

pro, which is a two layerMLP, with purpose tomap the feature space into a lower
dimensional hidden space. The online network also has an additional predictor head,
again consisting of a two layer MLP. The target network has a StopGrad function instead
of a predictor head. Therefore during back propagation, only the weights of the online
network are updated via gradient decent. The loss between the output of the online and
target network is equal to the cosine‐similarity loss function.

L(Ẑ(O)
1 , Ẑ

(T )
2 ) = − ⟨Z ′

1, Z
′
2⟩

||Z ′
1||2||Z ′

2||2
(1)

Note, that the final loss of one image is the symmetric lossL(Ẑ(O)
1 , Ẑ

(T )
2 )+L(Ẑ(O)

2 , Ẑ
(T )
1 ),

since each augmentation is given to both networks. As mentioned, the target network
is not updated with gradient descent, but with an exponential moving average (EMA).
After each batch the target network will be set to Wa = Wa + (1 − τ)(W − Wa). In
SimSiam the target network is set directly to the online network after each update, i.e
τ = 0.

3.2 DirectPred
[1] derives a one layer predictor head analytically with the analysis of the underlying
learning dynamics of the models presented in Section 3.1 with an approximation of the
actual network as a purely linear model. The learning dynamics of the networks are

Ẇp = αp(−WpW (X +X ′) +WaX)W⊤ − ηWp (2)

Ẇ = WT
p (−WpW (X +X ′) +WaX)− ηW (3)

Ẇa = β(−Wa +W ) (4)

With X = E[x̂x̂⊤], where x̂ is the average augmented view of a datapoint and X ′ is the
covariance matrix of the augmented views. αp and β are multiplicative learning rate
ratios, i.e αp =

αpred
α and β = 1−τ

α (here α and αpred are the learning rates forW andWp

respetively). In addition to the linearity of the network, three simplifying assumptions
where made:

• The target network is always in a linear relationship with the online network (e.g.
Wa(t) = τ(t)W (t)
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• The original data distribution p(X) is Isotropic and its augmentation p̂(X ′|X) has
meanX and covariance σI

• The predictorWp is symmetric

Based on these assumptions, one can show, that the eigenspaces of the output of the
online network and the predictor Wp align. Let F = WXW⊤ (i.e. the output of the on‐
line network when it is approximated as a linear model), then it follows with the three
assumptions, that the eigenspaces of these two matrices align over time (e.g. for all
non‐zero eigenvalues λWp

, λF ofWp and F , the corresponding normalized eigenvectors
vWp , vF are parallel, v⊤Wp

vF = 1). With this alignment one can derive decoupled dynam‐
ics for the eigenvalues of W and Wp. By analysing this system, it can be shown that it
has, depending on the weight decay parameter, several fixpoints, from which some are
stable and some not. The trivial solution (the collapse) is one of them and the basin of
attraction of these fixpoints varies with the relative learning rate of the predictor αpred

α .
With this analysis, [1] derives conditions under which the trivial fixpoint can be avoided.
For a thorough mathematical analysis, we refer to [1]. In Section 5.1 we will present em‐
pirical evidence, that the symmetry assumption holds, and that the eignenspaces align.
Furthermore, in Section 5.3 we will investigate the role of weight decay and the learning
rate.
From the decoupled dynamics of the eigenvalues, we can also derive an analytical ex‐
pression for the predictor Wp. Let F = UΩU⊤ be the eigen‐decomposition of F with
Ω = diag(λ(1)

F , ..., λ
(d)
F ) the diagonal matrix with the eigenvalues of F , then we can ap‐

proximate the eigenvalues ofWp with

λ
(j)
Wp

=

√
λ
(j)
F + ϵmax

j
λ
(j)
F (5)

and therefore setWp to
Wp = Udiag(λ(1)

Wp
, ..., λ

(d)
Wp

)U⊤ (6)

Note, that we cannot compute F directly, which is why we use a running average F̂ as
approximation in practice

F̂ = ρF̂ + (1− ρ)Ẑ (7)

where Ẑ = Ẑ
(O)
1 Ẑ

(O)⊤
2 .

Wedenote thismethodDirectPred and in Section 5.2we show, thatDirectPred canperform
similar to BYOL and SimSiam

4 Data & Configurations

We ran our experiments on Google Cloud Platform using Virtual Machine with a V100
GPU.
All experiments are conducted on CIFAR‐10 [15], which contains 60 000 RGB images uni‐
formly distributed over 10 classes. The pre‐training and the linear evaluation are done
on the entire training set, which consists of 50 000 images. For the linear evaluation,
only a linear layer is used on top of the encoder, where the weights of the encoder are
frozen (i.e. we test how linearly separable the encoders output is). The reported accu‐
racy results are produced from a test set containing 10 000 images. Also, to account for
the small dimension of the CIFAR‐10 images (32× 32× 3) we use 3× 3 convolutions and
stride 1 without maximum pooling in the first block of the encoder.
To augment each image, we first do a random flip, take a random crop (up to 8% of the
original size) of the image. Then we randomly adjust brightness, saturation, contrast
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and hue of the RGB image by a random factor 1. Finally with a 20% chance we convert
the image to grey scale.

Self‐supervised pretraining In the basic setting, the online network use ResNet‐18 as
encoder, two layer projector MLP, two layer predictor MLP, where the first layer consists
of 512 nodes, followed by BatchNorm and ReLU, and then a linear output layer with
128 nodes. For BYOL we use EMA to update target network and for SimSiam we directly
set encoder and projector of target network to the weights of the online one (τ = 0).
We use SGD optimizer with learning rate 0.03, momentum 0.9 and weight decay (L2
penalty) of 0.0004. The predictor of DirectPred is set directly and are not trained with
gradient descent and consist of one linear layer with 128 nodes. By SGD baseline for
those methods we mean a network pre‐trained with a one linear layer predictor with
or without EMA. In all experiments, we use batch size of 128. For updating the target
network we used the EMA parameter τ = 0.996. For DirectPred we use ϵ = 0.1 and
ρ = 0.3.

Linear evaluation In order to test the performance of the different models, we use lin‐
ear evaluation, i.e. we train a linear layer on top of the ResNet‐18 encoder with frozen
weights for 100 epochs. This measures how linearly separable the learned representa‐
tions of the encoder are. We use Adam optimizer [16] with polynomial decay of learning
rate from 5e‐2 to 5e‐4. Images are normalized but we do not use augmentation for this
part of training just as in the original repository for DirectPred.

5 Experiments and findings

In this section, we will first show that the assumptions and theoretical findings from
Section 3.2 hold in practice. Finally, we will pre‐train and use linear evaluation on the
different models presented in Section 3 in order to test their performances.

5.1 Eigenspace alignment
First, we pre‐train BYOL and SimSiam keep track of the predictor heads symmetry and
eigenspace alignment. In Figure 2 we can see, that the assumption of an symmetric
predictor Wp holds. Even without symmetry regularisation, Wp approaches symmetry
during training. Also, we can see that for all non‐zero eigenvalues ofWp the eigenspaces
between F andWp align as the training progresses.
We ran the same Experiment for SimSiam, and can also see the same effect on the pre‐
dictor and the alignment (Figure 3). If we don’t use a symmetric predictor, we also see
that the eigenspaces for the non‐zero eigenvalues align. However, once we use symme‐
try regularisation on Wp, all eigenvalues become zero, which shows that the network
collapses. We will see later in Section 5.3 that we can prevent this collapse by using
different learning rates α, αpred and weight decay η, ηpred forW andWp respectively.

5.2 Performance
Byol & SimSiam In table 1 we can see that the performance of BYOL increases slightly
when using symmetry regularisation on the predictor. However, as already seen in Fig‐
ure 3, whenusing noEMA,we observe that the network collapses. We observe in general
better performance formodels trainedwith EMA, given the same hyperarameters. How‐
ever, we did not use extensive hyperparameter tuning, as performance is not the focus
of our work.

1for brightness, saturation and contrast we chose a value uniformly at random between 0.6 and 1.4. For
adjusting the hue, we set the maximal value to 0.1
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Figure 2. Pre‐training BYOL for 100 epochs of CIFAR‐10. Top row: BYOL without symmetry regu‐
larisation on Wp. Bottom row: BYOL with symmetry regularisation on Wp. The eigenvalues of
F are plotted on the log scale, since the eigenvalues vary a lot. The assymmetry is measured by
||Wp−W⊤

p ||
||Wp||

Figure 3. Pre‐training SimSiam for 100 epochs of CIFAR‐10. Top row: SimSiam without symmetry
regularisation on Wp. Bottom row: SimSiam with symmetry regularisation on Wp. Note that the
eigenvalues of F are not plotted on the log scale here, since we get 0 values.

DirectPred As we can see in Figure 2 & 3, the eigenspaces for both models align and
therefore the theoretical assumptions of [1] hold. As we can see in Table 2, all mod‐
els perform reasonably well, and can achieve almost the same performance as BYOL or
SimSiam. However, as already mentioned earlier, we can see that models with EMA out‐
perform models without EMA. I addition, we run an experiments where the predictor
is only updated every 5th step according to Equation 6 and otherwise is updated with
gradient decent, we call this method DirectPred5. We can see that the hybrid method
DirectPred5 does not increase performance, however, according to [1] when training for
500 epochs,DirectPred5 can outperformDirectPred. Due to computational constraints we
cannot reproduce this experiment.

5.3 Influence of weight decay and learning rate
As we can see in Figure 3, SimSiam with symmetric predictor does collapse. However,
we can prevent this by adjusting the weight decay and learning rate. To make sure the
network does converge to a stable non‐collapsing fix‐point, the weight decay of the pre‐
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symmetricWp non symmetricWp

EMA 85.7 84.2
No EMA 20.3 79.4

Table 1. Comparision of a two layer predictor with and without symmetry regularisation as well as
with and without EMA (i.e first row is BYOL and second row is SimSiam).

SGD Baseline DirectPred DirectPred 5
EMA 83.3% 84.7% 84.1%

No EMA 77.8% 78.6% ‐

Table 2. The accuracies of SGD baselines, DirectPred and DirectPred with Frequency 5 with and
without EMA

dictor should be set higher than the rest of the network (ηpred > η, for mathematical
analysis see [1]). By omitting weight decay, we are not able to stabilize the training of
SimSiam with symmetric predictor and we can also see, that methods without weight
decay performworse, than with weight decay (Table 3). Also, to decrease the basin of at‐
traction, of the trivial fixpoints, the learning rate of the predictor should be rather large
compared to the learning rate of the rest of the network, i.e αpred

α >> 1 (see Section 3.2
in [1]).

symmetricWp regularWp

η = 0 & ηpred = 0.0004
Byol 81.34 % 81.69 %

SimSiam 79.1 % 81.39 %
η = ηpred = 0

Byol 80.78 % 80.42 %
SimSiam 20.27 % 79.22 %

Table 3. Byol and SimSiam trained with different values for the weight decay parameters. For all
experiments in this Table, we set the learning ratesαpred = 2 andα = 0.2. Note, that the important
condition is αpred

α
>> 1, i.e. we got only slightly worse results with αpred = 0.2 and α = 0.02

6 Challenges

The original paper describes the methods and mathematical derivations well. Authors
also share which hyperparameters they used in most of the experiments. Since the au‐
thors provided the open‐source repository for the paper, we could check some of the
details of the experiments there. However, as the code is not well‐structured it was at
times challenging to analyse. Furthermore, not all of the experiments are shared in the
repository, for example there is no codewhich produces eigenspace experiments results
or config for weight decay experiment.
The reproducedpaper didnot outlined self‐containeddescriptionon themethods it used
as it built upon previous works. Thanks to the detailed description of BYOL by Grill et.
al. [2] we were able to reproduce the paper achieving similar results as the authors.
Due to time constraints we decided to use CIFAR‐10 instead of STL‐10 which was used in
most of the experiments in the reproduced paper. However, claims tested by us in this
work are not restricted to one dataset and we shown that they indeed hold in a different
setting. One of the main challenges was the large amount of computations required for
all the experiments, it took around 4 hours and 30 minutes to pre‐train and fine tune a
single model, and in total we trained for around 100+ hours.
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Figure 4. SimSiamwith symmetric predictor but learning rates α = 0.2, αpred = 2 and weight decay
η = 0, ηpred = 4e− 4

Our work is implemented in TensorFlow and one of the challenges was differences be‐
tween TensorFlow and PyTorch libraries. For instance, in PyTorch one of the parame‐
ters of the SGD optimizer is weight decay (L2 penalty), in TensorFlow we had to imple‐
ment it by hand as TensorTlow’s SGDW implements only Decoupled Weight Decay Reg‐
ularization [17]. Furthermore, image augmentation methods such as ColorJitter from
PyTorch do not have exact corresponding methods in Tensroflow. We used a custom
way to do it so that augmentations are as close as possible to the original version.

7 Conclusion

In this work we study and reimplement three architectures used to give insight into self‐
supervised representation learning without contrastive pairs namely BYOL, SimSiam, Di-
rectPred and their ablations. Our experimental results aligned well with both the theo‐
retical analysis about the eigenspaces and the symmetric assumptions made in [1] and
translate to other dataset than used in the paper. Lastly, we confirmed that SimSiam
can be prevented from collapsing with the use of weight decay and adjusting a learning
rate of predictor.
Furthermore, we confirm the claim that DirectPred outperforms its one‐layer SGD alter‐
native. However, we cannot report that DirectPred could outperform Byol. This may be
due to the fact that we used CIFAR‐10 as opposed to STL‐10 in the original paper. This
leaves us with the conclusion, that DirectPred gives valuable insights into the dynamics
of unsupervised representation learning without contrastive pairs, but do not necessar‐
ily build new state of the art models themselves.

8 Ethical considerations

Self‐supervised learning circumvents label scarcity which is one of the most common
problems when applyingML to new scenarios. This can have both positive and negative
consequences. On one hand, it can accelerate important developments for example in
medical diagnosis. However, it can also be used in unethical ways such as in surveil‐
lance or military equipment. Furthermore, there will be less need for people labelling
datasets which will result in reduction of job positions in this area.
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