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1 Reproducibility Summary

1.1 Scope of Reproducibility

We replicate Gao et al.1, which proposes an automatic search algorithm to find privacy‐
preserving transformation policies to protect against gradient reconstruction attacks in
a collaborative learning setting. All the main claims made by the authors were tested.
We also extend the original experiments to a new dataset, and contribute a PyTorch
Lightning framework to aid in future work.

1.2 Methodology
Weperformall experiments using themodel architectures, hyperparameters anddatasets
as used in the original work. We also extend the experiments to a new dataset. We fur‐
ther contribute a reimplementation of the work in PyTorch Lightning to provide a mod‐
ular framework for future research into this area. All experiments are performed on
Nvidia GTX 1080 GPUs. Our logs and checkpoints are made available for download via
our code repository.

1.3 Results
Overall we find the original results to be reproducible; transformation policies found
using Gao et al.1’s method can defend against gradient reconstruction attacks, and these
transformations have negligible impact on training efficiency andmodel accuracy. How‐
everwe do not observe the reported correlation between the proposed privacy‐scoreSpri

and reconstruction PSNR.We also find that the degree of protection differs greatly from
image to image, with poor protection in the worst case.

1.4 What was easy
The original paper was clearly written and the general idea was easy to follow. There
was a codebase available in PyTorch and some of the reported experiments were repro‐
ducible using this code.

Copyright © 2022 K. Drabent et al., released under a Creative Commons Attribution 4.0 International license.
Correspondence should be addressed to Stefan Wijnja (stefan@stfwn.com)
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1.5 What was difficult
The available codebase was not clearly structured and needed non‐trivial work to run
some of the experiments reported on in the paper. Therewere otherwise undocumented
details in the code that had a large impact on experiment outcomes.

Communication with original authors

Gao et al.1 were contacted about multiple issues regarding implementation details and
notation clarifications. The authors were very receptive to our questions, and most of
these were resolved swiftly and constructively.
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2 Introduction

Collaborative learning systems enable multiple clients to jointly train a machine learn‐
ingmodel. Each client locally holds a split of the training data, which they use to locally
compute gradients [2] [3] [4]. These local gradients are then shared among all users to
update the parameters of the shared model. This removes the need for any individual
client to share potentially sensitive data, while still enabling all clients to benefit from a
model trained on a larger dataset than they themselves own. This is an important quality
in any field where data confidentiality is desired. As such, collaborative learning is used
in applications from mobile networks [5] to autonomous driving [6] and health care [7].
However, it has been shown that training images may be recovered from the gradients
that are shared to the network [8][9][10]. In general, these reconstruction attacks mask as
harmless peers to obtain a shared model state and gradient from the victim, initialize a
random input image and subsequently optimize this input such that themodel gradient
closely matches the victim’s gradient. The end result is an approximation of the victim’s
input image, breaking confidentiality and invalidating the core principles of this style
of collaborative learning.
Gao et al.1 propose a novel approach to mitigate the threat from reconstruction attacks
by augmenting the local training data of the user before calculating the gradients [1].
The augmentation is aimed at making the reconstruction attack prohibitively difficult.
The authors develop an automatic search algorithm to find the optimal transformation
policies to augment the data and propose two novel metrics, Spri and Sacc, to increase
the efficiency of this search.
In this reproducibility report, we evaluate the main claims made by the authors of [1]
by reproducing their techinques and experiments. Moreover, we assess the availability
of hyperparameters and other information needed for reproducibility, and we discuss
the usability of the provided codebase. We also extend the experimental setup towards a
new dataset and contribute a new, PyTorch Lightning‐based framework to enable future
work.

3 Scope of reproducibility

The original paper [1] proposes using data augmentation to make gradient reconstruc‐
tion attacks in a collaborative learning setting prohibitively difficult. To find transfor‐
mation policies that achieve this goal, an automatic search algorithm is developed. Ad‐
ditionally, to make the proposed algorithm computationally feasible, the authors devise
two novel metrics described in Section 4.2. We split these contributions into the follow‐
ing 7 claims and refer to them throughout this report.

• Claim 1: By augmenting training samples with carefully‐selected transformation
policies, reconstruction attacks become infeasible.

• Claim 2: The proposed search algorithm can find effective and general policies –
policies that are able to defeat multiple variants of reconstruction attacks.

• Claim 3: The found policies are highly transferable; good policies searched for one
dataset are also suitable for another.

• Claim 4: The found policies have negligible impact on training efficiency.
• Claim 5: In general, a good policy is made up of transformations that distort the
details of the training samples, while maintaining the semantic information.

• Claim 6: The five transformations that work best are horizontal shifting (9), bright-
ness (9), brightness (6), contrast (7) and contrast (6). Here, the number inside the
brackets represents the intensity of the applied transformation.

• Claim 7: Spri is a good measure of privacy; it is linearly correlated to Peak Signal‐
to‐Noise Ratio (PSNR) [11] with a Pearson Coefficient [12] of 0.697.
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In [1], each of these claims is accompanied by one or more experiments, the results of
which are reported in various tables and figures. In this reproducibility study we rerun
the experiments and reproduce their tables and figures, with the addition that we report
standard deviations across several experiments. In Section 6, wepresent our results side‐
by‐sidewith the original work. Then, in Section 7, we discuss the reproducibility of each
experiment and evaluate the validity of the claims.

In addition to testing the above claims from the original paper, we present two exten‐
sions. Both of these extensions are aimed at testing the transferability of the searched
policies as claimed in Claim 3.

• Extension 1: Using the policies searched on one dataset and applying them to a
new dataset can make reconstruction attacks against this new dataset infeasible

• Extension 2: Since good policies share the same general qualities, as claimed by
Claim 5, the five best transformations from Claim 6 are the same when using a
different dataset.

Again, we show the results for these extension in Section 6, and relate them to the orig‐
inal claims, experiments and results in Section 7.

4 Finding privacy-preserving transformation policies

Theoriginal paper proposes an automatic search algorithm forfindingprivacy‐preserving
transformation policies. To better understand this contribution, we describe what con‐
stitutes a transformation policy and how good policies are found within a reasonable
time.

4.1 Transformation policies
Transformations or augmentations have been widely used to improve model perfor‐
mance and generalizability in deep learning. In [1], transformations from AutoAug‐
ment [13] are repurposed to protect sensitive training data from reconstruction attacks.
The library contains 50 different transformations, including rotation, crop, shift, inver‐
sion, brightness, and contrast. A transformation policy is a combination of k such trans‐
formations applied sequentially to each of the training samples. In [1], k = 3 is chosen
and the policies are denoted by the indices of the transformations within the AutoAug‐
ment library.
It should be noted that while augmented samples are usually added to the training set,
here the augmented version replace the originals. Therefore consistently applying the
best policy to the data would risk a distribution shift in the dataset. Therefore, the au‐
thors propose the hybrid strategy, where a random policy from 3 candidate policies is
used in order to preserve the input distribution [1].

4.2 Reducing the search space
To find candidate policies, it is necessary to determine their effect on both privacy and
accuracy. The transformations must be applied to training data, and a model must
be trained. Because fully training a model is computationally expensive, the authors
propose two metrics that serve as a proxy for the privacy preservation and accuracy
of the fully trained model: a privacy score (Spri) and an accuracy score (Sacc). Low
Spri means the model has high privacy preservation potential, and high Sacc means the
model achieves good accuracy with the applied transformation policies. These metrics
produce results onmodel that are trainedwith only 10%of the data for only 25%training
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iterations, reducing the search space and making the policy search feasible in a reason‐
able time. Further details about the definition of Spri and Sacc can be found in sections
4.2 and 4.3 of [1].

5 Experimental setup and code

To verify the claims made by the authors of [1], we reproduce their experiments. These
experiments roughly fall into four categories: evaluating the effectiveness of the searched
policies against reconstruction attacks, testing the transferability of the searched poli‐
cies on different datasets and models, checking the impact on model efficiency, and
studying the semantics behind the different transformations. Multiple models must be
trained on augmented and un‐augmented data for all these categories. For the attacks,
the approach from [8] is applied. Section 6 provides a detailed description of the exper‐
iments and shows the results.
To reproduce the experiments performed by the authors, we used their existing code‐
base1, which is implemented in PyTorch [14]. We reimplemented the code in PyTorch
Lightning2, which leverages the interface advantages of the Lightning framework to
make running experiments, logging results and extending the work more intuitive. It is
publicly available at github.com/stfwn/ats-privacy-replication.

5.1 Datasets

The experiments in [1] are performed on two datasets, CIFAR‐1003 [15], and Fashion‐
MNIST4 [16]. CIFAR‐100 contains 60, 000 color images of size 32 × 32, from 100 classes.
The test set is used as the validation set, consistent with the authors’ codebase. On the
other hand, the Fashion‐MNIST dataset contains 70, 000 grey‐scale images of 28×28 res‐
olution from 10 classes. Again the test set is used as a validation set. We run experiments
on one additional dataset in our extensions ‐ Tiny ImageNet2005 [17]. It contains 120,000,
64×64 RGB images of 200 different classes. However, a tiny version of the dataset is also
introduced in the original paper for policy‐search purposes. It is is a different dataset
and this version contains 10% of the original samples, using the same distribution. It’s
later used to train the models for the evaluation of Spri and Sacc in the search algorithm.

5.2 Model descriptions
We use the following models:

• ResNet20‐4, a variation of ResNet20 [18] that has four times the number of chan‐
nels also used in [8]. The total number of parameters is 4.4M.

• ConvNet [8] – an 8‐layer Convolutional Neural Network, with batch normalization
and a ReLU layer after each convolution layer. For this model the total number of
parameters is 3.7M.

The original codebase uses the implementation of both models from the repository6 of
[8]. Our models are exact reimplemations in Pytorch Lightning.

1https://github.com/gaow0007/ATSPrivacy
2https://github.com/PyTorchLightning/pytorch-lightning
3https://www.cs.toronto.edu/~kriz/cifar.html
4https://github.com/zalandoresearch/fashion-mnist
5http://cs231n.stanford.edu/tiny-imagenet-200.zip
6https://github.com/JonasGeiping/invertinggradients
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5.3 Hyperparameters
For the policy search, we set Cmax = 1500 and max policies equal to 10. The batch size
was 128, and the number of transforms in policy was 3.
For training, the batch size was also 128 and the number of epochs was 60 (see Section
5.4). To obtain a semi‐trained network, we used a subset of 10% of the training dataset.
Attacks are performed on the first six images of the test set, and we used the configu‐
rations as described in the original paper. An exception is the experiment that led to
Figure 2, where the original configuration was unclear.

5.4 Computational requirements
We ran our experiments using an Nvidia GeForce GTX 1080 GPU. The policy search took
approximately 10 hours. The training of one model took approximately 2h 40min using
the original approach. However, training for 60 epochs achieves the same accuracy in
only 50 minutes by reducing the learning rate sooner, thereby skipping long periods of
stagnation. Performing one reconstruction attack in 2500 iterations took approximately
5 minutes. Measuring the correlation between Spri and PSNR therefore took 8.5 hours
(including policy search).

6 Experiments and results

6.1 Results reproducing original paper
Experiment 1 A reconstruction attack on 100 images from the CIFAR‐100 validation
set is performed with and without a searched transformation policy applied. We doc‐
ument the optimization process of the attack in terms of GradSim. The model used is
ResNet20, trained on the tiny dataset for 50 epochs. The results of this experiment are
shown in Figure 1a, which shows a very similar result to the original paper shown in 1b.
In addition to the original figure, we show the standard deviation over the 100 images,
since GradSim can differ significantly from image to image. When taking the average
of multiple runs, it can be seen that the privacy‐aware transform does indeed make the
GradSim convergence more difficult.

(a) Reproduced result (b) Result from original paper

Figure 1. Optimization process of reconstruction attack with and without searched policy

Experiment 2 A visual comparison between reconstructed images with and without a
searched transformation policy applied is performed for both ResNet20 and ConvNet
on images from CIFAR‐100 and Fashion‐MNIST. The optimizer used in the attack is
Adam+Cosine. The images, the resulting reconstructions, and their PSNR values are
shown in the left half of Figure 3. The results from the original paper are shown at the
right side of Figure 3. As can be seen, the images used and PSNR values reported are
different. This is due to the fact that it was too expensive to identify the exact same im‐
ages and PSNR values differ quite severely depending on the image used. However, for
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(a) Reproduced result (b) Original result

Figure 2. Correlation between Spri and PSNR

all 12 images, we observe a less pronounced visual effect of the transformation policy
as well as a smaller gap in PSNR values between the reconstructions with and without
the policies applied. This implicates that the effect shown in the original paper is not
as severe for all images, although the images we selected may be particularly easy to
reconstruct.

(a) CIFAR‐100 with ResNet20(b) CIFAR‐100 with ConvNet (c) FMNIST with ResNet20 (d) FMNIST with ConvNet

(e) CIFAR‐100 with ResNet20 (f) CIFAR‐100 with ConvNet (g) FMNIST with ResNet20 (h) FMNIST with ConvNet

Figure 3. Visualization results for reconstruction attacks on different datasets and models with
associated PSNR values. Our results above and original results below.

Experiment 3 To gain further insight into the effectiveness of the different policies, we
report the qualitative and quantitative results of Adam+Cosine attacks and model accu‐
racy for the datasets and models in Figure 3. The results are calculated over 6 images
as performing the experiment is very expensive and number wasn’t stated in the paper.
The policies considered and the results are listed in Table 1.
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Policy PSNR PSNR (std) Acc
None 12.15 2.06 78.11
Random 9.92 1.93 75.02
3‐1‐7 6.77 0.88 71.59
43‐18‐18 9.34 1.81 77.16
Hybrid 8.25 1.64 77.47

(a) CIFAR‐100 + ResNet20

Policy PSNR PSNR (std) Acc
None 11.44 2.93 72.97
Random 10.29 1.02 71.93
21‐13‐3 8.23 2.18 63.26
7‐4‐15 10.31 2.14 70.77
Hybrid 9.89 1.47 68.91

(b) CIFAR‐100 + ConvNet
Policy PSNR PSNR (std) Acc
None 9.81 4.41 95.19
Random 10.06 2.04 95.19
19‐15‐45 8.26 0.37 92.44
2‐43‐21 8.93 2.93 93.93
Hybrid 8.41 1.45 95.14

(c) FMINST + ResNet20

Policy PSNR PSNR (std) Acc
None 9.52 3.27 94.61
Random 9.47 2.27 94.47
42‐28‐42 7.59 0.89 94.62
14‐48‐48 8.41 2.10 94.68
Hybrid 6.80 0.98 94.59

(d) FMNIST + ConvNet

Table 1. PSNR (db) (includingmean and standard deviation over 6 images) andmodel accuracy (%)
of different transformation configurations for each model and dataset. 19− 1− 18 is the random
policy.

Table 1 shows similar patterns to the original paper, where the searched policies have
low PSNR values compared to not using transformations. We do observe that PSNR
values have a relatively high standard deviation, and during our experiments, we found
that the policies do not form a good defense for some images. This problem will be
further discussed in Section 7.

Experiment 4 Thedefensive qualities of the searched transformationpolicies are bench‐
marked against existing defenses from the literature [10] [19] under the Adam+Cosine
attack. The results are shown in Table 2. Although the exact values differ slightly, the
overall results are similar to the original paper, where all the existing defenses perform
worse than the hybrid strategy.

Defense PSNR PSNR (std) Acc
Pruning (70%) 11.62 2.18 74.61
Pruning (95%) 10.41 1.32 67.91
Pruning (99%) 9.96 0.57 53.43
Laplacian (10−3) 10.73 1.02 71.45
Laplacian (10−2) 12.03 0.79 26.20
Gaussian (10−3) 12.11 2.98 72.89
Gaussian (10−2) 12.13 1.14 36.25

Table 2. Comparisons with existing defense methods under the Adam+Cosine attack

Experiment 5 This experiment concerns Claim 2. Because policies should be general,
they are tested against various attack configurations. For this, we again use 6 images
from the test set and perform the different attacks on the images without the transfor‐
mation policies applied and with the hybrid strategy transformation policies applied.
The results are shown in Table 3. As can be seen from the table, the hybrid strategy
works well against all configurations of the reconstruction attack. This is in line with
the results from the original paper.

Experiment 6 This experiment concerns the transferability of Claim 3. To test this,
the policies searched on CIFAR‐100 are applied to Fashion‐MNIST using both ResNet20
and ConvNet. Reconstruction attacks are performed with the Adam+Cosine attack. The
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resulting PSNR values and accuracies are listed in Table 5. The results differ from the
original. It can be seen that the transformation policies are not effective here.

Attack None None (std) Hybrid Hybrid (std)
LBFGS+L2 8.61 1.22 6.33 2.00
Adam+Cosine 12.15 2.06 8.25 1.64
LBFGS+Cosine 9.62 0.91 7.47 0.25
Adam+L1 9.48 0.71 6.43 0.16
Adam+L2 9.28 0.69 6.46 0.21
SGD+Cosine 12.60 2.07 8.03 1.47

Table 3. PSNR values (db) (including mean and standard deviation over 6 images) of reconstructed
images with and without transformations applied for different attack configurations

Policy PSNR PSNR std
None 15.39 2.78
3‐1‐7 8.47 0.85
43‐18‐18 10.97 1.06
Hybrid 8.95 0.90

Table 4. CIFAR100 with ResNet20

Policy PSNR PSNR (std) Acc
None 9.81 4.41 95.19
3‐1‐7 9.30 2.72 93.20
43‐18‐18 10.03 2.23 94.88
Hybrid 7.49 1.57 94.49

(a) FMNIST + ResNet20

Policy PSNR PSNR (std) Acc
None 9.52 3.27 94.61
21‐13‐3 9.99 2.12 92.38
7‐4‐15 9.34 1.62 94.35
Hybrid 11.50 5.80 93.77

(b) FMNIST + ConvNet

Table 5. Resulting PSNR (dB) and accuracy (%) values for applying policies searched on CIFAR‐100
to Fashion‐MINST

Experiment 7 The following experiment is aimed at Claim 4. The authors state that
applying the search policies has a negligible impact on training efficiency. We trained
ResNet20 with the searched policies applied and documented the loss and accuracy con‐
vergence to test this. From Figure 4 it can be seen that indeed applying transformations
has almost zero impact on the training efficiency. It is also noteworthy to observe that
the training curves are almost identical compared with the results from the original
work.
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(a) Reproduced result

(b) Original result

Figure 4. Convergence speed with and without transformations applied

Experiment 8 Claim 5 states that good transformation policies obfuscate details in the
training samples butmaintain high‐order semantic information. As such, attackers will
have trouble reconstructing high frequency information. We test this by comparing
the attacker‐defender gradient similarity during an attack of models trained with the
searched policy, a random policy, and no policy applied. From Figure 5, it can be seen
that in shallow layers, the gradients differ significantly, whereas in deep layers, the gra‐
dients are very similar. This implies that the transformations do indeed have the desired
effect and is in line with the results from the original paper.

(a) Shallow layers

(b) Deep layers

Figure 5. Reproduced result of gradient similarity during the reconstruction optimization, for CI‐
FAR100 with ResNet20

Experiment 9 InClaim6 the authors report their 5 top transformations. We testwhether
we can find the same ones by calculating the privacy score on the dataset for each indi‐
vidual augmentation and show the results in Figure 6a and 6b. Out of the best 5 trans‐
formations reported in the original paper we found 4 overlapping ones.

Experiment 10 The final experiment reproducing the results from the original paper
is aimed at Claim 7. The authors claim that their privacy‐score Spri is linearly corre‐
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lated with PSNR with a Pearson‐coefficient of 0.697. We test this by running attacks and
evaluating Spri on the model trained on tiny cifar100 for 50 epochs and found a very dif‐
ferent result. As shown in Figure 2 there is hardly any correlation (Pearson‐coefficient is
0.123). This might be due to the fact that these 100 transformation policies are selected
at random out of 127.550 possible options. This is a striking result nonetheless, which
we discuss in‐depth in Section 7.

6.2 Results beyond original paper
Extension 1 We extend the evaluation of the transferability of the found policies by
evaluating the performance of the policy found on CIFAR‐100 on Rescaled ImageNet.
The resulting PSNR values and accuracies are shown in Table 6. As can be seen from the
table, the hybrid strategy produces only 1 dB improvement in PSNR value, and accuracy
decreases by more than 4%. This weakens the claim of transferability of found policies.

Policy PSNR PSNR (std) Acc
None 8.96 1.25 61.44
Hybrid 7.92 0.79 57.38

Table 6. PSNR values (dB) and accuracies of policies searched on CIFAR‐100 applied to Rescaled
ImageNet

Extension2 Weadditionally extend the evaluationof the transferability of the searched
policies by testing which transformations work best on a different dataset. Since good
policies share the same general qualities, as stated in Claim 5, the five best transforma‐
tions from Claim 6 are expected to be the same when using a different dataset. For this
experiment, we use the Rescaled ImageNet dataset. The resulting transformations are
shown in Figure 6c. Out of the 5 best transformations on the Rescaled ImageNet 3were
also found on CIFAR‐100 in both our results and the results from the original paper. This
shows that, indeed, these transformations contain the desired qualities from Claim 6.

(a) Reproduced result (b) Original results (c) Results on Tiny ImageNet

Figure 6. Privacy scores of the 50 transformation functions in the augmentation library, best trans‐
formations are red.

7 Discussion

Overall the results in [1] are reproducible, with the exception of Figure 2, where a large
discrepancy between our result and the original one exists. Nevertheless, augmentation
policiesmayworkwell as a defensemechanismagainst reconstruction attacks. Formost
images, an attacker using reconstruction attacks is unable to find privacy‐sensitive in‐
formation. However, the standard deviation of our results is high, and we consider this
a valuable metric to contribute. Some images are vulnerable to the attack even with the
proposed defense mechanism, and it is as of yet unclear to us which types of images are
more vulnerable than others. This issue must be examined further in future research

ReScience C 8.2 (#11) – Drabent et al. 2022 11

https://rescience.github.io/


[Re] Replication study of ”Privacy-preserving Collaborative Learning”

to make the approach widely applicable in real‐world use‐cases where private data is at
stake in order to provide predictable privacy guarantees.
Additionally, we made observations in the codebase that, to the best of our knowledge,
were not reported in the paper or any other accompanying documentation.
The first observation was that the loss function that was used included a factor of 0.5.
This is not a fundamental flaw during the training phase, as it simply results in smaller
gradients and therefore leads to a reduced effective learning rate. However, during the
reconstruction attacks, the loss used by the attacker was not multiplied by this factor.
This means the attacker in practice uses a different loss function from the one used to
generate the gradient that it is attempting to match. This may therefore make recon‐
struction more difficult. In our correspondence, Gao et al.1 acknowledged this as a bug
and we fixed this in our experiments.
The second observation was that two other undocumented augmentations were added
in all experiments, namely a random crop and random horizontal flip. Without these,
the accuracy of our models decreased by over 10%.

7.1 What was easy
The explanation of the general idea, identified problems and proposed solution of the
paper was clearly put and easy to follow. The codebase contained a README with in‐
structions on how to run some of the paper’s experiments, and these instructions could
be followed without significant problems. Some of the experiments in the original work
could be reproduced by running the code as provided.

7.2 What was difficult
The most challenging part about reproduction was the unclear description of experi‐
ments in the paper and limited clarity in the codebase. Code in the repository was un‐
commented, used many global variables and many layers of indirection. Many chunks
of code were not used. Some experimental settings and metrics were not implemented,
and some experiment configurations led to fatal errors.
It was unclear which steps were originally followed to obtain Figure 2. Despite the au‐
thors’ helpful comment on which model was used, we were not able to reproduce the
correlation, potentially due to randomness in a vast search space and a relatively lim‐
ited sample size. Furthermore, the paper does not state how many images were used
to produce the PSNR values in the tables. Finally, undocumented augmentations were
added in some but not all settings, which was cause for some delay until this was found
to be the cause for a 10% accuracy gap with the authors’ results.

7.3 Communication with original authors
We contacted the authors about multiple clarifications regarding implementation de‐
tails and notation in the paper. The authors responded promptly and answered most
of our questions in the first round of contact. Firstly, regarding our reproduction of
Figure 2, the correspondence was helpful but did not lead to a reproduction.
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