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Reproducibility Summary

Scope of Reproducibility
The authors introduce a novel approach to analyze Generative Adversarial Networks
(GANs) and create interpretable controls for image manipulation and synthesis. This
is done by identifying important latent directions based on Principal Component Anal‐
ysis (PCA) applied either in the latent space or the feature space. We aim to validate the
claims and reproduce the results of the original paper.

Methodology
The code that was provided by the authors in Pytorch was reimplemented in Tensorflow
1.x for the pretrained StyleGAN and StyleGAN2 architectures. This was done with the
help of the APIs provided by the original authors of these models.
The experimentswere runona laptopwith an Intel(R) Core(TM) i7‐8750HCPU@2.20GHz
processor, 16GB RAM, NVIDIA GeForce GTX 1060 with Max‐Q Design (6GB VRAM) GPU,
and Ubuntu 18.04.5 LTS.

Results
Wewere able to reproduce the results and verify the claims made by the authors for the
StyleGAN and StyleGAN2 models by recreating the modified images, given the seed and
other configuration parameters. Additionally, we also perform our own experiments to
identify new edits and extend the truncation trick to images generated using StyleGAN.

What was easy
The paper provides detailed explanations for the different mathematical concepts that
were involved in the proposedmethod. This, augmentedwith a well‐structured and doc‐
umented code repository, allowed us to understand the major ideas in a relatively short
period of time. Running the experiments using the original codebase was straightfor‐
ward and highly efficient as well, as the authors have taken additional steps to employ
batch processing wherever possible.
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What was difficult
Originallywewere attempting to recreate identical imageswith zero delta in the RGB val‐
ues. However, due to differences in the random number generators between PyTorch‐
CPU, PyTorch‐GPU and Numpy, the random values were not the same even with the
same seed. This resulted in minute differences in the background artifacts of the gen‐
erated images. Additionally, there is a lack of open source Tensorflow 1.x APIs to access
the intermediate layers of the BigGAN model. Due to time constraints, we were unable
to implement these accessors and verify the images that the authors of GANSpace cre‐
ated using BigGAN.

Communication with original authors
While conducting our experiments, we did not contact the original authors. The paper
and codebasewere organizedwell and aided us in effectively reproducing and validating
the authors’ claims.
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1 Introduction

A Generative Adversarial Network (GAN)[1] is a machine learning framework where two
neural networks, the discriminator and the generator, competewith each other in a zero‐
sum game. The generator tries to trick the discriminator into believing that artificially
generated samples belong to real data.
GANs have proven to be powerful image synthesis tools and are capable of producing
high quality images. However, they provide little control over the features of the gen‐
erated image. Existing solutions[2] that add user control over the generated images re‐
quire expensive supervised training on latent vectors.
GANSpace[3] proposes a simple technique to discover interpretable GAN controls in an
unsupervised manner. This is done by identifying important latent directions based
on Principal Component Analysis (PCA) applied either on the latent space or the fea‐
ture space. The author’s experiments on StyleGAN[4], StyleGAN2[5] and BigGAN512‐
deep[6] demonstrate that layer‐wise decomposition of PCA directions leads to many in‐
terpretable controls, which affect both low and high level attributes of the output image.

2 Scope of reproducibility

For our reproduction study, we aim to validate the effectiveness of the proposed tech‐
nique in offering powerful interpretable controls on the output images in an unsuper‐
vised manner.
The following claims of the paper have been verified and tested successfully:

• PCA can be used to highlight important directions in the GAN’s latent space.
• The GAN’s output can be controlled easily in an unsupervised fashion.
• The earlier components control the higher‐level aspects of an image, while the
later directions primarily affect the minute details.

• Random directions do not yield meaningful decompositions as compared to the
principal components identified using PCA.

3 Methodology

The principal components[7] of a collection of points in real coordinate space are a se‐
quence of p unit vectors, where the ith vector is a direction of the line that best fits the
data while being orthogonal to the remaining i−1 vectors. Principal Component Analy‐
sis (PCA) is an unsupervised algorithm used to compute the principal components and
perform a change of basis of the data using one or more of the computed components,
increasing the interpretability of the data while minimizing its information loss[8]. It
is commonly used in exploratory data analysis and for dimensionality reduction when
dealing with high‐dimensional noisy data. The authors of GANSpace propose a tech‐
nique for identifying interpretable controls in an unsupervised fashion on pretrained
GANs using PCA. Specifically, they show that layer‐wise perturbations along the princi‐
pal components generated using PCA on the latent space of StyleGAN based networks
can be used to generate human‐interpretable transformations on the synthesized im‐
ages.
Mathematically, a GAN can be expressed as a neural network G(z) that generates an
image I : z ∼ p(z), I = G(z). Here, p(z) is a probability distribution from which the
latent vector z is sampled. The network G(z) can be further decomposed into L inter‐
mediate layersG1 . . . GL. In the StyleGAN/StyleGAN2models, the input to the first layer
is a constant y0. The output and input to the remaining layers is computed as:

yi = Gi(yi−1,w), where w =M(z) (1)
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M is a an 8‐layer multilayer perceptron which is a non‐linear function of z. The num‐
ber of layers L depends on the resolution of the generated image. At each layer, the
generated image is upsampled by a factor of 2.

Figure 1. Architecture of StyleGAN[4]

Figure 2. Architecture of StyleGAN2[5]

The images generated by StyleGAN and StyleGAN2 can be controlled by identifying the
principal axes of p(w), which is the probability distribution of the output of themapping
networkM . First, we sampleN latent vectors z1:N and compute the correspondingwi =
M(zi). The PCA of these w1:N values gives us the basis V for W. The output attributes
of a new image given by w can then be controlled by varying the PCA coordinates of x
before feeding them into the synthesis network:

w′ = w+ Vx (2)

Each entry xk of x is a separate control parameter which can be modified to update the
desired attributes of the output image.
We follow the same notation used by the authors to denote edit directions in this report.
E(vi, j − k) means moving along component vi from layers j to k. Identifying specific
edits, for example ”changing the color of a car”, is done via exploratory analysis using
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a trial‐and‐error method. The authors have created a GUI‐based application for this
purpose.

3.1 Model descriptions

We use NVIDIA’s official implementation of StyleGAN1 and StyleGAN22 models. The
original code uses a PyTorch/NumPy implementation of StyleGAN and StyleGAN2which
creates a PyTorch model and copies the weights from NVLabs’ implementations which
are in Tensorflow. However, we directly use the NVLabs’ APIs with NumPy and make
changes to the official GANSpace codebase to support the same.

3.2 Datasets
The experiments in the paper were performed using the FFHQ, LSUN Car, CelebA‐HQ,
Wikiart, Horse and Cat datasets. The official Tensorflow implementation of StyleGAN
contains links to download pretrained models on FFHQ, LSUN Car, Wikiart, Horse and
Cat. Themodels trainedonWikiartwere downloaded fromawesome‐pretrained‐stylegan3.
In addition to the datasets used by the authors, we also perform our own experiments
on the Beetles dataset which was downloaded from awesome‐pretrained‐stylegan24.

3.3 Experimental setup
All the experiments were conducted on a laptopwith an Intel(R) Core(TM) i7‐8750HCPU
@ 2.20GHz processor, 16GB RAM, NVIDIA GeForce GTX 1060 with Max‐Q Design (6GB
VRAM) GPU, and Ubuntu 18.04.5 LTS. The generated images from our experiments were
evaluated visually to determine whether the edits were working as expected.

4 Results

We were able to reproduce the results and verify the claims (mentioned in Section 2)
made by the authors for the StyleGAN and StyleGAN2models by recreating themodified
images, given the configuration parameters. Additionally, we also perform our own ex‐
periments to provide additional results that validate the effectiveness of the technique
employed by GANSpace.

4.1 Effectiveness of PCA

Figure 3. Sequences of image edits performed using control discovered with StyleGAN2 cars: “Ini‐
tial Image”→ “Change Color”→ “Add Grass”→ “Rotate”→ ”Change Type”

1https://github.com/NVlabs/stylegan
2https://github.com/NVlabs/stylegan2
3https://github.com/justinpinkney/awesome-pretrained-stylegan
4https://github.com/justinpinkney/awesome-pretrained-stylegan2
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Figure 3 highlights the effectiveness of PCAon changing the lowandhigh level attributes
of the image. We are able to control object shape, colour and pose as well as nuanced
landscape attributes.
The edit directions corresponding to eachof the edits are: E(v22, 9−10) (”ChangeColor”),
E(v11, 9− 10) (”Add Grass”), E(v0, 0− 4) (”Rotate”) and E(v16, 3− 5) (”Change type”).

4.2 Unsupervised vs. Supervised methods

(a) Edit directions identified by PCA (E(v1, 0− 1))

(b) Edit directions identified by supervised methods[2]

Figure 4. Comparison of edits using unsupervised and supervised methods

Previous methods for finding interpretable directions in GAN latent spaces require ex‐
ternal supervision, such as labeled training images or pretrained classifiers. GANSpace,
on the other hand, automatically identifies variations intrinsic to the model without su‐
pervision. This has been validated using the CelebA‐HQ Faces dataset by comparing the
edit directions found through PCA to those found in previous works using supervised
methods.
Figure 4 shows that comparable edits can be obtained in a completely unsupervised
fashion. Additionally, GANSpace can be used to identify new edits which have not been
previously demonstrated. Supervisedmethods are not viable for this task as supervising
each new edit would be costly. It is also difficult to know in advancewhich edits are even
possible in supervised approaches.
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4.3 PCA components vs. Random directions

Figure 5. Illustration of the significance of the principal components as compared to random di‐
rections in the intermediate latent space of StyleGAN2.

The original authors claim that the earlier PCA components primarily control the geom‐
etry and other high‐level aspects (pose and style), while the lower components capture
minute details. Additionally, they claim that fixing and randomizing randomly‐chosen
directions do not yield PCA‐like meaningful decompositions, thus showing the impor‐
tance of identifying good directions using PCA. This has been illustrated in Figure 5,
where different subsets of principal coordinates and random coordinates are random‐
ized while keeping the latent vector constant. In Figure 5a, the first eight principal co‐
ordinates x0:7 are fixed and the remaining 504 coordinates x8:512 are randomized. This
changes the background and appearance of the cat while keeping the cat’s pose and cam‐
era angle constant. Conversely, Figure 5b shows that fixing the last 504 coordinates and
randomizing the first eight yields images where the camera and orientation vary, but
the color and appearance are held roughly constant. Figure 5c and Figure 5d shows the
results of the same process applied to random directions. The images illustrate that any
given 8 directions have no distinctive effect on the output.

4.4 Additional results not present in the original paper

New edits —We identify new edits on the Stylegan2 Beetles dataset. Edit E(v2, 0 − 17),
referred to as ”Patterns”, adds a pattern on the shell of the beetle as well as increasing
the overall size of the beetle. The generated pattern varies depending on the seed used
to sample w.
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(a) Beetle generated with seed 1819967864

(b) Beetle generated with seed 1

Figure 6. ”Patterns” edit applied on the output images of StyleGAN2 Beetles

Truncation Trick on StyleGAN — The ”Truncation Trick” is a procedure applied to the latent
vectors to improve the quality of the generated images at the expense of variety in the
images. It does this by sampling the latent vectors from a truncated distribution that is
closer to the average of the latent vectors sampled during training, thereby reducing the
variance of the latent vectors used during inference. The authors of [6] show that using
the truncation trick improves the Fréchet Inception Distance (FID) and Inception Score
(IS).
In the StyleGAN/StyleGAN2models, the truncation trick is applied on the latent spacew,
which is the output of the mapping networkM . During the training process, a running
average wavg of the latents is computed. Later, the latents sampled during inference
are truncated to lie close to wavg. Equation 3 shows the truncation process on Style‐
GAN/StyleGAN2 models:

w′ = wavg + ψ(w−wavg) (3)

During our experiments, we noticed that the original authors use the truncation trick
on images generated using StyleGAN2 to reduce the number of artifacts. However, this
is not enabled for StyleGAN images. We found that enabling truncation while applying
edits on StyleGAN images improved their quality as well. We demonstrate this using the
Wikiart dataset through the ”HeadRotation” (E(v7, 0−1)) and ”Simple Strokes” (E(v9, 8−
14) edits. In Figure 7, we can see that the generated faces contain less noise and artifacts
when the truncation trick is used. For example, the lower half of the person’s face in the
”Head Rotation” image does not contain as much noise as their counterpart which does
not employ the truncation trick. Here, we can also observe the change in the generated
images as truncation psi is decreased a lower value of 0.25. This truncates the sampled
latents to lie very close to the average and results in images that look very similar to
each other. If truncation psi is set to 0, then according to Equation 3, we can see that
the truncated latent w′ is always equal to wavg.

5 Discussion

After performing our experiments, we feel that the results justify the claims of the pa‐
per. This is further bolstered by the fact that the proposed method worked on different
datasets which were not covered by the original authors.
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(a) ”Head Rotation” and ”Simple Strokes” edits on StyleGANWikiart with truncation psi set to 0.25

(b) ”Head Rotation” and ”Simple Strokes” edits on StyleGANWikiart with truncation psi set to 0.7

(c) ”Head Rotation” and ”Simple Strokes” edits on StyleGANWikiart without truncation psi

Figure 7. Quality of images generated by StyleGAN before and after applying the ”truncation trick”.
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5.1 What was easy
The paper provides detailed explanations for the different mathematical concepts that
were involved in the proposed method. This, augmented with a well‐structured and
documented code repository, allowed us to understand and verify the major ideas in
a relatively short period of time. Additionally, the paper provided a lot of examples on
various datasets to demonstrate exactly how their algorithmworks. The authors ensured
that all the figures in the paper had accompanying code to recreate them.
NVIDIA’s implementation of StyleGAN and StyleGAN2 provided access to well written
API’s which we could integrate easily into the author’s codebase.

5.2 What was difficult
While running our experiments, we noticed that there was a small difference in the RGB
values of the recreated images. This was due to the difference in the random values
generated by PyTorch‐CPU, PyTorch‐GPU and Numpy random number generators even
when seededwith the same seed. The noise variables in the StyleGANnetworkswere not
identical because of this. This resulted in minute differences in background artifacts of
the images.

Python Library Random Number
PyTorch 1.3.1 (CPU) 0.3367
PyTorch 1.3.1 (GPU) 0.1940

Numpy 1.20.1 0.49671415

Table 1. Random values generated using different Python libraries seeded with 42

We were not able to replicate the author’s experiments on BigGAN512‐deep due to time
constraints.

5.3 Communication with original authors
While conducting our experiments, we did not contact the original authors. The paper
and codebasewere organizedwell and aided us in effectively reproducing and validating
the authors’ claims.
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