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Reproducibility Summary

Scope of reproducibility
Our work attempts to verify twomethods to mitigate forms of inequality in ride‐pooling
platforms proposed in the paperData-DrivenMethods for Balancing Fairness and Efficiency
in Ride-Pooling [1]: (1) integrating fairness constraints into the objective functions and
(2) redistributing income of drivers. We extend this paper by testing for robustness to a
change in the neighbourhood selection process by using actual Manhattan neighbour‐
hoods and we use corresponding demographic data to examine differences in service
based on ethnicity.

Methodology
The authors of the paper provide preprocessed data and code implemented in Tensor‐
Flow, which we transform into PyTorch. Experiments in this reproducibility study can
be divided into 3 parts: (1‐2) we reproduce the results regarding objective functions and
income redistribution using data and settings provided in the paper and code; (3) we ap‐
ply this approach to the same data grouped into Manhattan neighbourhoods. Further,
we examinediscrepancies between service rates of different ethnicities usingneighbourhood‐
specific demographic data as a proxy for this protected information.

Results
The results in the original paper regarding different objective functions were repro‐
duced within a margin of error. Also, income redistribution is able to reduce wage
inequality, albeit to a lesser degree. The objective functions appear to be sensitive to
the neighbourhood selection mechanism. While the results of the rider‐fairness objec‐
tive functions are maintained, performance of the driver‐fairness objective functions
declines. There appear to be only small differences in service rates between ethnicities,
while rider‐side fairness seems to mitigate inequalities the most. However, this is only
achieved byworsening the service for well‐served neighbourhoods instead of improving
it for underserved ones.
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[Re] Data-Driven Methods for Balancing Fairness and Efficiency in Ride-Pooling

What was easy
The simulation logic as well as the training and testing procedures in the provided code
were straightforward to execute.

What was difficult
To be able to run the authors’ code we needed to make several changes to it. Moreover,
specific parts of the original research were not explicitly mentioned in the paper. An‐
other point of difficulty was the absence of preprocessing code which was not detailed
properly and could not be fully reproduced. The reproducibility of the paper relied on
the provided code, communication with the authors as well as previous works.

Communication with original authors
We contacted the authors about the preprocessed data that was not hosted online due
to licensing issues. They supplied it as well as responded very quickly and provided
clarifications on the parameters and their values in the code.

1 Introduction

Ride‐pooling, where drivers can servicemultiple requests from riders simultaneously, is
becoming increasingly popular [2]. Since resources are shared, ride‐pooling has the po‐
tential to reduce the aggregate VKT (”vehicle kilometres travelled”) and with that reduce
petroleum usage and carbon dioxide emissions [3]. To efficiently perform the match‐
ing of riders and drivers, machine learning algorithms are used [4], which optimise for
income maximisation. However, with respect to ride pooling, previous works have ob‐
served a gender wage gap [5] as well as majority Asian and Hispanic neighbourhoods
being associated with less service compared to white neighbourhoods [6]. Therefore,
alternative fairness notions could also be useful.
Shah, Lowalekar, and Varakantham7 introduce an algorithm to solve the ride‐pooling
matching problem, which maximises the number of rider requests serviced based on a
Markov decision process (MDP) in combination with deep learning. The authors of the
paper Data-Driven Methods for Balancing Fairness and Efficiency in Ride-Pooling [1] extend
this work to comparemultiple objective functions, defined on different fairnessmetrics.
Next to that, they investigate the use of income redistribution. In this reproducibility
study, we attempt to verify their results and extend their experiments.

2 Scope of reproducibility

Themain contribution of the paper is introducing and evaluatingmeasures to deal with
the fairness issues arising in ride‐pooling. In our reproducibility study, we first focus on
reimplementing their code (implemented in TensorFlow [8]) in PyTorch [9] and compare
the results we achieve to their findings. Themain claimsmade in the original paper are:

• The authors claim that they extend theMDP‐based framework (introduced in Shah,
Lowalekar, andVarakantham7) by incorporating different definitions of fairness to
perform non‐myopic optimisation. By incorporating fairness measures into the
objective function, driver and rider inequality can be reduced while maintaining
or even improving profitability.

• The state‐of‐the‐art objective function [7] can outperform the fairness objective
functions in certain settings in terms of rider‐fairness and increase the average
income of drivers at the cost of a higher variance.
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• Income redistribution can be used to reduce wage inequality while avoiding the
free‐rider problem and guaranteeing a minimum wage for drivers.

The mathematical proof guaranteeing the minimum wage is not verified in our study.
In addition to testing for reproducibility, we examine the robustness of the approach to
changes in the neighbourhood selection method using actual tabulation areas. Using
demographic data, we investigate whether the fairness objective functions are fair to all
ethnicities. To investigate these aspects of the paper, we followed these steps:

1. We inspect the provided codebase and identify, analyse and solve any barriers to
running the code.

2. Next, we transform the code to the PyTorch framework,matching the functionality
as well as possible.

3. With the PyTorch version we attempt to reproduce the results using the dataset
preprocessed by the authors. To investigate potential differences, we use different
seeds to examine the effect of randomness.

4. To test the method’s robustness we utilise the authors’ approach on actual neigh‐
bourhoods in Manhattan and, using the neighbourhood demographic composi‐
tions (since individual protected data is confidential), we explore whether the in‐
troducedobjective functionsmitigate potential inequalities between ethnic groups.

3 Theoretical background

The paper we are reproducing extends the method proposed in Shah, Lowalekar, and
Varakantham7. The latter presents Neural Approximate Dynamic Programming (Neu‐
rADP), which uses offline‐online learning and approximates dynamic programming to
match drivers and riders non‐myopically. The following subsections explain NeurADP
and the two extensions proposed in Raman, Shah, and Dickerson1, fairness‐based ob‐
jective functions and income redistribution.

3.1 NeurADP: Neural Approximate Dynamic Programming
NeurADP uses neural network‐based value function approximation and updates it using
the Bellman equation [10]. To break temporal dependencies between samples, mini‐
batch experience replay is used [11].
The neural network is used to rank feasible actions for each agent. To receive the opti‐
mal choices, an integer linear program (ILP) is solved considering the top 150 feasible
actions. To update the neural network, the authors use a target network and Double
Q‐learning [12]. The value function over individual vehicles is learned offline. When
the approach is running online, the model computes the driver‐rider assignment that
maximises the value function computed in the offline phase. Further details regarding
the neural network inputs and its architecture are in Appendix A.

3.2 Fairness-based objective functions
Prior work used profitability metrics as objective functions. The authors introduce two
new objective functions to improve both driver‐side and rider‐side fairness [1] and com‐
pare them using different evaluation strategies.
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Profitability objectives There are two profitability measures used: the number of rid‐
ers serviced (o1) and the total income (o2).

o1(R,W ) =

n∑
i=1

|pi|+ |si|, o2(R,W ) =

n∑
i=1

∑
u∈pi∪si

Eg,e + δ︸ ︷︷ ︸
πi

. (1)

The total number of rides serviced by driver i consists of the number of ongoing requests
|pi| and completed requests |si|. The total income is calculated by adding the incomes πi

of the individual drivers i. The income for any request u is the sum of the variable cost
Eg,e (depending on the start and end locations g and e) and the fixed part of ride‐pooling
pricing, represented by the constant δ.

Fairness objectives The authors define two fairnessmetrics for rider‐side (o3) anddriver‐
side (o4) fairness.

o3(R,W ) = −λVar
(
hj

kj

)
+

n∑
i=1

πi, o4(R,W ) = −λVar(πi) +

n∑
i=1

πi. (2)

The former is quantified by the variance of the success rates which is computed by the
ratio between serviced and total requests

(
hj

kj

)
originating in neighbourhood j. Each

crossing is mapped to one of H neighbourhoods. o4 is based on the spread of incomes
πi. Both objective functions incorporate the total income o2 into the equation, λ controls
the importance of the variance term.

Evaluation strategy To measure the effect of different objective functions, the authors
introduce two fairness metrics. They evaluate rider‐fairness by comparing the overall
and minimum success rates across neighbourhoods. They then utilise the income dis‐
tributions to assess driver‐fairness.

3.3 Income redistribution
The authors also introduce an income redistribution scheme to mitigate income fluc‐
tuation and inequality in driver wages. To help estimate the true contribution of each
driver, Shapley values [13] are used. In this ride‐pooling setting, a Shapley value can
be intuitively interpreted as the average profit lost when a specific driver does not con‐
tribute.
To reduce the difference between a driver’s pre‐redistribution income πi, and Shapley
value vi, the authors use a risk parameter, 0 ≤ r ≤ 1, which designates what fraction
of a driver’s income is kept. The model collects

∑n
=1(1 − r)πi from all drivers and re‐

distributes it proportional to the difference between their value and earnings, which is
max(0, vi − rπi). The driver’s income after redistribution, qi, is

qi = rvi +
max(0, vi − rπi)∑n

j=1 max(0, vj − rπj)

n∑
j=1

(1− r)vj (3)

Evaluation strategy Tomeasure the correlation between the Shapley value and income
after redistribution, the gain metric gi is defined as the ratio of change in qi to vi when
vi is doubled. The gain g is calculated as the average over gi. To test the effect of income
redistribution, the authors determine gain and the standard deviation of the ratio of qi to
vi for varying values of r. The most desirable outcome is that the driver’s redistribution
value is as close as possible to their Shapley value, i.e. std = 0 and that if they double
their contribution, they double their earnings after redistribution, i.e. g = 1.
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4 Methodology

In this section, the approaches used in our reproducibility study are outlined.

4.1 Datasets
The following shows the original dataset and the demographic data to the Manhattan
neighbourhoods.

NYC yellow taxi data Manhattan — Similar to Raman, Shah, and Dickerson1, we use the
dataset ’Yellow taxi trip records’ from New York City [14] for training and evaluation.
The original dataset contains pick‐up and drop‐off coordinates for taxi passengers. We
follow the assumption of the original paper that the spatial and temporal distribution of
rider requests between ride‐pooling and taxi rides are similar. The preprocessing done
inRaman, Shah, andDickerson1 consists of the following steps. First, the dataset of New
York City is filtered to only comprise trips starting and ending in Manhattan. Next, the
coordinates are discretised into |L| locations, which are identified by taking the street
network of the city from openstreetmap [15] using osmnx with ’drive’ as network type.
We take the largest strongly connected component of the network discarding nodes that
do not have outgoing edges.
The resulting network has 4373 locations (street intersections) and 9540 edges. The pick‐
up time is converted to batches of requests corresponding to theminutes. Furthermore,
the locations are grouped into 10 neighbourhoods using K‐means clustering [16]. The
dataset contains on average 322714 requests in a day (on weekdays) and 19820 requests
during the peak hour. The preproccessed dataset was not publicly available, although
mentioned otherwise in the paper. The authors confirmed that this was due to licensing
issues and provided us with the preprocessed data. The model is trained using the data
from March 26th ‐ 28th 2016. The fairness objective functions are tested on the data
from April 4th.

Demographics by Neighborhood Tabulation Area — The dataset ”Demographics by Neighbor‐
hood Tabulation Area” for New York City [17] allows us to investigate whether the ride
demand of racial or ethnic minorities is indeed satisfied in the same way. It contains
demographic data for each neighborhood tabulation area (NTA) in New York City. A
NTA is an area for which census data is gathered. The demographic data relevant to this
report are the race/ethnicity percentages per neighbourhood, namely Hispanic/Latino,
White, Black/African‐American, Asian, Other. Instead of running K‐means clustering to
obtain the neighbourhoods, we take the neighbourhoods corresponding to these NTA ar‐
eas in Manhattan. This results in 29 instead of 10 neighbourhoods for Manhattan. To
be able to determine which nodes in the graph are situated in which NTA, we made use
of the ”2010 Neighborhood Tabulation Areas” dataset [18] which contains coordinates
specifying an approximation of the polygon shape of each neighbourhood.

4.2 Code
Our implementation is based on the code of the paper which is publicly available at
GitHub 1. The repository was updated after we started reproducing the paper, but we
refer to the commit specified above unless stated otherwise. The published code is not
functioning and does not include the preprocessing steps. However, the main frame‐
work for testing and training is provided and hyperparameters can be configured using
setting files. We re‐implemented the model in the PyTorch framework [9], ensuring

1https://github.com/naveenr414/ijcai‐rideshare/tree/78d81d0f417ad4fd54ea2e967010bb221fc4e177
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that the default behaviour of TensorFlow which was implicitly used in the authors’ im‐
plementation is replicated. This includes weight initialisation and hyperparameters of
the optimiser. To transfer the masking mechanism used to pad the sequences, we em‐
ployed PyTorch’s packed sequence implementation. Since the new framework does not
support backwards LSTM, we used a bidirectional LSTM and ignored the forward pass
to achieve the same functionality. In accordance with the original code, we used the
CPLEX optimiser [19] to solve the ILP. To support the number of drivers and, therefore,
bigger linear systems, the academic or commercial version is necessary. There were
some rare situations in which the ILP failed to satisfy the constraints (one or two agents
were not assigned any actions) which led to an error. This was fixed by assigning the
”take no action” action to those agents. In addition, we implemented the preprocessing
steps on the original dataset [14], as this code was not available. For this, we perform
the same steps indicated in Section 4.1.1, but we simplified the estimation of the travel
times as this was not clear from the paper. Our code is available at GitHub. 2

4.3 Hyperparameters
Focusing on reproducing the original paper [1], we tried to stay close to the original
paper’s approach and did not perform hyperparameter optimisation. Hyperparameter
values missing in the paper (e.g. minimum number of experiences and samples) were
retrieved from the authors’ code. Additionally, there were inconsistencies, when some
hyperparameters had different values in different parts of code (e.g. embedding dimen‐
sion). In this case, we reached out to the authors for clarification. More details on hy‐
perparameters are in Appendix C.

4.4 Computational requirements
To increase the available computational resources, we used multiple computers with
different hardware (see Table 5 in the Appendix). In general, the training time is dom‐
inated by the simulation of the environment and solving the ILP. The training of the
neural network plays only a minor role. Hence, GPUs are not crucial for training, the
training time is mostly determined by the single‐core performance of the CPU. A run
consisting of training on three days and testing on one typically takes about 2.5 to 3
hours. In total, running all experiments took 202 hours.

4.5 Experimental setup

Setting Value
Number of drivers 50 , 200
Objective function Driver, rider, requests, income

Lambda Driver: 0, 1
6
, 2
6
, 3
6
, 4
6
, 5
6
, 6
6

Rider : 108, 109, 1010

Training days 3
Testing days 1

Table 1. Settings used for the experiments

Experiment 1 (Objective Func‐
tions) To reproduce the results
regarding claims 1 and 2, dif‐
ferent settings are needed, pre‐
sented in Table 1. All com‐
binations of these settings are
used. The requests and income
objective functions do not have
lambda values. Furthermore,
the embeddings are trained (fur‐
ther details are in Appendix A.1).
We use the same training/testing split as in the paper (described in Section 4.1), and
evaluate the results based on overall and minimum success rates as well as income dis‐
tribution.
To test if the differences between our findings and the original results are caused by ran‐
domness, we rerun the experiments using different seeds. Due to limited resources, we

2https://github.com/reproducibilityaccount/reproducing‐ridesharing
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rerun only a subset of setting combinations. Further details can be found in Appendix
B.

Experiment 2 (Income Redistribution) In accordance with the original paper, the re‐
sults of the Objective Functions experiments are reused to evaluate the income redistri‐
bution for claim 3. The analysis is focused on the 200 drivers with the requests objective
function using gain and standard deviation (see Section 3.3).

Experiment 3 (Neighbourhood Demographics) To test robustness we use the 29 pre‐
defined neighbourhoods and train the models using the configurations of for only 200
drivers. To incorporate the demographic data for the analysis presented in step 4 (see
Section 2), we map the results per neighbourhood to the five different ethnicities, un‐
der the assumption that the distribution of ethnicities living in a neighbourhood corre‐
sponds to the distributions of riders’ ethnicities. For each group, we calculate the mean
across all neighbourhoods weighted by the percentage of this group living in that area.
This results in five different values per objective function. The higher this value is, the
more requests of the corresponding group are serviced. Since we are interested in the
difference across groups, we subtract the average of this rate. Values above zero indicate
a group that is serviced above average and, hence, could be interpreted as advantaged.
In addition, we evaluate the overall, minimum and per neighbourhood success rates.

5 Results

In the following, we will present the results of the three different experiments.

5.1 Reproducibility result 1 - Fairness objective functions

1000 1500 2000 2500 3000 3500 4000 4500
Payment ($)

Income
Rider Fairness

Driver Fairness
Requests

Po
lic

y

Figure 1. Comparison of income distributions (λ = 4
6
for driver‐

side fairness and λ = 109 for rider‐side fairness). Income in
dollars for the drivers when the four objective functions are op‐
timized.

Looking at our findings in
Figure 2a, we conclude that
for 50 drivers the results for
the rider‐fairnessmetric can
be reproduced, the success
rates for the different objec‐
tive functions match. Using
the driver‐fairness objective
function improves both the
success rate and the rider
equality.
For 200 drivers, there are mi‐
nor discrepancies between
our results and the original.
They can, however, be explained by stochasticity introduced by different seeds. How‐
ever, for rider‐fairness with λ = 1010, the difference can not be explained by random‐
ness. The requests objective function often results in more profit and better rider equal‐
ity.
For each objective function, the payment distribution for 200 drivers is shown in Figure
2b. The variance of the distributions are similar in magnitude, the means however are
slightly shifted. Looking at the differences between the results for different seeds, this
could be explained by randomness. The driver‐fairness objective function is able to
reduce the variance in income between drivers, but the profitability is also decreased.
Appendix E shows the results presented in the original paper, the results of the different
seeded runs are visualised in Figure 10.
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Figure 2. Comparison of the objective functions for different number of drivers, λ not included, re‐
flecting the original paper. The minimum request success rate is compared to the overall success
rate for all objective functions with the different values of the λ parameter. This comparison is
made for the 50 driver setting (a) as well as the 200 driver setting (b).
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(b) Standard deviation vs. r

Figure 3. Comparison of the gain metric and the standard deviation of the income to value ratio
for different values of risk parameter r.

5.2 Reproducibility result 2 - Income redistribution
The authors’ findings regarding the effect that varying the risk parameter r has on the
gain and the standard deviation of the ratio qi

vi
were not reproducible on the basis of the

information in the paper alone, nor were they immediately reproducible from the code
itself. Upon further communication with the authors, they updated their code. There
was also a typo in the formula given in Equation 3 (Equation 12 in Raman, Shah, and
Dickerson1). The correct equation is:

qi = rπi +
max(0, vi − rπi)∑n

j=1 max(0, vj − rπj)

n∑
j=1

(1− r)πj , (4)

where it can be seen that the use of Shapley values in the first term and last factor have
been replaced by the amounts before redistribution. With these corrections in place,
our Income Redistribution experiments yielded the results seen in Figure 3. For values
of 0.4 ≤ r ≤ 0.6 the gain is non‐zero whilst maintaining a spread close to zero for the
redistribution income to Shapley value ratio. In the original paper, this condition held
for values of 0.5 ≤ r ≤ 0.9. Furthermore, the magnitude of the gain is far smaller
at the point at which the spread begins to increase. This indicates that when r = 0.6,
drivers only receive a 40% increase in their wages whilst still earning close to their true
contribution. This is in contrast with the original, where, for r = 0.9, drivers receive
an 80% increase in their wages while minimising the free‐rider problem. This leads us
to conclude that the results of this redistribution scheme were not reproducible in this
setting. The original results are shown in Figure 8 in the Appendix.
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Figure 4. Analysis of results incorporating demographic data. Plot (a) shows the same comparison
as was made in the original paper (shown in Figure 2a), the minimum request success rate is
compared to the overall success rate for all objective functions. Plot (b) shows the difference in
servicing average success rate for different demographic groups for four objective functions.

5.3 Results for Manhattan neighbourhoods and incorporating demographic data
We retrained the model (see Section 4.5). Comparing the resulting Figure 4 to previous
findings in Figure 2a, we observe that by changing the neighbourhoods the performance
of the driver‐fairness objective functions deteriorates themost. The rider‐fairness objec‐
tive functions share some similarities between the two experiments but the latter now
performs best in terms of fairness across neighbourhoods (minimum request success
rate).

driver_fairness income requests rider_fairness
Objective function

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Su
cc

es
s r

at
e

Figure 5. Distribution of success rates per neighbourhood for
four objective functions (λ = 0.5 for driver‐fairness, λ = 1010

for rider‐fairness).

Figure 4b shows that there
are small differences in the
percentage of requests ser‐
viced per ethnicity. The
rider‐fairness objective func‐
tion for λ = 1010 seems to be
best at mitigating inequal‐
ity. However, as seen in Fig‐
ure 4a, rider‐fairness results
in low success rates. This
might indicate that the ob‐
jective function merely low‐
ers success rates for oth‐
erwise well‐serviced neigh‐
bourhoods rather than im‐
provingunder‐serviced ones.
To confirm this, we visu‐
alised the success rate per
neighbourhood and objec‐
tive function (see Figure 5). It can be seen that rider‐fairness indeed exhibits notably
reduced variance but also a lower mean when compared to the other objective func‐
tions which tend to have an upward skew. This shows that rather than benefiting under‐
serviced neighbourhoods, applying rider‐fairness only lessens the success rate of well‐
served ones.

6 Discussion

Combining the results from the reproducibility experiments (Objective Functions exper‐
iment and Income Redistribution experiment in Section 4.5), we find that the first claim
mentioned in Section 2 is supported by our results for 50 drivers. Furthermore, our re‐
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sults substantiate the second claim. The ‘requests’ objective function can improve the
rider‐fairness for 200 drivers. Additionally, it results in the highest average income per
driver but exhibits a higher variance than the driver‐fairness objective function. These
observations are in accordance with the ones of the original paper.
For the 200 drivers setting, specific results were more sensitive to sources of stochastic‐
ity than for 50 drivers. After inspecting the code, we found that the minimum number
of experiences needed to start the training of the neural network is never exceeded for
the 50 drivers setup. In the 200 drivers configuration, it is reached and hence the neural
network is trained. Since theweights of themodel are randomly initialised, itmight con‐
verge to a different local minimum which yields a different value function. This could
explain the variance in the corresponding results. For 50 drivers, in contrast, no learn‐
ing is involved. Hence, the result goes through a randomly initialised model. Weights
are typically initialised to preserve themean and variance of the input, which should be
unaffected by the specific seed used. This could explain the strong similarity between
our results and the original results for the 50 drivers setup.
Differences found in reproducing the income redistribution scheme may also be ac‐
counted for by the above. However, while our results are not exactly the same, the third
claim still holds, although to a considerably lesser degree than in the original paper.
When employing the actual Manhattan neighbourhoods, the relative standing of the
various objective functions was different compared to the ones determined by K‐Means.
This indicates that the proposed method is sensitive to the neighbourhood selection
mechanism. Looking at the demographic data, it can be seen that all objective functions
exhibit small differences between ethnicities. These, however, could be attributed to
stochasticity.
In any case, rider‐fairness results in the least variance across ethnicities at the price of
mean success rate. However, this result does not imply that rider‐fairness achieves this
low variance by better servicing neighbourhoods with a lower percentage of accepted
requests, but rather by servicing better‐served neighbourhoods less well. Importantly,
the ethnicity‐based analyses are built on the assumption that the distribution of the
ethnicities of residents and riders in a neighbourhood is similar. However, ride pooling
might be used by other people like commuters or tourists. Furthermore, there could
be differences between the ethnic populations regarding the percentage of ride‐sharing
users.

6.1 What was easy
Part of the code, namely the simulation logic, did not need any modifications. This
logic is responsible for telling drivers of possible rides to accept as well as executing
the drivers’ choices and keeping the simulation consistent with respect to the existing
constraints. The training and testing procedure was also straightforward to execute.

6.2 What was difficult
The codebase was not originally executable and required modifications. In addition to
that, several aspects of the original research were not explicitly mentioned in the paper.
Although, in the end, we were able to reproduce most results, this would not have been
possible without consulting either the code, the authors or the paper about NeurADP
[7]. Another challenge was the absence of preprocessing code which together with the
lack of a detailed description in the paper (specifically for travel time estimates)made its
implementation difficult. With the limited time resources we had, we did not succeed
in testing if our preprocessing implementation affected the results.
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6.3 Communication with original authors
The authors were very helpful, kind and responded very quickly, often within the same
day. This was a very important factor in the production of this reproducibility report as
the preprocessed data could not be hosted online due to licensing issues. Furthermore,
they also provided useful clarifications with respect to the parameters used in the code
and discrepancies between different parameter values in different places. The authors
also updated the codebase following our discussions.
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Appendix

A Neural network details

The inputs to the neural network model are the current location of the vehicle, the in‐
formation about the remaining delay, and locations for the current requests that have
been accepted. First, authors order them according to their trajectory and feed them as
inputs to an LSTM [20] after an embedding layer. The embeddings for the locations are
calculated separately and are the byproduct of a two‐layer neural network that attempts
to estimate the travel times between two locations (see Appendix A.1).
Additional inputs to the neural network are the information about the current decision
epoch, the number of vehicles in the vicinity of the vehicle of interest and the total num‐
ber of requests that arrived in the epoch. This information is used to stabilise learning
because the value of being in a given state is dependent on the competition it faces from
other drivers when it is in that state. These inputs are concatenated with the output of
the LSTM from the previous paragraph and, after 2 dense layers, used to predict the
value. An overview of the details of the neural network can be seen in Table 2.

locations of vehicle and
delay

decision time number of total number
its accepted requests ↓

vehicles in vicinity of requests↓
Embedding (100) Linear Layer (100)

↓ ↓
locations embedding time embedding

↓
LSTM

↓
path embedding

↓
Linear Layer (300)

↓
ELU
↓

Linear Layer (300)
↓

ELU
↓

Linear Layer (1)
↓

value

Table 2. Overview of the value approximation neural network. The model layers (with output
dimensions in brackets) are presented in bold.
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A.1 Embeddings training

In accordance with Shah, Lowalekar, and Varakantham7, the embedding model, shown
in Table 3, was trained for 1000 epochs with batch size 1024 and Adam optimiser with
default settings. The training also utilises early stopping with patience 15.

origin location destination location
↓ ↓

Embedding Embedding
↓ ↓

origin embedding destination embedding
Concat(origin embedding, destination embedding)

↓
Linear Layer (100)

↓
ELU
↓

Linear Layer (1)
↓

travel time estimate

Table 3. Embedding Model. The model layers (with output dimensions in brackets) are presented
in bold.

B Seeds

The settings selected for seeded runs, have to meet several conditions. First of all, we
wanted to rerun at least one setting for all four objective functions. Next to that, for the
rider‐fairness, we rerun all lambda values because this objective function differed the
most between our results and the original paper’s. For the driver‐fairness, we only chose
a lambda value of 4/6, since all lambda values yield similar results and only this one is
used to examine both, driver‐ and rider‐side fairness metrics.
By default, the seed 874 is used. If further seeds are used for experiments, the following
four are utilised: 688701, 490013, 423376, 191758.

C Hyperparameters

Hyperparameter names Values
number of locations: |L| 4461

number of neighbourhoods: H 10
max. capacity of driver: m 4
ride‐pooling pricing: δ 5

pick up delay 300
drop off delay 600

min. replay buffer size 5 ∗ 105 / (number of riders)
number of samples 3

gamma: γ 0.9

Table 4. Hyperparameter values.
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D Hardware configurations

Name CPU GPU RAM
Setup 1 i5‐8600k GTX1080 16 GB
Setup 2 i7‐1165G7 ‐ 32 GB
Setup 3 Apple‐M1 ‐ 16 GB

LISA clustera Intel Xeon Silver 4110 GTX1080 Ti 32 GB

Table 5. Hardware configurations used.

aOne Nvidia GTX1080Ti GPU with 3 CPUs provided by SURFsara’s LISA cluster. For more info see: https:
//userinfo.surfsara.nl/systems/lisa/description

E Results of the original paper

Figure 6. Figure of the original paper, Raman, Shah, and Dickerson1, comparing objective func‐
tions for different number of drivers.

Figure 7. Figure of the original paper, Raman, Shah, and Dickerson1, comparing the distribution of
incomes for different objective functions (λ = 4

6
for driver‐side fairness and λ = 109 for rider‐side

fairness.)
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Figure 8. Figure of the original paper, Raman, Shah, and Dickerson1, comparing the gain metric to
the standard deviation of the redistributed income to Shapley value ratio for different values of r.

F Results for different seeds
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Figure 9. Comparison of objective functions for 200 drivers with five different seeds. Each config‐
uration is modelled as a bivariate Gaussian distribution. The λ values for the rider‐fairness are
(from left to right): 1010, 109, 108, for the driver‐fairness: λ = 4

6
.
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Figure 10. Comparing the distribution of incomes for different objective functions with five differ‐
ent seeds (λ = 4

6
for driver‐side fairness and λ = 109 for rider‐side fairness.)
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