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1 Reproducibility Summary

1.1 Scope of Reproducibility
In this work, we experimented with Layer‐wise Relevance Propagation and combined
it with back‐propagation to perform classification and semantic segmentation, follow‐
ing the approach proposed by Chefer H. et al., in [1] for computer vision. Moreover,
we incorporated the concept of pixel affinities, by using ViT‐based explainability as vi‐
sual seeds to drive the generation of pseudo segmentation masks by computing pixel
affinities, following the approach described by Ahn J. et al. in [2].

1.2 Methodology
In order to reproduce the experiments presented in [1] and [2], we initially examined
the authors’ code thoroughly and based on our understanding, we tried to replicate
most parts of the pipeline apart from evaluation metrics for positive and negative per‐
turbation area‐under‐curve (AUC) results for the predicted and target classes on the
ImageNet [3] validation set, as well as Segmentation performance on the ImageNet‐
segmentation [4] dataset, which we borrowed from the authors’ repository for the work
of Chefer H. et al., in [1]. Regarding hardware, we used private resources to train our
ViT‐hybrid architecture and Affinity network, as well as perform inference for all our
models; Finally, it took roughly 15 GPU hours to reproduce the vision‐related results
of [1] whereas it took about 40 GPU hours to train and evaluate the AffinityNet on the
Hybrid‐ViT architecture.

1.3 Results
Overall, we reproduced the experiments related to the vision task as conducted at [1].
Our results are up to first decimal place identical to those reported in [1] thus support‐
ing the authors’ claim of having implemented a relatively sufficient ViT interpretabil‐
ity method. When it comes to the AffinityNet [2], the method has been adapted in the
context of Hybrid‐ViT architectures with our experiments indicating that the weakly‐
supervised semantic segmentation performance ofHybrid‐ViT architectures are inferior
to the CNN‐based ones.
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1.4 What was easy
We found particularly easy to run and understand the code provided by the original
authors of both [1] and [2] papers. When it comes to replicating [1], the authors provided
most of the information required to reproduce the vision‐related experiments with the
code compensating for what was missing.

1.5 What was difficult
The main difficulty of replicating the study presented in [1] was that details on how to
compute the AUC metric were not provided in the paper report.
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2 Introduction

One of the most exciting technological aspects nowadays is Machine Learning’s promis‐
ing capabilities in transforming the world we live in, mainly due to its exciting resur‐
gence through Deep Learning. However, as machine learning models become more
complex, there is a noticeable trade‐offbetweenaccuracy and simplicity or interpretabil‐
ity [5] and plenty of cutting‐edge research papers have been published in top‐tier con‐
ferences related to this tension. In this project, we primarily experimented with Layer‐
wise Relevance Propagation (LRP), a mechanism of explaining what pixels are relevant
within a 2‐dimensional image for reaching a classification decision [6] and applied it
to a Vision Transformer [ViT] [7], combined with gradient back‐propagation to perform
classification but also semantic segmentation on the respective data in ImageNet [3, 4],
by reproducing the work of Chefer H. et al, in [1].
Furthermore, the task of semantic segmentation refers to clustering the pixels of an in‐
put image that correspond to the same semantic category. There are various approaches
dedicated to this task with the one proposed in [8] being the current state‐of‐the‐art.
However, they all rely on training given ground truth segmentation masks. Consider‐
ing that annotating images in the form of segmentationmasks is a rather expensive and
tedious process, capitalizing on weak forms of segmentation would be highly benefi‐
cial. In order to address these issues, in this project, we investigated using ViT‐based
explainability as visual seeds to drive the generation of pseudo segmentation masks by
computing pixel affinities, following the approach described in [2]. In particular, we
trained a Hybrid ViT‐base, where the patches are extracted from a CNN feature map,
through relevance propagation and used those as seeds to a network computing pixel
affinities, in order to improve quality of the generated segmentation masks.

3 Related Work

Semantic segmentation has numerous applications, such as self‐driving cars ormedical
image analysis. Additionally, the evident importance in providing the machines with
the ability to perceive the world along with its challenging nature has attractedmany re‐
searchers to this domain. Many algorithms have been proposed for this task with Mask
R‐CNN [9] being among the most frequently employed ones. Although such approaches
can be trained to extract semanticwith high precision, they require an extensive amount
of semantically annotated training samples. In their work [2], the authors capitalize on
image‐level supervision to construct competent pseudo‐segmentation masks that can
be further utilized to train the segmentation approaches requiring ground truth labels.
More specifically, they use class activation mapping (CAM) [10] seeds to model the rela‐
tion between neighboring pixels, which enables the refinement of the initial CAM cues
into segmentation masks of higher quality. Although the previous approach results in
relatively accurate segmentation masks, the initial CAMs seeds tend to highlight only
the most descriptive part of an instance, which negatively affects the quality of the gen‐
erated segmentation masks. With the purpose of mitigating this issue, the essayist of
[11] employs a sub‐category exploration approach.
RegardingDeepNeural Networks (DNNs) interpretability, various approaches have been
proposed in the literature. GradCAM [12] is a popular interpretability method applied
to various CNN architectures that weighs feature activations in different pixel regions
within an image with the average gradient of the class scores. After these gradients
are computed through global average pooling, they are passed to a ReLU1 activation
function that intensifies pixels contributing towards increasing the target class activa‐
tion scores. However GradCAM is restricted to CNN architectures. One more general

1Rectified Linear Units activation function is: ReLU(x) = max{x, 0}.
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approach is RISE [13] that measures pixels’ importance by applying element‐wise mul‐
tiplications of the original input with a sampled random binary mask to reduce their
intensities to zero and only preserve the most important among them.
AlthoughCNN‐based architectures havedemonstrated competent performance in anum‐
ber of vision‐related tasks, they come with an increased inductive bias due to the 2D
neighboring structure of the images. On the other hand, transformer‐based architec‐
tures are able to learn spatial relationships detached from the explicit 2D nature of the
images. Transformer architecture, since it was proposed in 2017 by Waswani A. et al.,
[14] has become very popular in various deep learning domains, and it is based solely
on attention mechanisms, dispensing recurrence and convolutions entirely and weigh‐
ing the influence of different parts of the input data. Following its recent success in
NLP, it was recently adopted in computer vision tasks, and in this work, we focus on
particularly re‐implementing a Vision Transformer [ViT] [7] from scratch. Additionally,
we employ the explainability cues derived from a image classification ViT to drive the
construction of segmentation masks given solely image‐level annotation as we explain
hereunder.

4 Methods

In this section, we describe the methods utilized in our work. Precisely, in subsection
4.1, we provide details about Vision Transformer architecture. Subsection 4.2 explains
how we perform relevance propagation in our model implementations. Finally, in sub‐
section 4.3, we present the AffinityNet framework modeling the affinity of neighboring
pixels.

4.1 ViT Classification
Asmentioned earlier, a VisionTransformer [ViT] [7] is an implementation of transformer
networks for computer vision tasks. The transformer encoders in ViT are similar to
the original transformer architecture introduced in [14] with slight modifications in the
order of operations. Similarly to how a sentence is split into tokens, in ViT we split
an image into patches and provide the linearization of the patches representations as
input to stacked transformer encoders after adding positional embeddings. Positional
embeddings are learned during training; while processing the input patches in given
order x0, x1, x2, ... we learn the respective positional embeddings x̂0, x̂1, x̂2, ... for the
patches and compute the loss in a backward fashion. The input is then propagated to the
attention heads, where multi‐head attention is calculated as the concatenation of self‐
attention scores computed in each head individually as stated in the formulas below:

Attention(Q,K, V ) = softmax
(
QKT

√
dk

)
V

Multihead(Q,K, V ) = Concat(head1, ...headh)Θ
o

where headi = Attention(QΘQ
i ,KΘK

i , VΘV
i )

Attention is a mechanism for weighting representations learned in a neural network. It
is proportional to the respective weights of the network and really flourished within a
variety of NLP tasks, where self‐attention and multi‐head attention became one of the
major breakthroughs in sequencemodeling tasks precisely [15]. In our implementation,
we use ViT‐Base, the smallest ViT model variant, which consists of 12 stacked encoder
layers, as well as 12 attention heads in every layer, as it is illustrated in table 1. We use
a [CLS] learnable embedding z00 = xclass to the sequence of embedded patches, whose
state at the output of the Transformer encoder zL0 , to which a classification head is at‐
tached to represent an image y = LayerNorm(zL0 ). We also employ a hybrid architecture,
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Model Layers Hidden sizeD MLP size Heads Params
ViT‐Base 12 768 3072 12 86M

Table 1. Details of ViT model variants. Table extracted from [7].

which again consists of a ViT‐Base but the patches are extracted fromaCNN featuremap,
while layer normalization is applied before every block and residual connections after
every block in our implementation as it is described in [7].

4.2 ViT Explainability
As we explained in section 2, one of our main goals in this project was to apply LRP
[6] to a ViT‐Base model [7], combined with classic gradient back‐propagation regime to
perform classification but also semantic segmentation on the respective data in Ima‐
geNet [3, 4], by reproducing the work of Chefer H. et al, in [1]. Considering the input
feature map and weights of layer n in form of tensors, X,Ψwe compute the Deep Taylor
Decomposition R

(n)
j for relevance propagation as formulated below. This expression

satisfies the conservation rule that broadly suggests that relevance will be maintained
in consecutive layers.

R
(n)
j = G

(
X,Ψ, R(n−1)

)
=

∑
i

Xj
∂L

(n)
i (X,Ψ)

∂Xj

Moreover, in cases we have two operators (e.g. skip connections and matrix multiplica‐
tion) the above expression is used for both the input pairs (u, v) and (v, u) to compute
Ru(n)

j andRv(n)

j . Given two such tensors u and v, if we add them in layer n the conserva‐
tion rule ismaintained but not in other cases of operations such asmatrixmultiplication.
To address this lack of conservationwe normalize the relevances and get R̄u(n)

j and R̄v(n)

j

respectively. In addition, there is a special case related to the matrix multiplication op‐
eration, where we get two attribution maps for each of the matrices we multiply, and
the sum of the relevances of each matrix equals R. Furthermore, to actually normalize
the CAMs, all we need to do is divide each of them by 2, which is what the normalization
below would do since Ru(n)

j and Rv(n)

j have identical sums.

Ru(n)

j = G(u, v,R(n−1))

Rv(n)

j = G(v, u,R(n−1))

R̄u(n)

j = Ru(n)

j

|
∑

j R
u(n)

j |
|
∑

j R
u(n)

j |+ |
∑

k R
v(n)

k |
·
∑

i R
(n−1)
i∑

j R
u(n)

j

R̄v(n)

k = Rv(n)

k

|
∑

k R
v(n)

k |
|
∑

j R
u(n)

j |+ |
∑

k R
v(n)

k |
·
∑

i R
(n−1)
i∑
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Following the above formulas, we have computed relevances for all layers of our ViT‐
Base and have implemented relevance propagation, in order to perform semantic seg‐
mentation on the ImageNet‐segmentation [4] dataset following the experiments described
in [1]. An example of a CAM generated by our Hybrid ViT‐base, where the patches are
extracted from a CNN feature map, through relevance propagation is illustrated in Fig.
1(b).
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4.3 AffinityNet
At this stage, we employed the AffinityNet proposed in [2] with the purpose of refining
the initially incomplete explainability cues, derived from the Hybrid‐ViT network, into
segmentation masks of higher quality. In more detail the AffinityNet aims at modelling
the relation between adjacent pixels through leveraging the images’ feature representa‐
tion f aff and computing the similarity of ith and jth pixels as:

Wi,j = exp(−||f aff
i − f aff

j ||)

Conceptually, the AffinityNet is trained to predict the inter‐pixel semantic affinities, in a
class‐agnostic manner, by learning to extract meaningful representations for each pixel.
Evidently, target labels are required in order to drive the AffinityNet’s weights towards
accurately predicting the affinities.

Semantic Affinity Targets — Training the AffinityNet to model the inter‐pixel relationships,
requires supervision in the form of segmentation masks. In our scenario, ground truth
segmentations labels were not provided and thus the generated ViT explainability seeds
are utilized as our best available source of supervision. Admittedly, the generated ex‐
plainability cues can be quite incomplete and by no means precisely capture the whole
instances, however, we can use the most confident pairs in terms of belonging to the
same instance. Assuming C classes withMc corresponding to the explainability cue of
class c, we construct the background activation mapMbg as:

Mbg(x, y) = [1−max
c∈C

Mc(x, y)]
α

The parameterα controls how confident the generated background cues are. Intuitively,
when the α parameter is relatively high, a pixel of high activation in the Mbg would
be a strong indication of the pixel belonging to the background category. On the con‐
trary, when the α parameter is relatively low, a high background activation suggests
that background is the dominant semantic of that pixel but notwith asmuch confidence.
Next, wemake use of the common practice of applying dense conditional random fields
(dCRF) [16] to refine the activation responses for all C + 1 classes. Applying the dCRF
on these classes’ activations with theMbg having been derived from a low α, favors clas‐
sifying the pixels as background. On the other hand, when a high α is used, the dCRF
is more prone to classifying a pixel as its most activated class. Having said that, apply‐
ing dCRF on low α gives rise to the confident pixel of foreground instance while on the
other, a high α allows for identifying confident background pixels. In our experiments,
we set αlow = 4 and αhigh = 32 respectively. Below we provide an indicative illustration
of confident background and foreground pixels.

(a) (b) (c) (d)

Figure 1. (a) Actual image (b) Hybrid‐ViT explainability cue for the ”Plane” Class (c) dCRF generated
confident foreground (d) dCRF generated confident background (The lighter the color intensity
the higher the activation).

Next, we extract pairs of pixels belonging to the same category with high confidence.
Additionally, we also consider as neutral, those pixels that were classified by the dCRF
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as background in the presence of low α and as foreground in the opposite case. Finally,
the construction of confident common‐instance pairs is now feasible. We consider pairs
of positive and negative affinity, in a class‐agnostic manner, while we ignore any pair
containing neutral pixels. It is worth highlighting that only neighboring pairs are ex‐
tracted with a radius of 5 pixels. An intuitive figure, showcasing the possible affinities
is displayed below.

(a)

Figure 2. Concept of pixel‐to‐pixel affinities [image taken from [2]]

Training AffinityNet — After having generated the explainability‐based affinity targets, we
can now train a neural network to generate insignificant W values to those pixels that
are semantically unrelated. More specifically, we utilized the CNN‐backbone as trained
in the Hybrid‐ViT image classification task for feature representation f aff purposes. In
order to adapt to affinity‐assignment task, we employed two 1 × 1 convolutions on top
of the feature map extracted from the Hybrid backbone. The loss used for training the
network incorporates three different types of affinities, namely the negative, the fore‐
ground positive and background positive affinities. Additionally, we weighted the loss
contributions of these three types based on the amount of negative, foreground, and
background affinity labels on each training batch. The intuition behind this approach
was to avoid only accounting for themost frequent case of background positive relation‐
ships due to images containing mostly background content. Based on these the overall
loss was computed as :

L+
fg = − 1

N+
fg

∑
i,j

log(Wi,j)
I(i,j∈T +

fg )

L+
bg = − 1

N+
bg

∑
i,j

log(Wi,j)
I(i,j∈T +

bg )

L− = − 1

N−

∑
i,j

log(Wi,j)
I(i,j∈T −)

L− = L+
fg + L+

bg + 2L−

with I being the indicator of ith and jth pixel sharing the target relationship T . Note
that the L− contributes twice in order avoid unbalance between positive and negative
relationships.

Refining the Explainability seeds — At this stage, we utilized the predicted pixel‐wise affini‐
ties to propagate high explainability activations towards the pixels of identical semantic
affinity. In more detail, we regarded the predicted affinities as transition probabilities
in a random‐walk process. By employing this approach, we were able to propagate the
highly activated regions based on the semantic relationships predicted fromAffinityNet.
The transition matrix derives from the predicted affinities as:

Trw = D−1
w W oβ

with Dw being a diagonal array applying row‐wise normalization to W . Additionally,
the oβ operator is applied so that low transitional probabilities are ignored. Naturally,
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the β hyperparameter has to be an integer value larger than one. Next, we compute the
expected transitional probabilities of t+ 1 iterations of the random walk process as:

Trw = T t
rw

Finally, we extract the semantic segmentationmasks through refining the explainability
seedsMc for each c class as:

vec(Mnew
c ) = Trwvec(Mc)

with vec(.) being the array flatten operator. In our experiments, we used values of 16
and 8 for the hyperparameters β and t respectively.

5 Experiments

5.1 Data
In this project, two different datasets were used: ImageNet [3] (ILSVRC) 2012 along with
its mask‐annotated ImageNet‐Segmentation [4] split and the PASCAL VOC 2012 [17]. The
ImageNet dataset validation split consists of 1000 object classeswith 50.000 imageswhile
the mask‐annotated split contain 4.276 from 445 classes. The PASCAL VOC, considers
20 image categories with 10.583 and 1450 images in the training and the validation split
respectively.

5.2 Transformer Explainability
As part of replicating the target paper [1], we conducted perturbation and segmentation
tests, while the results are presented in tables 2 and 3 respectively. For the former type
of tests, we use a pre‐trained ViT‐Base network to extract visualizations for the valida‐
tion set of ImageNet 2012 [3]. Afterwards, we gradually mask out the pixels of the input
image, from the one with the highest relevance to the one with the lowest when refer‐
ring to positive perturbation and vice versa in the case of negative perturbation. Conse‐
quently, in the first case, we expect to see a high drop in performance when measuring
the mean top‐1 accuracy of the network while in the second case we expect the overall
performance to remain unaffected. Regarding the latter type of tests, we consider each
visualization as a soft segmentation of the image and compare it to the ground truth seg‐
mentation mask of the ImageNet segmentation dataset2. In table 2 we report the AUC
metric for the perturbation tests considering the explainability cues corresponding to
both the most confident (predicted) and the ground truth class (target).

rollout raw GradCAM LRP partial LRP Target paper Ours
[18] attention [12] [19] [20] [1]

Negative Predicted 53.1 45.55 41.52 43.49 50.49 54.16 54.13
Target ‐ ‐ 42.02 43.49 50.49 55.04 55.03

Positive Predicted 20.05 23.99 34.06 41.94 19.64 17.03 17.03
Target ‐ ‐ 33.56 41.93 19.64 16.04 16.38

Table 2. Positive and Negative perturbation AUC results (percents) for the predicted and target
classes, on the ImageNet [3] validation set. For positive perturbation lower is better, and for neg‐
ative perturbation higher is better. Table partly extracted from [1].

Additionally, in table 3 we evaluate the segmentation quality of the extracted cues by
comparing them with the provided ground truth segmentation masks. In Appendix 6.1
we provide qualitative results corresponding to explainability cues in ImageNet; gener‐
ated using our ViT‐Base implementation.

2ImageNet segmentation dataset was obtained from calvin‐vision.net.
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rollout raw GradCAM LRP partial LRP Target paper Ours
[18] attention [12] [19] [20] [1]

pixel accuracy 73.54 67.84 64.44 51.09 76.31 79.70 79.73
mAP 84.76 80.24 71.60 55.68 84.67 86.03 86.03
mIoU 55.42 46.37 40.82 32.89 57.94 61.95 62.01

Table 3. Segmentation performance on the ImageNet‐segmentation [4] dataset (percent). Higher
is better. Table partly extracted from [1].

5.3 AffinityNet by ViT explainability
For the purpose of generating competent segmentation masks given only image‐level
supervision, we relied on AffinityNet to refine the initially incomplete explainability
cues derived from the Hybrid‐ViT image classification network. We evaluated the class‐
wise mIoU in the PASCAL VOC validation dataset in table 4 where we compare the mIoU
performance of the explainability cues prior and post employing the AffinityNet‐based
refinement [2]. In Appendix 6.2 we provide qualitative results corresponding to the re‐
finement of the ViT‐derived explainability cues via the AffinityNet.

CAM [10] AffinityNet [2] Ours Ours AffinityNet
[VGG‐16] [VGG‐16] [ViT‐Hybrid] [ViT‐Hybrid]

mIoU 46.60 54.00 44.60 50.90

Table 4. Segmentation performance on the Pascal VOC segmentation [17] dataset (percent). Higher
is better.

5.4 Implementation Details
Regarding the replication of paper [1], no training was required as we relied on the avail‐
able ViT weights pre‐trained on the ImageNet dataset. When it comes to utilizing ex‐
plainability cues derived from ViT architectures for training the AffinityNet, we trained
a hybrid‐ViT architecture on PascalVoc while capitalizing on the weights as pretrained
on ImageNet. More specifically, we trained for 20 epochs with a learning rate 5e − 3.
The AffinityNet was trained on Pascal VOC training split for 7 epochs with a learning
rate of 0.1 using the affinity labels as generated by the ViT explainability cues. In both
these training setups, the batch size was set to 8, the weight decay to 1e − 4 while the
SGD optimizer was used. Finally, during training, images were resized to 244× 244 and
448 × 448 resolution for ImageNet and Pascal VOC respectively. Moreover, the images
were normalized to have 0.5mean and 0.5 standard deviation for all channels while ran‐
dom horizontal flip and color jittering were employed for data augmentation purposes.

6 Conclusions

In the context of this study, we replicated the ViT explainability approach proposed in
[1]. Additionally, we capitalized on the explainability seeds derived from a Hybrid‐ViT
architecture to generate competent semantic segmentation labels for weak‐supervision.
More specifically, the AffinityNet [2] was employed with the purpose of refining the ini‐
tially incomplete explainability cues into segmentation masks of higher quality. The
quantitative results provided in tables 2 and table 3 indicate that we have successfully
implemented the explainability method described in [1] since our results are identical
to those originally reported in the latter for all the considered metrics. Regarding the
AffinityNet, we evaluated the class‐wisemIoU performance that we have achieved based
on the explainability seeds as generated by the Hybrid‐ViT architecture.
Furthermore, according to table 4, we observe that the performance we achieved is
lower compared to the one reported in [2], however segmentation masks of improved
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quality were generated. One reason for that could be the lower quality of ViT explain‐
ability seeds compared to the CNN‐based ones. Another potential reason for the lacking
performance of the AffinityNet, when given explainability cues from ViT architecture,
could be that the feature map f aff in our case, derives from low‐level image representa‐
tion where as in the original paper [2] feature representation from multiple levels were
aggregated. Such multi‐level aggregation was not feasible in our scenario due to the
nature of the transformer architecture.
Concluding, in this work we have demonstrated the feasibility of using ViT‐derived ex‐
plainability cues with the purpose of training the AffinityNet. Although, wewere able to
increase the quality of the ViT explainability cues by refining them with the AffinityNet,
the CNN‐based architectures perform better while using lighter models.
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Appendix

The code of our reproducibility attempt can be found at https://github.com/athaioan/ViT_
Affinity_Reproducibility_Challenge

6.1 Qualitative Results on ImageNet - ViT Explainability [1]
In here, we provide qualitative results of the reproduced ViT explainability approach as
proposed in [1]

Figure 3. Image of a bug from ImageNet
segmentation dataset [4].

Figure 4. Segmentationmap generated by ourViT‐
base for the bug image.

Figure 5. Image of a cow from ImageNet
segmentation dataset [4].

Figure 6. Segmentationmap generated by ourViT‐
base for the cow image.
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Figure 7. Image of a reindeer from ImageNet
segmentation dataset [4].

Figure 8. Segmentation map generated by our
ViT‐base for the reindeer image.

Figure 9. Image of a sheep from ImageNet
segmentation dataset [4].

Figure 10. Segmentation map generated by our
ViT‐base for the sheep image.

Figure 11. Image of a squirrel from ImageNet
segmentation dataset [4].

Figure 12. Segmentation map generated by our
ViT‐base for the squirrel image.

6.2 Qualitative Results on Pascal VOC - AffinityNet on Hybrid ViT
In here, we provide qualitative results of the reproduced ViT explainability approach as
proposed in [1]
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Figure 13. Image of an airplane
from Pascal VOC segmentation
dataset [2].

Figure 14. Segmentation map
generated by our ViT‐base for
the airplane image.

Figure 15. Affinity map gener‐
ated by our AffinityNet for the
airplane image.

Figure 16. Image of an screen
from Pascal VOC segmentation
dataset [2].

Figure 17. Segmentation map
generated by our ViT‐base for
the screen image.

Figure 18. Affinity map gener‐
ated by our AffinityNet for the
screen image.

Figure 19. Image of a sheep
from Pascal VOC segmentation
dataset [2].

Figure 20. Segmentation map
generated by our ViT‐base for
the sheep image.

Figure 21. Affinity map gener‐
ated by our AffinityNet for the
sheep image.

Figure 22. Image of a train from
Pascal VOC segmentation
dataset [2].

Figure 23. Segmentation map
generated by our ViT‐base for
the train image.

Figure 24. Affinity map gener‐
ated by our AffinityNet for the
train image.
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