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1 Reproducibility Summary

Scope of Reproducibility
This report covers our reproduction and extensionof the paper ‘WhenDoes Self‐Supervision
Improve Few‐shot Learning?’ published in ECCV 2020. The paper investigates the ef‐
fectiveness of applying self‐supervised learning (SSL) as a regularizer to meta‐learning
based few‐shot learners. The authors of the original paper claim that SSL tasks reduce
the relative error of few‐shot learners by 4% ‐ 27% on both small‐scale and large‐scale
datasets, and the improvements are greater when the amount of supervision is lesser,
or when the data is noisy or of low resolution. Further, they observe that incorporating
unlabelled images from other domains for SSL can hurt the performance of FSL, and
propose a simple algorithm to select unlabelled images for SSL from other domains to
provide improvements.

Methodology
We conduct our experiments on an extended version of the authors codebase. We im‐
plement the domain selection algorithm from scratch. We add datasets and methods to
evaluate few‐shot learners on a cross‐domain inference setup. Finally, we open‐source
pre‐processed versions of 3 few‐shot learning datasets, to facilitate their off‐the‐shelf us‐
age. We conduct experiments involving combinations of supervised and self‐supervised
learning onmultiple datasets, on 2 different architectures and perform extensive hyper‐
parameter sweeps to test the claim. We used 4 GTX 1080Ti GPUs throughout, and all
our experiments including the sweeps took a total compute time of 980 GPU hours. Our
codebase is at https://github.com/ashok‐arjun/MLRC‐2021‐Few‐Shot‐Learning‐And‐Self‐
Supervision.

Results
On the ResNet‐18 architecture and a high input resolution that the paper uses through‐
out, our results on 6 datasets overall verify the claim that SSL regularizes few‐shot learn‐
ers and provides higher gains with difficult tasks. Further, our results also verify that
out‐of‐distribution images for SSL hurt the accuracy, and the domain selection algo‐
rithm that we implement from scratch also verifies the paper’s claim that the algorithm
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[Re] Does Self-Supervision Always Improve Few-Shot Learning?

can choose images from a large pool of unlabelled images from other domains, and
improve the performance.
Going beyond the original paper, we also conduct SSL experiments on 5 datasetswith the
Conv‐4‐64 architecturewith a lower image resolution. Here, wefind that self‐supervision
does not help boost the accuracy of few‐shot learners in this setup. Further, we also
show results on a practical real‐world benchmark on cross-domain few-shot learning, and
show that using self‐supervision when training the base models degrades performance
when evaluated on these tasks.

What was easy
The paper was well written and easy to follow, and provided clear descriptions of the
experiments, including the hyperparameters. The authors’ code implementation in Py‐
Torch was relatively easy to understand.

What was difficult
Since the codebase was incomplete, it took us a lot of time to solve bugs, and reimple‐
ment algorithms not present in the code. Further, the datasets needed a lot of prepro‐
cessing to be used. The number of hyperparameters being too many but each proving
to be important, and evaluating all the claims of the paper on 5 datasets and 2 architec‐
tures was difficult to the number of experiment configurations, resulting in a very high
computational cost of 980 GPU hours.

Communication with original authors
Wemaintained contactwith the authors throughout the challenge to clarify implementa‐
tion details and questions regarding the domain selection algorithm. The authors were
responsive and replied promptly with detailed explanations.
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[Re] Does Self-Supervision Always Improve Few-Shot Learning?

2 Content

3 Scope of reproducibility

The paper claims that

• With no additional training data, adding self‐supervised tasks such as jigsaw/rota‐
tion prediction as an auxiliary task improves the performance of existing few‐shot
techniques on benchmarks across several different domains

• The benefits of self‐supervision increase with the difficulty of the task, for exam‐
ple when training with a base dataset with less labelled data, or when the dataset
contains images of lesser quality/resolution

• Using unlabelled data from dissimilar domains for self‐supervision negatively im‐
pacts the performance of few‐shot learners

• The proposed domain selection algorithm can alleviate this issue by learning to
pick images that are similar to the training domain, from a large and generic pool
of images

We thoroughly reproduce all the experiments, and investigate whether the claims hold
true, with the model and the six benchmark datasets used by the authors. Beyond the
paper, we find that the results are biased towards the architecture and resolution used,
and demonstrate that the gains do not hold when the input resolution and architecture
differ from those reported in the paper. We also report results on the more practical
cross‐domain few‐shot learning setup. Here, we find that self‐supervision does not help
ImageNet‐trained few‐shot learners generalize to new domains better. Finally, along
with our reproducible codebase, we open‐source processed versions of 3 datasets that
previously required tedious manual processing, to facilitate their off‐the‐shelf usage.

4 Methodology

The goal of a few‐shot learner is to learn representations of base classes that lead to
good generalization on novel classes. To this end, the proposed framework combines
meta learning approaches for few‐shot learning with self-supervised learning. In general,
learning consists of estimating functions f , the feature extractor and g, the classifier that
minimize the empirical loss ℓ over the training data from base class Ds = {(xi, yi)}ni=1

consisting of images xi ∈ X and labels yi ∈ Y, along with suitable regularization R.
This can be written as:

Ls =
∑

(xi,yi)∈Ds

ℓ(g ◦ f(xi), yi) +R(f, g)

In the original paper, the loss of prototypical networks (ProtoNet)[1] are used as part of
the supervised loss. During meta‐training, ProtoNet computes the mean of the embed‐
dings of all samples in a class. Then, a distance metric such as Euclidean distance or
cosine distance is used to classify every query sample into one of the classes, using the
distance from the class‐prototypes. The loss over the query samples is backpropagated
to the network, and this procedure is repeated for multiple episodes with n randomly
sampled classes in each episode, with k examples in each class, hence referred to as the
n‐way k‐shot setup. Hence the network meta‐learns to provide useful class‐prototypes
from very few examples. At meta‐test time, class prototypes are recomputed from the
few examples per each class, and query examples are classified based on the distances
to the class prototypes.
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Apart from the supervised losses, the paper uses self‐supervised losses ℓss that are de‐
rived from (x̂, ŷ). Let h denote an additional auxiliary classifier used as part of a self‐
supervised loss, and Dss denote the dataset used to construct the self‐supervised tasks.
Then the self‐supervised loss is

Lss =
∑

(xi)∈Dss

ℓ(h ◦ f(x̂i), ŷi)

The jigsaw task splits an image into 9 regions (3x3) and permutes the regions to obtain
the input x̂. The target label ŷ is the index of the permuatation. The total number of
indices are 9! which is reduced to 35 indices [2] by grouping the possible permutations
to control the difficulty of the task.
The rotation task rotates the image by an angle θ ∈ 0◦, 90◦, 180◦, 270◦ to obtain x̂, with ŷ
being the index of the angle.
The paper uses a weighted combination of the supervised and self‐supervised losses
L = (1− α) ∗ Ls + (α) ∗ Lss.
The author also propose an algorithm to select images from a large‐dataset for self‐
supervision when Ds and Dss are different. Here, a classifier is trained to distinguish
the ResNet‐101 features of images from Ds and images from Dss, and the top‐k images
according to the ratio p(x ∈ Ds)/p(x ∈ Dp) are selected for self‐supervision.

5 Experimental settings

5.1 Details regarding the code

The authors provide a public implementation of the code1, which is built upon a pop‐
ular codebase 2 from Chen et al [3]. We find that there are a lot of errors and bugs in
the code, which took a lot of time to debug. This took up a considerable part of our
time. Further, the code for the domain selection algorithm was not present, and hence
we had to reimplement it from scratch. Our code 3 reuses multiple files from the original
codebase, corrects several errors, and provides an implementation of the domain selec‐
tion algorithm. We also provide interfaces to train models with a different architecture,
and to evaluate models in a cross‐domain setup.

5.2 Model descriptions
The authors use awell‐knownarchitectureResNet‐18 for their experiments. TheResNet18
gives a 512‐dimensional feature for each input. For the jigsaw task, a single fully‐connected
(fc) layer with 512‐units is added in parallel to the classifier. Nine patches of an image
give nine 512‐dimensional feature vectors, which are concatenated, and projected to
4096 dimensions using an fc layer, and then to a 35‐dimensional output using another
fc layer, corresponding to the 35 permutations for the jigsaw task.
For rotation prediction task, the 512‐dimensional output of ResNet‐18 is passed through
three fc layers consecutively with 128, 128, 4 units. The 4 predictions of the last layer
correspond to the four rotation angles. Between each fc layer, a ReLU activation and a
dropout layer with a dropout probability of 0.5 are added.
Apart from the ResNet‐18 architecture used in the paper, we use another architecture
that is equally adapted in many few‐shot learning papers [3] [1] [4] [5], the Conv‐4‐64
architecture, which is a simpler architecture with 3x3 kernel size and 64 filters at each
layer. Similar extensions aremade for the jigsaw and rotation tasks. Inmultipleworks in
the literature, this architecture has beenused to process 84 x 84 images, while theResNet

1https://github.com/cvl-umass/fsl_ssl
2https://github.com/wyharveychen/CloserLookFewShot
3https://github.com/ashok-arjun/MLRC-2021-Few-Shot-Learning-And-Self-Supervision
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[Re] Does Self-Supervision Always Improve Few-Shot Learning?

variants have been used to process 224 x 224 images. We follow the works and report
results with the respective resolutions for each architecture. Both the architectures are
represented diagrammatically in tables 15 and 16 respectively in the appendix.

5.3 Datasets
Following the few‐shot setup, each dataset is split into three disjoint sets namely the
base training set, validation set and the test set. The model is trained on the base set,
validated on the validation set, and tested on the test set. Following the paper, we exper‐
iment with multiple datasets across diverse domains and denote the number of classes
in the base, val, test splits inside brackets: CUB‐200‐2011 [6](64, 12, 20) , Stanford Cars [7]
(98, 49, 49), FGVC‐Aircraft [8] (50, 25, 25), Stanford Dogs [9] (60, 30, 30), Oxford Flowers
[10] (51, 26, 26). These 5 datasets are henceforth referred to as ”the smaller datasets”.
Apart from these, we also experiment with a benchmark dataset for few‐shot learning,
the miniImageNet dataset [11] (64, 16, 20). The original paper also reports results on
Tiered‐ImageNet, but we restrict to evaluating on miniImageNet due to compute and
time constraints.
We use the same base‐validation‐novel class splits for every dataset exactly as in the
paper, which they provide in their official repository. Implementation‐wise, each class
contains 3files, one for each in base, val and novel, and lists the classes to be used, along
with all the image paths for each class.
Among the small datasets, we found that there were no versions of the flowers and
cars dataset that could be used directly. Hence we had to preprocess the two datasets
ourselves, before we could use them off‐the‐shelf. With the miniImageNet dataset, we
found that all the directly‐downloadable versions [12] [13] contained images resized to
84x84, however we needed a dataset that could be resized to either 84x84 or 224x224
adaptively. Hence, we had to download the ImageNet dataset (155 GB) and process the
dataset from scratch, which caused storage issues and also took up a significant part of
our time. Along with codebase, we also open‐source the processed flowers4 and cars5
datasets, and the miniImageNet dataset with image sizes same as that in ImageNet6.
For the domain selection algorithm, the authors use the training sets of two large datasets
‐ Open Images v5 [14] and iNaturalist [15], which are 500 GB and 200 GB in size respec‐
tively. Weuse the validation splits of these datasets as unlabelled images for self‐supervision.

5.4 Hyperparameters
Thehyperparameter sweepswere conductedusingWeights andBiases. Each sweepuses
random search to search over the following 3 hyperparameters:

• Learning Rate: Sampled from a uniform distribution (0.0001, 0.03)

• Batch normalization mode:

1. Use batch normalization, accumulate statistics throughout training, and use
the statistics during testing

2. Use batch normalization, but do not track the running mean and variance
during training; estimate them from batches during training and test

3. No batch normalization

• Alpha (α), the weightage of the SSL term in the loss (only where self‐supervision
is applied)

4https://www.kaggle.com/arjun2000ashok/vggflowers/
5https://www.kaggle.com/hassiahk/stanford-cars-dataset-full
6https://www.kaggle.com/arjunashok33/miniimagenet
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In the above grid, the batch‐norm modes especially designed to verify the claim of the
paper that using batch normmode 2was found to be better for a subset of tasks that did
not involve jigsaw, and vice‐versa. All models are trained with the Adam optimizer with
β1 = 0.9 and β2 = 0.999.
We then use the configuration which gives the best validation accuracy. Due to com‐
putational constraints, we search hyperparameters for certain datasets, and reuse the
hyperparameters found for similar datasets. The selected experiment configurations
are given in the appendix and the code‐base. Across all of our sweeps, we notice that
α stays below 0.6, and does not go below 0.3 in our runs. Hence, we infer that an ade‐
quate amount of supervision is also needed for good performance, and too much self‐
supervision hurts accuracy. For the miniImageNet dataset, we find the values close 0.3
work the best, which the paper reiterates. The paper reports that they use 0.5 for all the
SSL experiments on the small datasets, which we confirm as our α term converges to
values 0.4 and 0.6 for the small datasets. All of our reported results are with the best
hyperparameters found.

5.5 Computational requirements
We used 4 Nvidia 1080Ti GPUs for all experiments. The run‐times differ for each exper‐
iment configuration when incorporating self‐supervision. We report the average epoch
time for each experimental setup (1 epoch = 100 episodes) in table 6 in the appendix.
In general, among experiments involving self‐supervised learning, rotation took the
maximum amount of time. This is because 4 rotations of the same image are needed at
every instance, which is more expensive than loading a single image. The jigsaw task
took lesser time than rotation, and the combination of jigsaw and rotation took the high‐
est amount of time per epoch. Since the paper reports results on the combination only
for the first set of experiments (claim 1), we also do the same. Further, the computa‐
tional time restricted us from performing more experiments combining the two.
In total, apart from the hyper‐parameter sweeps, we perform 250 experiments, across
different experimental setups and multiple datasets. All of these experiments took ap‐
proximately 700 GPU hours. Along with the hyperparameter sweeps which, the experi‐
ments took approximately 980 hours of compute time.

5.6 Experimental setup and code
Following the authors, we train, evaluate and report results on the 5‐way 5‐shot setting;
we also explore 20‐way 5‐shot setting but we could not continue after a few runs, re‐
stricted by the large training and testing time of 20‐way 5‐shot models. Following the
paper, we use 16 query examples to evaluate the models.
The batch size cannot be set in episodic few‐shot learners, and are by default given by
n_way ∗ (n_support + n_query). We use 16 query images following the paper, and as
a result, our batch sizes are 105 in 5‐way 5‐shot experiments, and 420 in 20‐way 5‐shot
experiments. Following all previous work in few‐shot learning, we sample 100 episodes
(batches) per epoch, and conduct experiments on about 600 ‐ 800 epochs. Following the
paper, we use only 5 query images when trainingmodels for experiments that use lesser
labelled data since the {20, 40, 60, 80}% splits of dataset do not contain 16 query images
in all classes.
In every iteration, an equal number of unlabelled images are sampled at random from
the respective dataset(s) for self‐supervised learning. Following our paper and the base‐
line from previous work [3] in few‐shot learning and our original paper, we use the fol‐
lowing data augmentation: For label and rotation predictions, images are first resized to
224 pixels for the shorter edge whilemaintaining aspect ratio, fromwhich a central crop
of 224 is obtained. For jigsaw puzzles, a random crop of 255 is done from the original
image with random scaling between [0.5, 1.0], then split into 3×3 regions, from which a

ReScience C 8.2 (#3) – Ashok and Aekula 2022 6

https://rescience.github.io/


[Re] Does Self-Supervision Always Improve Few-Shot Learning?
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Figure 1. Results on applying SSL tasks to Pro‐
totypical networks, across 6 datasets

Method Accuracy
ProtoNet 74.07 ± 0.71

ProtoNet + Jigsaw 77.29 ± 0.73
ProtoNet + Rotation 74.93 ± 0.9

ProtoNet + Jigsaw + Rotation 76.23 ± 0.9

Table 1. miniImageNet Results with ResNet‐
18

random crop of size 64×64 is picked. For evaluation at meta‐test time, we use 600 ran‐
domly sampled episodes, and report the mean accuracy and 95% confidence intervals.
We implement the domain selection algorithm following the paper: For each dataset
among the small datasets, we select negative images uniformly at randomwith 10 times
the size of the positive images. The loss for the positive class is scaled by the inverse of
its frequency to account for the significantly larger number of negative examples. We
then train a binary logistic regression classifier using LBFGS for 10000 iterations and use
the logits to compute the ratio p(x ∈ Ds)/p(x ∈ Dp), whereDp represents the large pool
of images, andDs represents the supervised training set. We then choose k as 80%of the
total dataset size, and sample k images from the negative class (Dp) to use as unlabelled
samples.
On verifying that the core claim of the paper (claim 1) for all the 5 small datasets, we
choose a diverse set of 2 to 3 representative datasets for claims 2 and 3. For the do‐
main selection, we evaluate on all the 5 datasets to verify our implementation of the
algorithm.

6 Results

6.1 Results reproducing original paper
Here, we consider the same architecture that the paper uses ‐ ResNet‐18, with an input
image size of 224.

Self-supervision improves few-shot learning —Here, we successfully verify claim 1 of the pa‐
per which states that with no additional unlabelled data, SSL improves few‐shot learn‐
ing when applied as an auxiliary task. We conduct experiments across all the 5 small
datasets as well as the large‐scale miniImageNet dataset. We also reproduce results on
the baseline from [3], andMAML andMAML+Jigsaw. We present results in figure 1, and
tables 1 and 2. All results are on 5‐way 5‐shot classification.

The benefits of self-supervision increase with the difficulty of the task —We successfully verify
claim 2 of the authors that the relative gains of using SSL aremore when the difficulty of
the task is higher. The authors experimentwith two types of difficult tasks: onewith low‐
resolution/greyscale images as input, and another with less labelled data from the base
training set. We experiment with 3 selected datasets andwere successful in reproducing
the results. We report the results on figures 2 and 4. The exact numbers are given on
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Method CUB Cars Aircrafts Dogs Flowers
Softmax 81.92 ± 0.54 88.16 ± 0.47 89.57 ± 0.38 78.18 ± 0.56 90.44 ± 0.47

Softmax + Jigsaw 83.96 ± 0.52 91.2 ± 0.49 89.93 ± 0.39 78.3 ± 0.57 90.85 ± 0.49
ProtoNet 87.09 ± 0.48 91.0 ± 0.41 91.90 ± 0.35 83.52 ± 0.54 89.92 ± 0.51

ProtoNet + Jigsaw 89.57 ± 0.43 92.67 ± 0.39 91.72 ± 0.39 86.1 ± 0.51 90.98 ± 0.47
ProtoNet + Rotation 88.9 ± 0.55 91.61 ± 0.40 91.69 ± 0.40 83.94 ± 0.58 90.12 ± 0.5

ProtoNet + Jigsaw + Rotation 88.98 ± 0.45 93.27 ± 0.38 91.26 ± 0.4 85.29 ± 0.54 90.01 ± 0.51

Table 2. ResNet‐18’s performance on the 5 small datasets.
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Figure 2. Results of applying SSL
when the amount of labelled data
for supervision is lesser. The gains
obtained by SSL grow with
the amount of labelled data
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Figure 3. Performance on tasks
where a portion of the labelled data
is replaced with data from
other domains

tables 12 and 10 respectively in the appendix. We find that the claims of the paper hold
true, and that self‐supervision has higher gains in harder tasks.

Unlabelled data for SSL from dissimilar domains negatively impacts the few-shot learner — Verify‐
ing claim 3 of the paper, we replace a portion of the labelled data, starting from 20% of
the data to 80% of the data, with data from other domains. Here, we combine the data
from all other datasets together, and sample images at random. We present results on 3
chosen datasets, again, to save computation and time for other results. Results are given
in figure 3 and table 11 (appendix). The claim that using data from dissimilar domains
for self‐supervision is detrimental to few‐shot classification holds true.

The proposed domain selection algorithm can alleviate this issue by learning to pick images from a
large and generic pool of images — To verify claim 4, we implement the domain selection
algorithm from scratch, and verify it across all 5 small datasets as given in the paper, to
make sure that we have got the implementation right. Results are presented in figure
5 and table 13 in the appendix. Results are shown on using only 20% of the labelled
data for learning, only selecting images from other domains at random, and on using
the proposed domain selection algorithm. We successfully verify and demonstrate that
the algorithm proposed by the authors for selecting images from multiple dissimilar
domains.
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Figure 4. Results of applying self‐supervised learning on artificially constructed harder tasks.

Rotation CUB Cars
α = 0 (no SSL) 77.72 ± 0.71 67.6 ± 0.84

α = 0.1 77.6 ± 0.73 66.83 ± 0.75
α = 0.3 77.22 ± 0.9 65.53 ± 0.73
α = 0.5 74.57 ± 0.81 66.61 ± 0.73

Table 3. Conv‐4’s performance on applying SSL through Rotation

6.2 Results beyond original paper

Results on a different architecture - Conv4 —Here, we aim to investigatewhether the claims of
the paper hold when a small architecture that needs a smaller image size (84x84) is used.
In particular, we investigate claim 1 of the paper extensively. Note that the authors do
not report results with this architecture. Results are given in figure 6. Exact numbers
are given in tables 7 and 9 in the appendix. We find that the results do not hold true
when a smaller architecture and image size is used, and that claim depends heavily on
the architecture and image size. We present results across all the 5 small datasets for
completeness, across both SSL tasks. To confirm our claims, we also rerun results with
another seed, but get similar results (Table 8 in appendix).
We next study the effect of α on the results, with the CUB and cars datasets in tables 3
and 4. Here we find that the value of α plays an important role in the performance, and
that high values leading to too much self‐supervision is detrimental when the model
is small. Even across training and testing with multiple α values, we find that the self‐
supervision provides only a marginal boost in 1 out of 4 cases, invalidating claim 1 of
the paper that self‐supervision provides a stable boost to few‐shot learners.

Results on cross-domain few-shot learning — In another effort to extend the paper’s results,
we test the results of our trained models on the BSCD‐FSL benchmark for cross‐domain
few‐shot learning, introducedby [16]with their code 7. Thebenchmark requires ImageNet‐
based trained few‐shot models to evaluated on four cross‐domain datasets: CropDis‐
eases, EuroSAT, ISIC2018, and ChestX datasets, which covers plant disease images, satel‐

7https://github.com/IBM/cdfsl-benchmark
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Jigsaw CUB Cars
α = 0 (no SSL) 77.72 ± 0.71 67.6 ± 0.84

α = 0.1 75.57 ± 0.73 62.548 ± 0.75
α = 0.3 64.91 ± 0.9 51.83 ± 0.73
α = 0.5 69.09 ± 0.81 60.39 ± 0.73

Table 4. Conv‐4’s performance on applying SSL through Jigsaw
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Figure 5. Results of the domain selection algo‐
rithm
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Figure 6. Results of using SSL with the Conv4
architecture

lite images, dermoscopic images of skin lesions, and X‐ray images, respectively. The se‐
lected datasets reflect real‐world use cases for few‐shot learning since collecting enough
examples from above domains is often difficult, expensive, or in some cases not possi‐
ble. We use this benchmark to find out if models trained with self‐supervision provide
gains over normal supervised models when tested on real-world datasets. We test our
mini‐ImageNet trained models on this benchmark, to find out if self‐supervision im‐
proves results on cross‐domain datasets. Results on the ResNet‐18 models are reported
in table 5. Results on the Conv‐4models are given in appendix table 14. We find that self‐
supervision results in learning heavily domain‐specific representations, and that the re‐
sults of the fully‐supervised learner are much better than those with auxiliary tasks as
self‐supervision.

Method ChestX Crop Disease EuroSAT ISIC
ProtoNet 24.32 ± 0.41 83.36 ± 0.63 76.09 ± 0.74 41.60 ± 0.58

ProtoNet + Jigsaw 23.97 ± 0.39 77.86 ± 0.69 72.72 ± 0.68 41.22 ± 0.56
ProtoNet + Rotation 23.84 ± 0.39 79.11 ± 0.68 72.47 ± 0.69 43.79 ± 0.61

ProtoNet + Jigsaw + Rotation 23.73 ± 0.38 77.39 ± 0.68 71.91 ± 0.7 40.05 ± 0.55

Table 5. CDFSL Benchmark for ResNet‐18

7 Discussion

We find that the central claims of the author as given in Section 3 hold true, when the
same architecture is used. Considering the ResNet‐18 model used in the paper with an
input image size of 224, we find that self‐supervision ‐ in particular the jigsaw task, pro‐
vides a boost in the case of small datasets. Experimentally, we verify claim 1 of the paper
on all small datasets and miniImageNet. However, going beyond the paper’s architec‐
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ture, we find that the results depend heavily on the image size and architecture and do
not give the same gains with Conv‐4‐64, another architecture common in the few‐shot
learning literature, with an input image size of 84. Further ablation reveals that the jig‐
saw task in particular has a strong influence in this setup, and the rotation task requires
tuning the α parameter to even reach the accuracy of the fully‐supervised model. Fu‐
ture work may investigate ways to boost the performance of few‐shot classifiers when
the input sizes are small, and may also find out better architectures to use when the in‐
put size is small. Future work may also experiment with other available architectures,
and find out if self‐supervision increases performances across all configurations.
Regarding claims 2 and 3 such as on harder tasks and scenarios with lesser labelled data
in the base dataset, our experiments on selected datasets verify that the claims hold true,
with the ResNet‐18 backbone. Further, we verify claim 4 of the paper by implementing
the domain selection algorithm from scratch and our experiments on all the 5 datasets
show that relative gains are achieved. Future work may also investigate if the same
claims hold true when different architectures were used.
Finally, we evaluate the miniImageNet‐trained models on a more practical setting of
cross‐domain few‐shot learning and find that SSL during the training time does not help
few‐shot learners generalize across domains better. Future work may investigate why
applying SSL results in domain‐specific features, and propose methods to apply SSL in
a more domain‐agnostic manner. We recommend future works in few‐shot learning to
train and evaluate in multiple architectures with different resolutions and verify their
work more thoroughly.

7.1 Communication with original authors
We maintained communication with the authors throughout our implementation and
training phase, spanning two months. We were able to clarify many implementation
details in the original codebase, and the authors also re‐ran an experiment on their side
to test if the numbers match. Further, we received a lot of help regarding implementa‐
tion of the domain selection algorithm, and could also confirm the implementationwith
them. We acknowledge and thank the authors for their help with the reproducibility of
their paper.
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9 Appendix

9.1 Seconds per epoch
Continuing section 5.5, we report the exact values per epoch across experiment config‐
urations. We do so, since different architectures and datasets may require training for
different number of epochs, however the epoch time remains the same across experi‐
ments.

Experiment Setup (way,shot) Seconds per epoch (Conv4 / ProtoNet)
ProtoNet (5,5) 20/25
ProtoNet (20,5) 45/50

ProtoNet+Jigsaw (5,5) 25/35
ProtoNet+Jigsaw (20,5) 60/66
ProtoNet+Rotation (5,5) 18/60
ProtoNet+Rotation (20,5) 65/81

ProtoNet+Jigsaw+Rotation (5,5) 42/70
ProtoNet+Jigsaw+Rotation (20,5) 83/95

Table 6. Average seconds per epoch across experimental setups and ways

9.2 Hyperparameter sweeps
The selected experiment configs are as follows:
Each of the below experimental configurations are done for ProtoNet, ProtoNet+Jigsaw,
ProtoNet+Rotation and ProtoNet+Jigsaw+Rotation (4 configurations) in the 5‐way 5‐shot
setup. The sweeps optimize the learning rate and themode of batch normalization, and
Alpha, α.
The last two parameters are optimized only when self‐supervision is applied. This is
because α = 0 for fully supervised learners and we find that using batch norm modes
2,3 is highly detrimental to fully supervised learners.

• miniImageNet Conv4: 4 sweeps

• miniImageNet ResNet‐18: 4 sweeps

• CUB Conv4: 4 sweeps

• Cars Conv4: 4 sweeps

• CUB ResNet‐18: 4 sweeps

• Cars ResNet‐18: 4 sweeps

Hence we do a total of 24 sweeps.
The sweeps and the exact hyperparameters obtained can be visualized at https://wandb.
ai/meta-learners/FSL-SSL/sweeps. All the runs in the paper can be seen at https://wandb.ai/
meta-learners. Our code can be accessed at this link.

9.3 Tables

Results on the applying self-supervision - with the Conv4 architecture —

Results on harder tasks —
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Method CUB Cars Aircrafts Dogs Flowers
ProtoNet 77.72 ± 0.48 67.99 ± 0.41 76.16 ± 0.69 63.88 ± 0.54 85.29 ± 0.51

ProtoNet + Jigsaw 75.57 ± 0.7 62.54 ± 0.39 74.53 ± 0.68 54.27 ± 0.51 84.4 ± 0.47
ProtoNet + Rotation 77.5 ± 0.55 66.8 ± 0.40 74.16 ± 0.40 60.74 ± 0.58 84.55 ± 0.5

ProtoNet + Jigsaw + Rotation 69.66 ± 0.45 59.76 ± 0.77 74.79 ± 0.4 49.48 ± 0.54 81.43 ± 0.51

Table 7. Conv‐4’s performance on few‐shot learning tasks. Applying self‐supervision to few‐shot
learners results in decrease in performance

Method CUB Cars
ProtoNet 76.43 ± 0.3 67.45 ± 0.85

ProtoNet + Jigsaw 65.09 ± 0.42 60.39 ± 0.76
ProtoNet + Rotation 75.05 ± 0.35 66.61 ± 0.6

Table 8. Conv4 results on CUB and cars with a different seed

Method Conv‐4
ProtoNet 66.78 ± 0.84

ProtoNet + Jigsaw 64.94 ± 0.75
ProtoNet + Rotation 66.41 ± 0.73

ProtoNet + Jigsaw + Rotation 65.21 ± 0.73

Table 9. miniImageNet Results on Conv4

Method 20% CUB 20% Cars 20% Dogs
No SSL 73.61 ± 0.71 75.16 ± 0.84 68.4 ± 0.64
20% SSL 70.84 ± 0.73 83.72 ± 0.75 68.13 ± 0.9
40% SSL 71.48 ± 0.9 83.87 ± 0.73 68.26 ± 0.87
60% SSL 70.71 ± 0.81 84.12 ± 0.73 74.21 ± 0.89
80% SSL 71.99 ± 0.65 84.04 ± 0.78 71.86 ± 0.81

Table 10. Performance on tasks with lesser labelled data. SSL increases performance under this
setup on 2 out of 3 datasets

Method 20% CUB 20% Cars 20% Dogs
No SSL 73.61 ± 0.82 75.16 ± 0.84 68.4 ± 0.64
20% SSL 69.83 ± 0.79 81.53 ± 0.79 71.99 ± 0.88
40% SSL 71.08 ± 0.83 75.27 ± 0.89 72.24 ± 0.85
60% SSL 71.12 ± 0.91 76.39 ± 0.89 73.11 ± 0.83
80% SSL 68.48 ± 0.87 73.85 ± 0.89 72.03 ± 0.91

Table 11. Performance when a portion of data replaced with data from other domains. SSL in‐
creases performance under this setup on 2 out of 3 datasets
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Method CUB Greyscale Cars Low‐resolution Dogs Greyscale
ProtoNet 82.88 ± 0.56 86.00 ± 0.51 79.97 ± 0.54

ProtoNet + Jigsaw 85.44 ± 0.52 86.34 ± 0.56 82.82 ± 0.50
ProtoNet + Rotation 83.51 ± 0.55 85.53 ± 0.53 81.74 ± 0.59

Table 12. Performance on artificially constructed harder tasks. Applying SSL increases perfor‐
mance in this setup

Method CUB Cars Aircrafts Dogs Flowers
No SSL 69.05 ± 0.48 75.15 ± 0.41 74.8 ± 0.35 68.4 ± 0.54 76.34 ± 0.51

SSL Pool (Random) 71.11 ± 0.43 75.27 ± 0.39 75.81 ± 0.39 68.38 ± 0.51 79.71 ± 0.47
SSL Pool (Weight) 71.25 ± 0.55 75.65 ± 0.40 80.13 ± 0.40 70.66 ± 0.58 82.16 ± 0.5

Table 13. Domain selection results. The implementation of the domain selection algorithm is ver‐
ified, and using the algorithm to select unlabelled data for SSL gives the best results across all
datasets

Results on domain selection —

Method ChestX Crop Disease EuroSAT ISIC
ProtoNet 24.46 ± 0.39 80.45 ± 0.66 67.03 ± 0.7 41.0 ± 0.6

ProtoNet + Jigsaw 24.07 ± 0.4 78.51 ± 0.66 64.69 ± 0.7 39.81 ± 0.54
ProtoNet + Rotation 24.46 ± 0.39 79.30 ± 0.7 66.50 ± 0.71 39.54 ± 0.54

ProtoNet + Jigsaw + Rotation 24.16 ± 0.37 78.67 ± 0.66 67.60 ± 0.66 40.22 ± 0.54

Table 14. CDFSL Benchmark for Conv‐4. Applying SSL decreases performance in the cross‐domain
few‐shot inference setup, and fully‐supervised learning is state‐of‐the‐art in 3 out of 4 datasets

Results on cross-domain few-shot learning —

9.4 Architectures

Layer Name Output Size Conv‐4‐64
conv1 82 x 82 x 64 3 x 3, 64

conv2 41 x 41 x 64 2 x 2, max pool, stride 2
3 x 3, 64

conv3 18 x 18 x 64 2 x 2, max pool, stride 2
3 x 3, 64

conv4 7 x 7 x 64 2 x 2, max pool, stride 2
3 x 3, 64

average pool 1 x 1 x 64 7 x 7 average pool
fully connected 1024 64 x 1024 linear
fully connected X 1024 x X linear

softmax X

Table 15. Conv‐4 Architecture (X denotes the way)
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Layer Name Output Size Conv‐4‐64
conv1 112 x 112 x 64 7 x 7, 64, stride 2

conv2_x 56 x 56 x 64 3 x 3 max pool, stride 2
[3 x 3, 64; 3 x 3, 64] x 2

conv3_x 28 x 28 x 128 [3 x 3, 128; 3 x 3, 128] x 2
conv4_x 14 x 14 x 256 [3 x 3, 256; 3 x 3, 256] x 2
conv5_x 7 x 7 x 512 [3 x 3, 512; 3 x 3, 512] x 2

average pool 1 x 1 x 512 7 x 7 average pool
fully connected X 512 x X fully connections

softmax X

Table 16. ResNet‐18 Architecture
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