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Reproducibility Summary

Scope of Reproducibility

The claims of the paper [1] are threefold: (1) Summers and Dinneen1 made the surpris‐
ing yet intriguing discovery that all sources of nondeterminism exhibit a similar degree
of variability in themodel performance of a neural network throughout the training pro‐
cess. (2) To explain this fact, they have identified model instability during training as
the key factor contributing to this phenomenon. (3) They have also proposed two ap‐
proaches (Accelerated Ensembling [2] and Test‐Time Data Augmentation [3]) to mitigate
the impact on run‐to‐run variability without incurring additional training costs. In the
paper [1], the experiments were performed on two types of datasets (image classification
and language modelling). However, due to the intensive training and time required for
each experiment, we will only consider image classification for testing all three claims.

Methodology
Our approach to investigating the claimsmade in the paper [1] can be divided into three
parts: (1) Replication: we used the publicly available code and adapted it to our ex‐
perimental environment with some modifications to replicate the results; (2) Ablation
study: we tried to use different parameters, reducing the total implementation time to
less than half compared to the original study, while keeping the central claim intact;
(3) Generalization: we studied the authors’ claim on a much more complex dataset and
architecture to gain insights on the reproducibility of the conclusion. All experiments
necessarily required extensive training, with a single experiment alone requiring 490
hours of 2 Nvidia Tesla V100 16GB (i.e., 700 trained models).

Results
With our tests and the obtained results, we confirm that all individual and combined
sources of nondeterminism have similar effects on model variability and that instabil‐
ity in neural network optimization is the main reason for this phenomenon. However,
our results show some discrepancies in the reduction of variability by test‐time data aug‐
mentation (TTA) and accelerated ensembling (claim 3 above). Like the original study, we
show that these approaches successfully reduce variability, but the degree of reduction
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[Re] Nondeterminism and Instability in Neural Network Optimization

is reported as 61%, whereas our study reports 51% as the highest value. Despite some
small differences, the third claim remains and we support it.

What was easy
The authors havemade the source code publicly available in theGitLab repository. Even
without extensive documentation, reimplementation of the experiments was straight‐
forward and required little effort. Moreover, the paper’s clearly presented details signif‐
icantly reduced the effort required to set up the experimental configurations. The use
of regular neural network training and widely used datasets was the icing on the cake to
follow the implementation. This allowed us to explore other new aspects of themethod.

What was difficult
Although the implementation was easy to comprehend and intuitive with the resources
provided, the validation of some baselines proved to be computationally intensive and
time‐consuming, requiringmultiple runs. In particular, the variability analysis required
training 100models each for 500 epochs to verify the role of a single source of nondeter‐
minism. Nevertheless, we managed to maintain the original settings, but we could not
run multiple iterations to gain more confidence in the results.

Communication with original authors
At the beginning of our reproducibility study, we contacted the original authors once.
The basic questions about the experimental settings were answered and the foundation
for the rest of our experiments was laid. In addition, we also referred to their post and
answers available on the OpenReview portal.
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[Re] Nondeterminism and Instability in Neural Network Optimization

1 Introduction

In the pursuit of reproducibility in Deep Learning, a key criterion is the elimination of
sources of nondeterminism in model optimization. Random initialization of weights is
considered the main source of nondeterminism [4], but other sources such as random
shuffling of training data [5], random data augmentation [6], and even GPU libraries
such as cuDNN also contribute [7] . These random parameters tend to initialize with
a random value every time we train the model, even if we use the same source code.
On the one hand, such randomization helps to achieve sound performance, but on the
other hand, it leads to run‐to‐run variability. This causes difficulties in verifying and
improving baselines. To have complete experimental control, a better understanding of
these random components is required, which is why each independent model is trained
multiple times as a standard practice. While this can solve the problem, it is extremely
costly in terms of computational resources and time.
The authors’ original work focused on quantifying the independent effect of each source
of nondeterminism on model training. All different sources of nondeterminism were
found to have similar effects on model variability. They also created an experimental
protocol that used standard evaluation measures of model diversity and variability to
capturemodel behaviour better. While developing a basicmechanismof understanding,
they also discovered model instability as a major cause of run‐to‐run variability. To
support this finding, experiments were conducted on image classification and language
modeling datasets. In the end, two solutionswere proposed to reduce variabilitywithout
additional costs.

2 Scope of reproducibility

1) First, we have attempted to replicate all three of the paper’s claims:

• Claim 1: All sources of nondeterminism have similar effects on model diversity
and variability.

This claim seems to be a surprising discovery, as it could pave the way for researchers to
improve the algorithm as a whole to reduce the effects of model variability, rather than
focusing on each source of nondeterminism separately. In this reproducibility report,
all sources of nondeterminism were tested individually and also in combination with
other sources for ResNet‐14 [8] on the CIFAR‐10 dataset [9].

• Claim 2: The key driver of this phenomenon “All sources of non‐determinism have
similar effects on model diversity and variability” is the instability of model opti‐
mization.

Model optimization is said to have instability where small changes to the initial parame‐
ters lead to large changes to the final parameter values. Simply put, changing the initial‐
ization of a single weight by the smallest possible amount of 10−10 has the same effect
as initializing all weights with completely random values. This study shows that any
source of nondeterminism is susceptible to a change in weights by at least 10−10 and
therefore produces the same amount of variability. This also illuminates the discovery
of [4], which shows that removing a single source of nondeterminism is not sufficient to
improve the stability of the training.

• Claim 3: Accelerated ensembling and TTA are two possible solutions to reduce
model variability without additional training costs (e.g., time).

As mentioned earlier, the standard practice to counter model variability is to train mod‐
els multiple times, which costs additional computational resources. This claim attracts
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our attention because it could change current practices and facilitate the reproducibil‐
ity of experiments in the context of Deep Learning by promoting deterministic training
without additional costs.

2) Although the main objective of our study is to reproduce the main claims, we did
not limit ourselves to these only. We have also conducted a series of experiments that
go beyond the paper and follow two lines of investigation:

• Ablation study: During the reproducibility study, one of the main difficulties we
faced was the excessive amount of time required to conduct a single experiment.
In Section 4.2, we attempted to address this issue by recommending changes to the
default settings supported by our experimental results, while keeping the main
claims intact.

• Generalization to larger architectures and datasets: Because we were able to re‐
duce the experimental time, we tested the authors’ claim on a larger architecture
and dataset to verify that the claim still holds in general.

3 Methodology

3.1 Code
The publicly available source code was provided by the original authors in the corre‐
sponding GitHub repository . It was written using the Pytorch [10] and NumPy libraries
with Python 3.7.5. We used the same code and made some adjustments, such as setting
thewidth of the output terminal and downloading the datasetsmanually. With thesemi‐
nor changes, we were able to run the code according to our experimental environment.
The code provides a basic structure that allows numerous architectures to be used with
few changes. However, additional code must be added for architectures larger than
ResNet‐18 [8]. The code also has command line functionality that allows the user to con‐
figure seed values and hyperparameter settings for a specific task. Although the code
covers the entire implementation with the exact experimental settings described in the
paper, a portion of the code is missing to visualize the results.

3.2 Model descriptions
We initially chose the ResNet‐14 model because it was frequently used for image clas‐
sification experiments in the original study along with the CIFAR‐10 datasets. Due to
the large number of trained models required for a single experiment, we did not have
time to work with other models except ResNet‐34, which we created ourselves to test
the generalization of the claim over larger model architectures. Figure 1 shows the ba‐
sic residual block of a ResNet architecture, consisting of two 3x3 convolutional layers
followed by batch normalization before activation. On the same basis, Figure 3 shows
the modular architecture of ResNet‐14 and ResNet‐34 [8] without the first 7x7 convolu‐
tional layer and the final fully‐connected layer. The blocks are shown in parentheses
along with the number of output channels, with the multiplier indicating the number
of residual blocks in that module.

3.3 Datasets
To investigate the effects of nondeterminism on image classification, the authors used
CIFAR‐10 as the primary training dataset to train the ResNet‐14 model. Because the ar‐
chitectures used in the original study were smaller, the use of CIFAR‐100 was not seen.
In comparison, we additionally used the CIFAR‐100 dataset to train and test the larger
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Figure 1. ResNet residual block

Figure 2. Architecture of ResNet‐14 and ResNet‐34 in modular format

architecture (ResNet‐34) in our extended study. It is worth noting that the authors used
a runtime code to download the datasets using the torchvision library. Although this
would have been the preferred choice, we encountered some issues due to the external
access limitations of our experimental environment. Thus, we manually downloaded
the dataset and specified the path, whichworkedwell for us. We used the authors’ proto‐
col for the training and testing portions with 50k samples and 10k samples of CIFAR‐10,
respectively. No validation set was used. Table 1 shows the datasets used in our experi‐
mental tests.

Dataset Classes Samples Dimensions Split(train/val/test)
CIFAR‐10 10 60k 32× 32× 3 50k/0/10K
CIFAR‐100 100 60k 32× 32× 3 50k/0/10K

Table 1. Summay of datasets

3.4 Hyperparameters
In training the models, all standard parameters were used as given in the paper to more
closely approximate the original approach. While not all values were mentioned in the
paper, they could be easily found in the code itself. Allmodelswere trainedwith a cosine
learning rate decay [11] with a maximum learning rate of 0.40 and 500 epochs. We also
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used the first three epochs for warm‐up with linear learning rate, as was the case in the
original study. Throughout the training, the SGD optimizer was used with a batch size
of 512, a momentum of 0.9, and a weight decay of 5.10−4.

3.5 Evaluation for the effects of nondeterminism
To understand the impact of each source of nondeterminism, the original study devel‐
oped a protocol related to performance variability and model diversity representation.

Performance variability: All random sources are controlled by seeding values. To test
a single source, all other sources are assigned the constant deterministic seeding value
of 1, except for the source that is under observation and assumes different seeding val‐
ues from 1 to the total number of training runs. For the sources that cannot be seeded,
such as cuDNN, the range is limited to 0 to 1, with 0 and 1 indicating the random and
deterministic values, respectively. In the original settings, the total number of training
runs is set to 100, so for each source of nondeterminism, 100 models can be trained. If
we assume 4 different sources, each can be represented as S1, S2, S3, and S4, where S
denotes the seed values. For example, S1 denotes the seed for random parameter ini‐
tialization, S2 for training data shuffling, S3 for data augmentation, and S4 for cuDNN.
If we set (S1 = 1, S2 = 1, S3 = R,S4 = 1), whereR denotes the range from 1 to the total
number of training runs, we would analyse the effect of data augmentation as a random
source. If we want to analyse the effects of multiple sources simultaneously, we would
also assign the R values to other sources. Finally, to work with performance variability,
we consider the standard deviation of accuracy and cross entropy across all 100 trained
models for each source.

Representation diversity: In addition to performance variability, the authors also con‐
sidered the representation of the trained models. This allows us to determine the differ‐
ence in the representation of the trained models even when their performance variabil‐
ity is the same. In doing so, they used four different metrics that we followed. Of these,
we did not find an implementation for the Centered Kernel Alignment (CKA) evaluation
metric [12], which is considered the most advanced evaluation metric for determining
similarities between models. The first metric is the simplest, which uses the average
disagreement between pairs of 100 models. Second, they used the average correlation
between the models’ predictions. Finally, they examined the change in performance
when two models are ensembled from the same source of nondeterminism.

3.6 Extended experiments
With the extended experiments, we have tried to eliminate the difficulties we encoun‐
tered in replicating the experiments to verify the paper’s claim. One of our main con‐
cerns was the time required for each experiment. Therefore, we performed a series of
experiments beyond the original work to satisfy the claims without being computation‐
ally intensive.

Models v/s model variability: In this experiment, we examine the actual number of
models required to test the variability analysis for each source of nondeterminism,which
can reflect the same conclusion as the original settings while reducing the overall com‐
putational cost. Due to time constraints, we chose to work with only two sources. We
varied the number of models for each source and observed the results using the same
evaluation measures.
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Epochs v/s model variability: Another factor contributing to the long training time is
the use of a large number of epochs. In this experiment, we investigate the effects of a
different number of epochs on the variability of the model, and therefore try to obtain
similar results with a smaller number of epochs.

3.7 Experimental setup and computational requirements
To achieve similar results as in the original study, we strictly follow the same experi‐
mental environment and use Pytorch as frameworkwith Python = 3.7.5, NumPy = 1.17.4,
Torch = 1.3.1 and Torchvision = 0.4.2. All experiments were performed on the HPC clus‐
ter ARA using the SLURMworkload manager at Friedrich Schiller University Jena. This
system consists of multicore nodes for high computational performance and therefore
offers a variety of GPU systems that can be used. According to our needs, we chose to
workwith 2NVIDIATeslaV100GPUs equippedwith 24 core Intel CPUand 128GBofRAM.
Table 2 shows the number of experiments performed and the time needed for them. It
is worth mentioning that the evaluation part of all experiments involves the technique
of TTA, which must also be performed on a GPU, so the time needed for the evaluation
part is also added. The first three experiments belong to each of the three claims and
the others are part of our extended study, which is not included in the original studies.

Experiments Dataset Model Total No. of Epochs Total training Total evaluation
trained models time (hrs) time (hrs)

Exp‐1 CIFAR‐10 ResNet‐14 700 500 490 10.5
Exp‐2 CIFAR‐10 ResNet‐14 100 500 70 1.5
Exp‐3 CIFAR‐10 ResNet‐14 100 500 75 1.5

Ext.Exp‐1 CIFAR‐10 ResNet‐14 (10,25, 500 140 2.5
50,100)

Ext.Exp‐2 CIFAR‐10 ResNet‐14 125 (100 to 90 1.7
500)

Ext.Exp‐3 CIFAR‐100 ResNet‐34 25 200 75 2.5

Table 2. Time required for each experiment

4 Results

In this sectionwe present our experimental results by replicating all three claims and go‐
ing beyond the paper [1]. First, we start with the core replication by following exactly in
the footsteps of the original authors and producing all three experiments for each claim.
Second, we ran threemore experiments that help us obtain the same resultsmuch faster
and generalize the first two claims across different datasets and architectures.

4.1 Core replication results
Effects of nondeterminism sources: Table 3 shows the result of our replication study
for claim 1 with some minor differences as reported in [1]. In addition to all sources
of nondeterminism, we performed additional deterministic training to verify that we
have complete control over all sources and no other effects of randomness are observed
during the training process unless otherwise noted. We trained all 100 models for each
source, with 100 different seed values, as in the original work. We obtained almost the
same results when we analysed the effect of each source separately. However, when the
combination of multiple sources was tested, we found only a few anomalies (marked
with red colour in Table 3), which ultimately appear to be negligible. Therefore, we
support the claim that all sources of nondeterminism have similar effects on model
variability and diversity.
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Nondeterminism Accuracy Cross‐Entropy Pairwise Pairwise Ensemble
Sources SD (%) SD (%) Disagree (%) Corr. ∆(%)

Determinism 0 0 0 1 0
Parameter Initialization 0.22± 0.02 0.0073± 0.0005 10.7 0.873 1.86

Data Shuffling 0.25± 0.02 0.0083± 0.0005 10.7 0.871 1.86
Data Augmentation 0.22± 0.02 0.0069± 0.0005 10.7 0.872 1.87

cuDNN 0.21± 0.01 0.0067± 0.0004 10.6 0.873 1.83
Data Shuffling + cuDNN 0.25± 0.02 0.0071± 0.0005 10.7 0.871 1.85

Data Shuffling + Aug + cuDNN 0.24± 0.02 0.0068± 0.0004 10.7 0.871 1.87
All Nondeterminism Sources 0.26± 0.02 0.0080± 0.0005 10.7 0.871 1.84

Table 3. Effects of nondeterminism sources

The effect of instability: Table 4 shows the result of the second claim. Note that the
second claim states that instability in neural network optimization is the key factor for
similar effects of nondeterminism sources on model variability. To observe the effects
of instability, deterministic training was performed with a small change of 1 bit (5 ×
10−10) in a single randomweight for 100models. Our results show that this 1‐bit change
generates about as much variability as any other source of nondeterminism. Therefore,
this claim can be considered confirmed by our experiment.

Nondeterminism Accuracy Cross‐Entropy Pairwise Pairwise Ensemble
Sources SD (%) SD (%) Disagree (%) Corr. ∆(%)

Random Bit Change 0.21± 0.014 0.0067± 0.0004 10.6 0.874 1.82

Table 4. Effects of instability

Reduction of variability with proposedmethods: In Table 6 we show the results of our
replication study for the third claim. Unlike the other two claims, our study this time
shows numerous differences in the results compared to the original study. The TTA and
accelerated ensembling methods were used to reduce model variability, and the values
were compared to the result obtained by combining all sources of nondeterminism pre‐
sented as a ”Single Model”. First, we found a computational error in the percentage of
variability reduction in the original paper itself, which was taken as the average value
for all 5 metrics compared to the single model. This measure would allow us to see the
effectiveness of these two probable solutions. Although the mathematical formula is
not given in the study, it seems intuitive to work with average values. Therefore, we
performed a calculation of the baseline averages and found differences in the overall
reduction percentages. For all reduction percentages, the values on paper appear to be
about 20% higher than the calculated values. This is highlighted in red, as shown in
Table 5.
Second, in addition to the calculation error, we found other minor anomalies that ac‐
count for more than 10% change, as shown in Table 6 (highlighted in red). Including
all minor differences, we have again shown that TTA and accelerated ensembling can
be used to reduce variability. However, the highest possible percent reduction was re‐
duced from 61% to 51% compared to the original study. When compared to the recal‐
culated values, a slight increase in the percentage is observed. Moreover, the different
types of TTA alone seem to cause an equal reduction in performance variability, while
the change is mainly visible in model diversity. Thus, the overall variability is reduced.
Despite these differences, the third claim remains and we therefore support it..

4.2 Additional results not present in the original paper
In replicating all three claims, we faced the major problem of the time required to pro‐
duce the results. While it is understandable that the nature of the problem requires
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Nondeterminism Training Accuracy Cross‐Entropy Pairwise Pairwise Ensemble Variability
Sources Cost SD (%) SD (%) Disagree (%) Corr. ∆(%) Reduction (%)

Single Model 1x 0.26± 0.02 0.0072± 0.0005 10.7 0.871 1.82 n/a
Acc.Ens. 1x 0.19± 0.02 0.0044± 0.0003 6.1 0.957 0.63 4837

Single/Flip‐TTA 1x 0.24± 0.02 0.0061± 0.0005 8.2 0.905 1.20 2117
Single/Crop25‐TTA 1x 0.23± 0.02 0.0059± 0.0004 9.2 0.893 1.49 1613
Single/Crop81‐TTA 1x 0.21± 0.01 0.0055± 0.0004 8.8 0.898 1.39 2117

Single/Flip‐Crop25‐TTA 1x 0.21± 0.02 0.0051± 0.0004 7.2 0.920 0.99 3326
Single/Flip‐Crop81‐TTA 1x 0.19± 0.01 0.0049± 0.0004 6.9 0.922 0.92 3730

Acc.Ens/Flip‐TTA 1x 0.15± 0.01 0.0039± 0.0003 5 0.967 0.45 5846
Acc.Ens/Flip‐Crop81‐TTA 1x 0.16± 0.01 0.0033± 0.0002 4.6 0.972 0.38 6148

Table 5. Correction in percentage reduction

Nondeterminism Training Accuracy Cross‐Entropy Pairwise Pairwise Ensemble Variability
Sources Cost SD (%) SD (%) Disagree (%) Corr. ∆(%) Reduction (%)

Single Model 1x 0.26± 0.02 0.0080± 0.0005 10.7 0.871 1.84 n/a
Acc.Ens. 1x 0.17± 0.01 0.0043± 0.0003 6.1 0.957 0.65 40

Single/Flip‐TTA 1x 0.22± 0.01 0.0063± 0.0004 8.0 0.905 1.17 20
Single/Crop25‐TTA 1x 0.22± 0.02 0.0057± 0.0004 9.1 0.893 1.46 17
Single/Crop81‐TTA 1x 0.22± 0.01 0.0056± 0.0004 8.7 0.897 1.36 19

Single/Flip‐Crop25‐TTA 1x 0.22± 0.01 0.0050± 0.0003 7.1 0.919 0.98 28
Single/Flip‐Crop81‐TTA 1x 0.21± 0.01 0.0050± 0.0004 6.9 0.922 0.92 30

Acc.Ens/Flip‐TTA 1x 0.16± 0.01 0.0037± 0.0002 5 0.967 0.42 47
Acc.Ens/Flip‐Crop81‐TTA 1x 0.15± 0.01 0.0031± 0.0002 4.5 0.972 0.37 51

Table 6. Reproducibility study for variability reduction. Prominent differences accounted for
morethan 10% are shown in red.

multiple model training, it is still not clear to us why the author used 100 trained mod‐
els with 500 epochs each as default settings for each source of nondeterminism. Since
these two parameters play an important role in the time required for an experiment, we
decided to explore this area with the goal of reducing the training time while maintain‐
ing all the claims. This will allow the scientific community to test the claims on larger
architectures and datasets with less time consumption.

No. of models v/s Variability: In this experiment, we used the original settings, except
for the number of trained models considered for the variability analyses. By changing
the number of trained models for nondeterminism, we observed the change in model
variability. Due to lack of time, we experiment with only 3 different sources of nonde‐
terminism. We found that the result is not significantly different from the number of
models, except for the error bars associated with standard deviation of accuracy and
cross entropy. While all important metrics remain the same, it can be observed that
these error bars decrease as the total number of models increases, as can be seen in
Figure 3. All sources tested in Table 7 show the same trend.

Setting Accuracy Cross‐Entropy Pairwise Pairwise Ensemble
SD (%) SD (%) Disagree (%) Corr. ∆(%)

All Sources/(N=10) 0.25± 0.041 0.0068± 0.0010 10.7 0.870 1.85
All Sources/(N=25) 0.26± 0.034 0.0073± 0.0007 10.7 0.873 1.86
All Sources/(N=50) 0.24± 0.026 0.0076± 0.0007 10.7 0.871 1.86
All Sources/(N=75) 0.25± 0.021 0.0078± 0.0006 10.7 0.872 1.87
All Sources/(N=100) 0.26± 0.018 0.0080± 0.0005 10.7 0.872 1.87
Data Shuffling/(N=10) 0.25± 0.042 0.0061± 0.0010 10.8 0.871 1.86
Data Shuffling/(N=25) 0.22± 0.035 0.0080± 0.0009 10.7 0.870 1.89
Data Shuffling/(N=50) 0.25± 0.027 0.0079± 0.0007 10.7 0.870 1.88
Data Shuffling/(N=75) 0.25± 0.026 0.0084± 0.0006 10.7 0.870 1.87
Data Shuffling/(N=100) 0.25± 0.021 0.0082± 0.0005 10.7 0.871 1.86

Random Bit Change/(N=10) 0.26± 0.047 0.0063± 0.0011 10.7 0.874 1.88
Random Bit Change/(N=25) 0.23± 0.027 0.0075± 0.0009 10.6 0.874 1.85
Random Bit Change/(N=50) 0.22± 0.019 0.0069± 0.0006 10.6 0.874 1.83
Random Bit Change/(N=75) 0.22± 0.017 0.0070± 0.0005 10.6 0.874 1.83
Random Bit Change/(N=100) 0.21± 0.014 0.0068± 0.0004 10.6 0.874 1.82

Table 7. No. of models v/s Variability. N denotes total number of trained models.
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Figure 3. Change in error with respect to number of trained models

Epochs v/s Variability: Since we found that a smaller number of trained models is less
likely to affect the result in terms of model variability, we kept the number of trained
models constant at 25. In addition to the original settings, we changed the number of
epochs from 100 to 500 to see its impact on model variability. It can be seen that chang‐
ing the epochs does not affect the performance variability, but the model diversity. The
values for pairwise correlation and change in two models ensembling indicate greater
model diversity as the number of epochs increases. The same trend can be observed in
both sources, as shown in Table 8.

Setting Accuracy Cross‐Entropy Pairwise Pairwise Ensemble
SD (%) SD (%) Disagree (%) Corr. ∆(%)

Data Shuffling/100 0.20± 0.02 0.0056± 0.0007 10.7 0.910 1.64
Data Shuffling/200 0.24± 0.03 0.0058± 0.0009 10.6 0.895 1.75
Data Shuffling/300 0.23± 0.02 0.0070± 0.0010 10.5 0.884 1.79
Data Shuffling/400 0.24± 0.03 0.0072± 0.0011 10.6 0.878 1.80
Data Shuffling/500 0.22± 0.03 0.0080± 0.0009 10.7 0.870 1.89

Random Bit Change/100 0.23± 0.03 0.0071± 0.0013 10.5 0.913 1.58
Random Bit Change/200 0.22± 0.02 0.0076± 0.0007 10.3 0.898 1.71
Random Bit Change/300 0.24± 0.03 0.0073± 0.0012 10.3 0.887 1.68
Random Bit Change/400 0.26± 0.03 0.0076± 0.0010 10.5 0.881 1.83
Random Bit Change/500 0.23± 0.03 0.0075± 0.0009 10.6 0.874 1.85

Table 8. No. of Epochs v/s Variability

Generalization: In this section, we examine the first two claims of the paper on a larger
scale in terms of architecture and dataset. So far, these claims have shown no difference
in results and have only been tested with ResNet‐18 representing the largest architec‐
ture in [1]. For this reason, we went a step further and conducted experiments to test
the generalization of nondeterminism and instability to CIFAR‐100 (dataset) and ResNet‐
34 (model architecture). We conducted the experiment to obtain the 25 trained models
with 200 epochs each for the sources of nondeterminism listed in Table 9. We obtained
an average accuracy of 63%for the CIFAR‐100 test dataset, however the goal is to observe
the changes in model variability and its metrics. We have found that the two different
sources of nondeterminism produce roughly the same variability. The relative variabil‐
ity of instability with ”Random Bit Change” also shows a similar result. However, the
significant change in values of thesemetrics are observed about three times higher than
the experiments performed with CIFAR‐10 and ResNet‐14. Even though this difference
is due to the lower accuracy of the test results, the two main claims still hold.
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Nondeterminism Accuracy Cross‐Entropy Pairwise Pairwise Ensemble
Sources SD (%) SD (%) Disagree (%) Corr. ∆(%)

Parameter Initialization 0.80± 0.19 0.029± 0.005 31.4 0.768 2.63
Data Shuffling 0.78± 0.11 0.037± 0.005 34 0.748 3.07

Random Bit Change 0.73± 0.13 0.040± 0.009 33.7 0.775 3.03

Table 9. Generalization of nondeterminism and instability

5 Discussion

Our results in section 4 fully support the first two assertions regarding the effects of
”non‐determinism” and its identified cause ”instability”. To gain sufficient confidence
in the result, we also tested these claims on larger architectures and datasets, which
also confirms the results of the study. But, when conducting experiments with accel‐
erated ensembling and TTA as a solution to reduce variability, some differences were
found. Our results show that both approaches can reduce variability. However, the ex‐
tent to which they reduce variability is presented higher in the original study and lacks
concrete numbers. In addition, we did not find in the paper a mathematical formu‐
lation for the average percentage of variability reduction that could have avoided this
discrepancy. However, this is not sufficient to refute the claim. Therefore, we also sup‐
port the third claim. Moreover, the discovery that all sources of nondeterminism have
similar effects on model variability is novel in itself and opens many interesting areas
of research toward reproducibility of deep neural networks.

Strengths and weaknesses: One of our strengths in the reproducibility study was that
we stuck to the original implementation by using the publicly provided code and were
able to create the experimental environment with exact hardware and software speci‐
fications. This allowed us to obtain similar results that confirmed the paper’s claims.
Another strength of our work was to perform some additional experiments that helped
us reduce the overall computation time, allowing experiments with a larger architec‐
ture and dataset to be completed on time. The weakness of our approach is that in the
limited time available for the reproducibility study, we could not test the claims about
different combinations of hyperparameters, since 100 of trainedmodelsmust be seeded
for each experiment, whereas training a single model takes about 40minutes.
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