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POSIX Portable OS Interface for Unix 
PPE  PowerPC Processor Element (in a Cell processor) 
PRACE Partnership for Advanced Computing in Europe; Project Acronym 
PSNC  Poznan Supercomputing and Networking Centre (Poland) 
QE  Quantum Espresso 
QR QR method or algorithm: a procedure in linear algebra to compute the 

eigenvalues and eigenvectors of a matrix 
RAM  Random Access Memory 
RDMA  Remote Data Memory Access 
RISC  Reduce Instruction Set Computer 
RN  Row-Net 
RNG  Random Number Generator 
RPM  Revolution per Minute 
SAN  Storage Area Network 
SARA  Stichting Academisch Rekencentrum Amsterdam (Netherlands) 
SAS  Serial Attached SCSI 
SATA  Serial Advanced Technology Attachment (bus) 
SDK  Software Development Kit 
SGEMM Single precision General Matrix Multiply, subroutine in the BLAS 
SGI  Silicon Graphics, Inc. 
SHMEM  Share Memory access library (Cray) 
SIMD  Single Instruction Multiple Data 
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SM  Streaming Multiprocessor, also Subnet Manager 
SMP  Symmetric Multi Processing 
SNIC  Swedish National Infrastructure for Computing (Sweden) 
SP  Single Precision, usually 32-bit floating point numbers 
SpMxV Sparse Matrix Vector multiplication 
SPU Synergistic Processor Unit (in each SPE) 
SSD Solid State Disk or Drive 
SSE Streaming SIMD Extensions 
STFC Science and Technology Facilities Council (represented in PRACE by 

EPSRC, United Kingdom) 
STRATOS PRACE advisory group for STRAtegic TechnOlogieS 
TB Tera (= 240 ~ 1012) Bytes (= 8 bits), also TByte 
TFlop/s Tera (= 1012) Floating-point operations (usually in 64-bit, i.e. DP) per 

second, also TF/s 
Tier-0 Denotes the apex of a conceptual pyramid of HPC systems. In this 

context the Supercomputing Research Infrastructure would host the 
Tier-0 systems; national or topical HPC centres would constitute Tier-1 

UFL University of Florida 
UNICORE Uniform Interface to Computing Resources. Grid software for seamless 

access to distributed resources. 

VSB Technical University of Ostrava 

WCSS Wrocławskie Centrum Sieciowo-Superkomputerowe (Wrocław Centre 
for Networking and Supercomputing) 

WP Work Package 
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Executive Summary 

Work Package 12 (WP12) “Novel Programming Techniques” performs research and 
development in four key areas for future multi-petascale and exascale systems. The work in 
WP12 focuses on auto tuned and automatic techniques to be applied in parallel programming 
model runtimes (Task 12.1: “Auto-tuned runtime Environments”), performance tools (Task 
12.3: “Development environments and tools”) and file systems (Task 12.4: “File system 
optimization”).  Furthermore, as it is widely accepted that the key to exploiting future high-
end systems will be based on research on new numerical algorithms as well as advancing the 
parallel processing technology used for higher scalability in numerical applications; 
consequently WP12 also focuses on research studies exposing more scalability for numerical 
algorithms (Task 12.2: “Scalable numerical algorithms”). 

The key research topics investigated in Task 12.2 are: 

 Reducing Synchronization Overhead in Iterative Solvers 
 Enhancing Parallel Hybrid Sparse Solvers for Scalability 
 Topology-Awareness 
 Enabling Hybridization in Heterogeneous Architectures  
 Application Scalability 

Task 12.2 evaluated different algorithms, methods, and approaches and demonstrated the 
scalability of the algorithms using simple ad-hoc programs. In total 17 complementary areas 
organized as individual projects were covered. This document is a summary of the projects’ 
results. It contains high-level summaries of all projects as well as brief description of covered 
topics. In most of the summaries, links to PRACE white papers or scientific publications are 
given for those readers that are interested in more detailed information.  
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1 Introduction 

It is widely accepted that new numerical algorithms will be key to exploit future high-end 
systems and the focus of this deliverable is on exploring new algorithms and methods for 
enhancing the scalability of parallel numerical algorithms to meet the demands of petascale 
computing. The aim of Task 12.2 “Exploration of Scalable Numerical Algorithms” is to 
address the scalability of parallel numerical algorithms by focusing research on the following 
key topics:  

 Reducing Synchronization Overhead in Iterative Solvers: Exploring new numerical 
algorithms and parallel computing methodologies to reduce the synchronization 
overhead in parallel iterative solvers,  

 Enhancing Parallel Hybrid Sparse Solvers for Scalability: Exploiting algorithms and 
solvers that contain both direct and iterative components to reduce the global 
synchronization overhead by efficient and effective preconditioning that decrease the 
number of iterations while increasing the amount of computation per iteration, 

 Topology-Awareness: Achieving topology-awareness in task-to-processor mapping to 
minimize the adverse effect of large processor-to-processor distances on 
communication overhead in large-scale parallel systems, 

 Enabling Hybridization in Heterogeneous Architectures: Enabling hybridization of 
numerical operations and kernels via combining MPI programming paradigm with 
OpenMP-, threading-, CUDA- and OpenCL-based approaches, 

 Application Scalability: Facilitating the usage and the embedding of state-of-the-art 
parallel processing technology to some target applications for enhancing scalability. 

The focus of this deliverable is on the algorithms and methods but not on their integration on 
specific production applications. However, along with simple ad-hoc programs demonstrating 
the scalability of the algorithms, whenever possible, efforts towards initial embeddings of the 
proposed schemes to existing and widely used scientific applications are performed as well. 

The deliverable itself is quite concise in order to allow people to easily identify the projects 
that are of particular interest for them and to encourage further reading in the accompanying 
white papers or the referred publications. 

The rest of the deliverable is organized as follows. Chapter 2 provides a description of the 
organization of Task 12.2. Brief discussions on the main research topics as well as brief 
overviews of the Task 12.2 projects categorized according to these key topics are given in 
Chapter 3. Chapter 4 provides detailed descriptions of the Task 12.2 projects along with 
obtained results and discussions. Chapter 5 presents the conclusions.    
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2 Task Organization 

Table 1 displays a rough per partner PM distribution of Task 12.2. Around 130 PMs were 
allocated for this work and experts from nine countries are participating in Task 12.2. In total 
17 projects have been completed. Most of the projects have been carried out with 4-7 PMs.  

 

Country Partner PMs
France IDRIS 6.0
UK EPCC 7.0
Switzerland ETHZ 14.0
Poland WCSS 7.0
Turkey UHeM-ITU 12.0

Bilkent 36.0
Bulgaria NCSA 12.0
Czech Republic VSB 25.0
Serbia IPB 4.0
Italy CINECA 6.0
 Sum 129

 
Table 1: Overview of efforts per partner 

 

List of projects in Task 12.2 and their distribution among the 3rd parties is given in Figure 1. 
 

 
 

Figure 1: Projects in Task 12.2 
 

In order to structure work in Task 12.2, firstly, all projects defined the extent and purpose of 
their works in short statement of works (SOWs). Following these SOWs, to allow easy 
overview of all projects and to ensure that progress of all projects could be easily monitored, 
dedicated wiki pages have been set up and augmented with regular status reports. Figure 2 
shows an example screen shot of one of the project wiki pages. 
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Figure 2: An example project wiki page. 

 

As stated before, Task 12.2 covers topics such as topology-awareness, reducing synchrony, 
and new numerical algorithms. Figure 3 gives a schematic overview of the projects in Task 
12.2; it also illustrates how the covered major topics are distributed across projects. 

 

 
Figure 3: Thematic overview of projects in Task 12.2. 
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3 Task 12.2 Key Research Topics and Project Overviews 

In this section, we present an overview of the 17 projects in Task 12.2 categorized according 
to the above-mentioned key research topics. For each topic, we also provide a brief 
introduction stating the importance of each topic.  

3.1 Reducing Synchronization Overhead in Iterative Solvers 

Iterative algorithms have become the de-facto approach for the solution of sparse linear 
systems of equations on large-scale parallel systems due to their amenability to 
parallelization. Iterative algorithms have been successfully used for the solution of such linear 
systems on small-to-medium scale parallel systems. However, especially under peta-scale 
computing setups, bottlenecks in the parallelization of these algorithms have been observed. 
All iterative algorithms used for the solution of linear systems require a number of global 
synchronization operations (e.g., all_reduce) for computing global scalars as well as a number 
of local synchronization operations due to the point-to-point communications incurred by the 
sparse matrix-vector operations. These local and global synchronization operations create 
barriers beyond which computation cannot proceed until all participating processors have 
reached that point. Projects in Sections 4.1, 4.2, and 4.3 can be considered as research efforts 
towards reducing synchronization overheads. 

Section 4.1, entitled “Asynchronous Algorithms for Large Sparse Linear Systems” exploits 
asynchronous techniques that avoid the blocking behavior of synchronization operations by 
permitting processors to operate on whatever data they have, even if new data has not yet 
arrived from other processors. This project provides an experimental evaluation of the 
asynchronous approach on the Jacobi method, which is one of the simplest iterative 
algorithms. 

Section 4.2, entitled “Designing and Implementing a Single-Phase Row-Column-Parallel 
Sparse Matrix Vector Multiplication Algorithm based on 2D Matrix Partitioning” proposes to 
address the two-phase communication bottleneck of the row-column-parallel SpMxV 
operation so that 2D nonzero-based matrix partitioning models and methods can be 
successfully utilized. This project also proposes and implements a two-stage approach to 
produce a good partition for the proposed single-phase row-column-parallel SpMxV 
algorithm. 

Section 4.3, entitled “Implementation and Performance Evaluation of the CA-CG Algorithm 
on Massively Parallel HPC-Clusters”, tries to deepen the understanding of an emerging class 
of methods (Communication Avoiding Krylov subspace methods) devised to overcome 
limitations due to synchronization issues in parallel sparse linear system solvers. The project 
evaluates the feasibility of implementation and testing the overall performance of the CA-CG 
algorithm on a set of benchmark platforms. 

3.2 Enhancing Parallel Hybrid Sparse Solvers for Scalability 

Recently a number of hybrid algorithms and solvers that contain both direct and iterative 
components are proposed. These algorithms are promising in terms of robustness and 
scalability on parallel computing platforms. These algorithms are also utilized for reducing 
the above-mentioned global synchronization overhead by efficient and effective 
preconditioning that decreases the number of iterations while increasing the amount of 
computation per iteration. Here, effectiveness refers to decrease in the number of iterations 
required to convergence, whereas efficiency refers to the computational overhead introduced 
by the preconditioning steps and the amenability of the preconditioning operations to 
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parallelization. Projects in Sections 4.4 and 4.5 can be considered as research efforts towards 
reducing synchronization overheads through the use of hybrid linear system solvers. 

Section 4.4, entitled “Permuting Sparse Matrices into Block Diagonal Form with Overlap”, 
proposes and implements a matrix reordering scheme for permuting a square sparse matrix 
into block-diagonal form with overlap for efficient parallelization of the multiplicative 
Schwarz and the DDKrylov preconditioners. The permutation objective of minimizing the 
overlap size also has a positive impact on the effectiveness of the Shwarz preconditioner via 
minimizing an upper bound on the iteration count. 

Section 4.5, entitled “A Parallel Sparse Hybrid Solver and Its Relations to Graphs and 
Hypergraphs”, proposes and implements two different (graph- and hypergraph-based) matrix 
reordering schemes that enables the extraction of a small reduced system from a square sparse 
matrix for a successful DS factorization preconditioning scheme.  

3.3 Topology-Aware Mapping  

The task-to-processor mapping in parallel systems can be vital for the performance of the 
executed programs. Especially for architectures that consist of thousands of processors (such 
as IBM BlueGene/P), the poor mapping of tasks to processors can lead to message contention 
since the network resources are usually shared by multiple communication tasks. This causes 
increase in message latencies and degrades the overall system performance. In such 
architectures, the message latencies are not independent of the number of links between two 
processors, which is counter to the assumption made by the cut-through and wormhole 
routing. Hence, the number of links (or hops) between processors becomes important when 
mapping tasks to processors. Taking this observation into account, careful mapping of tasks to 
processors which exploits the topology of the parallel architecture and the interaction between 
tasks can be very beneficial for the overall performance of the parallel system.  

Section 4.6, entitled “Topology-aware subdomain-to-processor assignment” proposes and 
implements a two-phase framework for topology-aware task-to-processor mapping by 
considering both the task interaction and processor organization graphs. The first phase 
groups highly interacting tasks into K clusters, where K is equal to the number of processors, 
and the second phase performs one-to-one task-cluster-to-processor mapping with the 
objective of minimizing a metric defined on the volumes and distances of communication 
operations. 

3.4 Enabling Hybridization in Heterogeneous Architectures  

The hybrid approach, combining MPI programming paradigm across computing nodes and 
OpenMP-, threading-, CUDA- and OpenCL-based approach within individual nodes, have 
been widely adopted by the computational science community for developing programs that 
execute on heterogeneous platforms (CPU multi-core processors combined with multi-core 
and/or accelerator technology). Sections 4.7, 4.8, 4.9, 4.10, 4.11, 4.12, 4.13 and 4.14 are all 
efforts towards exploiting the benefits of hybridization in large-scale computing performance. 

Section 4.7, entitled “Multicore Parallelization of Block Cyclic Reduction Algorithm” 
investigates efficient parallelization of the Buneman’s variant of block cyclic reduction 
algorithm for the solution of linear systems with coefficient matrices of block-tridiagonal 
form. Performance comparisons are given for a small-scale system using OpenMP and MPI. 

Section 4.8, entitled “Enabling FFTE Library and FFTW3 Threading in the Quantum 
Espresso” investigates the effects of replacing the FFT routines in Quantum Espresso with 
better performing FFTE and FFTW3 libraries that support hybrid OpenMP + MPI approach. 
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Section 4.9, entitled “A Hybrid Hermitian General Eigenvalue Solver” proposes and develops 
general dense eigenvalue solvers based on single-node CPUs + GPU and CPUs + GPUs 
hybridization. The project provides an experimental comparison of the developed hybrid 
eigenvalue solvers against both a shared memory and a distributed memory library. 

Section 4.10, entitled “A Generic Library for Stencil Computations” investigates the 
programmability issues, such as productivity and portable efficiency in parallel algorithm 
design and software development for HPC clusters and machines with accelerators. To this 
end, the project develops a domain specific C++ generic library for stencil computations, like 
PDE solvers. The library features high level constructs such as do_all and do_reduce and 
allows the development of parallel stencil computations with very limited effort.  

Section 4.11, entitled “Design and Implementation of New Hybrid Algorithm and Solver for 
Large Sparse Linear Systems” describes the efforts towards improving the scalability of the 
direct linear system solver SuperLU via utilizing the MPI+OpenMP hybrid programming 
approach that combines the advantages of the two SuperLU libraries that are available for 
distributed and shared memory architectures. 

Section 4.12, entitled “Scalable and Improved SuperLU on GPU for Heterogeneous Systems” 
describes the efforts towards improving the scalability of the direct linear system solver 
SuperLU via utilizing the MPI+CUDA hybrid programming approach. 

Section 4.13, entitled “Optimization of Shake and Rattle Algorithms”, investigates 
optimization of SHAKE and RATTLE algorithms, which are widely used in molecular 
dynamics simulations, through embedding CUDA and OpenCL implementations of these 
algorithms into the DL_POLY molecular simulation package.  

Section 4.14, entitled “Optimization of FHP Algorithms” investigates the possibility of 
accelerating FHP algorithms, which are used to solve Navier-Stokes equations derived from 
Newtonian Mechanics to describe the motion of fluid substances, using POSIX Threads, MPI, 
SSE, AVX and NVIDIA CUDA. 

3.5 Application Scalability 

In the parallelization of applications, both due to the nature of the underlying application 
together with the adopted parallelization scheme certain parallelization overheads such as 
sequential components, synchronization overheads, and load imbalance may be tolerable up 
to a certain number of processors. However, when the level of parallelization reaches towards 
petascale, each of these parallelization overheads should be investigated and minimized in 
order to achieve a decent speedup on such large-scale systems. Sections 4.15, 4.16, and 0 are 
all efforts towards exploiting various algorithms and methods for increasing the scalability of 
the parallelization of their target applications. 

Section 4.15, entitled “FETI Coarse Problem Parallelization Strategies and Their 
Comparison” investigates the parallelization of the Finite Element Tearing and 
Interconnecting (FETI) methods. For small-to-medium scale parallelization, the coarse-grain 
problem, which is obtained from subdomain interfaces, is solved sequentially on the master 
core. However, this is infeasible for petascale computing settings, because of the increase in 
memory requirements and decrease in scalability, which is due to the substantial increase in 
number of subdomains. The project investigates a number of methods for improving the 
scalability via parallel solution of the coarse system at different parallelization and redundant 
computation levels. 

Section 4.16, entitled “Computer Modeling and Simulations in Strongly Heterogeneous 
Nonlinear Media” investigates incorporating selection of efficient parallel preconditioners, 
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parallel implementation of aggressive coarsening algorithms and adaptive time-stepping in the 
parallelization of the Finite Element Method (FEM) simulation of thermal and electrical fields 
in strongly heterogeneous nonlinear media on structured and unstructured meshes.  

Section 0, entitled “CFD-Investigations for Assessing Aneurysm Rupture Risk for Individual 
Patient Using CT Visual Diagnostics” perform numerical experiments using the 
preconditioned BiCGStab (Bi-conjugate gradient stabilized) algorithm with incomplete 
factorization for the parallel solution of 3D Navier-Stokes equations for incompressible fluids, 
which is used in the modeling of the blood flow in cerebral aneurisms. 

4 Detailed Project Descriptions 

In this chapter, detailed descriptions of the Task 12.2 projects along with obtained results and 
discussions are provided. All projects contain links to accompanying white papers or 
publications. All PRACE technical white papers are available on the PRACE-RI web site 
[https://bscw.zam.kfa-juelich.de/bscw/bscw.cgi/787675].  

4.1 Asynchronous Algorithms for Large Sparse Linear Systems 

Supported by: Mark Bull and Iain Bethune (EPCC, University of Edinburgh) 

Whitepaper: Mark Bull and Iain Bethune, “Asynchronous Algorithms for Large Sparse Linear Systems ”, 
http://eprints.ma.man.ac.uk/1838/. 

Modern high-performance computing systems are typically composed of many thousands of 
cores linked together by high bandwidth and low latency interconnects. Over the coming 
decade core counts will continue to grow as efforts are made to reach Exaflop performance. In 
order to continue to exploit these resources efficiently, new software algorithms and 
implementations will be required that avoid tightly-coupled synchronization between 
participating cores and that are resilient in the event of failure. 

This project investigates one such class of algorithms. The solution of systems of linear 
equations of the form Ax=b, where A is a large, sparse n by n matrix and x and b are column 
vectors of size n, lies at the heart of a large number of scientific computing kernels, and so 
efficient solution implementations are crucial. Existing iterative techniques for solving such 
systems in parallel are typically synchronous, in that all processors must exchange updated 
vector information at the end of every iteration, and scalar reductions may be required by the 
algorithm. This creates barriers beyond which computation cannot proceed until all 
participating processors have reached that point, i.e. the computation is globally synchronized 
at each iteration. Such approaches are unlikely to scale to millions of cores. 

This project is focused on developing asynchronous techniques that avoid this blocking 
behavior by permitting processors to operate on whatever data they have, even if new data has 
not yet arrived from other processors. To date there has been work on both the theoretical and 
the practical aspects of such algorithms. To reason about these algorithms one needs to 
understand what drives the speed of their convergence, but existing results merely provide 
sufficient conditions for the algorithms to converge, and do not help in answering some of the 
questions arising in the use of asynchronous techniques in large, tightly coupled parallel 
systems of relevance to exascale computing. This project tries to obtain insights by 
investigating the performance of the algorithms experimentally. 

Taking Jacobi's method, one of the simplest iterative algorithms, one traditional synchronous 
and two asynchronous variants are implemented, using three parallel programming models - 
MPI, SHMEM and OpenMP.  The performance of these implementations is investigated in 
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detail at scale on a Cray XE6, and some counter-intuitive properties which are of great 
interest when implementing such methods are discussed.   

The performance of these algorithms depends on two key factors - the efficiency and 
scalability of the implementation, and the effect of asynchrony on the number of iterations 
taken to converge - both of which vary with the number of cores used. Table 2 and Table 3 
show the number of iterations and execution time required to converge a heat diffusion 
problem on HECToR, a Cray XE6 system with 32 AMD Interlagos cores per node. sync is the 
synchronous version, async is a race-free asynchronous version and racy is an easier-to-
program asynchronous version that includes deliberate race conditions: all three version are 
implemented in both MPI and SHMEM. 

Results presented in Table 2 and Table 3 show that (except on the very largest core counts) 
SHMEM can provide a more efficient implementation of asynchronous message-passing than 
MPI, and that for problems that require on the order of thousands of cores, asynchronous 
algorithms can outperform their synchronous counterparts by around 10%. OpenMP (results 
not shown here) was found to give good performance for asynchronous algorithms, and was 
also very easy to program compared to either MPI or SHMEM. Although it has limited 
scalability due to the number of cores in a shared memory node, we suggest that OpenMP 
might be applicable in a hybrid model with MPI, for example, particularly since we found 
asynchronous Jacobi in OpenMP to be 33% faster than the synchronous equivalent even on a 
relatively modest 32 cores. In addition, asynchronous algorithms are expected to be tolerant to 
hardware performance defects, which could be an advantage on systems with millions of 
cores. 

Table 2: HECToR MPI results summary Table 3: HECToR SHMEM result summary 

4.2 Designing and Implementing a Single-Phase Row-Column-Parallel 
Sparse Matrix Vector Multiplication Algorithm based on 2D Matrix Partitioning 

Supported by: B. Ucar (CNRS), E. Kayaaslan, O. Ozturk, C. Aykanat (Bilkent University) 

Whitepaper: E. Kayaaslan, B. Ucar, O. Ozturk, C. Aykanat, “Designing and Implementing a Single-Phase Row-
Column-Parallel Sparse Matrix Vector Multiplication Algorithm based on 2D Matrix Partitioning”, PRACE 
technical white paper. 

Sparse matrix vector multiplication (SpMxV) is a kernel operation repeatedly performed in 
iterative linear system solvers. There are mainly three types of parallel SpMxV algorithms 
used in the scientific community: row-parallel, column-parallel and row-column-parallel.  The 
row-parallel algorithm involves expand-type point-to-point communication operations on the 
local input vector entries before the local SpMxV operations; whereas column-parallel 
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algorithm involves fold-type point-to-point communication operations on the local output 
vector results after the local SpMxV operations. The row-column-parallel algorithm 
necessitates two-phase communication: expand operation before local SpMxVs and fold 
operation after the local SpMxVs. 1D rowwise and columnwise partitioning of the coefficient 
matrix are used for row-parallel and column-parallel SpMxV algorithms, respectively, 
whereas 2D-nonzero partitioning of the coefficiant matrix is used for row-column-parallel 
SpMxV algorithms. Several hypergraph partitioning models and methods have been 
successfully used for sparse matrix partitioning for efficient row-parallel, column-parallel and 
row-column-parallel SpMxV operations. In all these models the partitioning objective is to 
minimize the total volume of communication whereas the partitioning constraint is to 
minimize the computational load balance. 2D nonzero based partitioning models are both 
more scalable and perform considerably better than the 1D partitioning models in terms of 
communication volume metric. However, 1D models perform considerably better than 2D 
models in terms of speedup values due to the increased number of messages in the row-
column-parallel SpMxV algorithm. In this project, a one-phase row-column-parallel SpMxV 
algorithm is proposed to address this bottleneck of the row-column-parallel SpMxV operation 
so that 2D nonzero-based matrix partitioning models and methods can be successfully 
utilized.  

In this project, a two-stage approach is proposed and adopted to produce a good partition for 
the above-mentioned one-phase row-column-parallel SpMxV algorithm. In the first stage, a 
K-way row/column partition and initial nonzero partition, either using one-dimensional 
(coarse-grain) [1] or two-dimensional (fine-grain) [3] partitioning approaches, is obtained for 
a K processor system. At the end of this stage, for each ordered pair of parts a submatrix 
whose nonzeros will be determined to be hold by either receiver or sender processor is 
obtained. The second stage refines the nonzero partition obtained in the first stage by using 
Dulmage-Mendhelson decomposition of these submatrices. In case of one-dimensional 
partitioning in the first stage, the off-diagonal submatrices are used, whereas in case of two-
dimensional partitioning, in order to keep load balance, for each ordered pair of parts, the 
subset of the off-diagonal submatrix that is comprised of only nonzeros assigned to neither 
receiver nor sender processor is used. In the refinement step, the nonzeros that lie inside the 
horizontal blocks are assigned to sender, and the remaining nonzeros of the submatrices are 
assigned to receiver processor.   

Parallel algorithm row-parallel column-parallel row-column-parallel 
# of communication phases 1 phase 1 phase 2 phase 1 phase 
Part. scheme in first stage 1D 1D 2D 1D 2D 

bundle1 8.326 8.003 5.739 5.918 8.342 
cbuckle 9.545 10.622 8.612 9.819 10.605 
finan512 13.575 13.504 11.640 13.677 13.682 
poisson3Da 6.892 6.907 4.154 7.179 6.718 
rgg_n_2_17_s0 12.701 13.240 11.137 13.180 12.868 
shuttle_eddy 6.079 5.991 3.743 6.177 6.180 
tube1 11.263 11.233 9.505 11.149 8.668 

vibrobox 5.181 6.017 3.415 6.123 4.933 
ASIC_320ks 11.504 11.578 10.422 12.104 12.293 
msc10848 11.789 11.786 9.862 11.539 11.466 

 

Table 4: Speedup values obtained on a 16-processor system. 
 
The validity of the proposed one-phase row-column-parallel SpMxV and the associated two-
stage partitioning schemes is experimentally evaluated in terms of speedup values obtained on 
a 16-node PC-cluster located at Bilkent University. The test matrices are obtained from the 
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Florida Matrix Collection [2]. Table 4 presents these speedup values. In the table, a bold value 
in a row indicates the best speedup value obtained for the parallelization of the SpMxV 
associated with the respective test matrix. As seen in the table, these initial results are 
promising and extensive experimentation on a 512-node system is underway. 

4.3 Implementation and Performance Evaluation of the CA-CG Algorithm on 
Massively Parallel HPC-Clusters 

Supported by: G. Erbacci, M. Culpo, M. Guarrasi (CINECA) 

Sparse linear systems lie at the core of many scientific computing applications. They can be 
solved by direct or iterative methods; the former preferred for their robustness when the 
problem size is small enough to make them affordable, the latter preferred due to their better 
asymptotic complexity and the high degree of parallelism they generally expose [4] when the 
systems to be solved are large enough.  

In particular, fostered by the need to solve engineering problems of ever-growing complexity, 
modern iterative methods based on Krylov subspaces received a lot of attention in the last two 
decades [5]. This led to remarkable improvements in the underlying mathematical algorithms 
and to careful studies on the optimal way to implement them [6], producing as a result a 
number of widely known software packages that are proven to scale up to roughly a few 
thousands cores [7], [8]. 

While this state-of-the-art fits nicely into the framework of Tier-1 supercomputers, it becomes 
soon inadequate if Tier-0 resources are instead to be efficiently exploited. The main cause of 
this inadequacy is to be found in the current trends driving the HPC world towards 
architectures composed of millions of relatively slow cores that can reach, nowadays, 
performances up to almost 20 PetaFlop/s [9]. A rough comparison with the architecture of 
previous generation machines makes evident that algorithms need to increase their scalability 
by almost two orders of magnitude to effectively exploit the latest technologies. A request of 
such a kind cannot be satisfied by the standard Krylov subspace algorithms, as the amount 
and type of communications they require makes them too much synchronous for this task. 

This project tries therefore to deepen the understanding of an emerging class of methods 
(Communication Avoiding Krylov subspace methods) [10], [11] precisely devised to 
overcome these limitations. This is done by evaluating the feasibility of implementation and 
testing the overall performance of the CA-CG algorithm on a set of benchmark platforms. 

CA methods are based on the assumption that the cost of an algorithm includes both 
computations and communications1: rather than minimizing the computational cost only, they 
try therefore to minimize the overall cost. As for technological reasons communication costs 
are much higher than computational costs, this directly leads to the key idea that the best 
performance is obtained trying to avoid communication as much as possible, even if this may 
require some redundant arithmetic operations. 

This strategy is realized in the CA-CG algorithm through the use of the Matrix Power Kernel 
and Block Inner Product algorithms. Though for a mathematically sound treatment the 
interested reader is referred to [10], it is anticipated that the CA-CG algorithms will require in 
the end a factor of Θ(s) fewer messages if compared to standard CG, where s is the number of 
basis vectors generated by the matrix power kernels. 

The framework used for the parallel implementation of the CA-CG algorithm is the one 
provided by PETSc [7], as this choice allows for a fair comparison with the standard CG 
                                                 
1 The term “communications” includes in this framework both the bandwidth terms (communication among 
different memory levels) and the latency terms (communication among different nodes) 
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algorithm available in the library. The two algorithms have been tested on a selected set of 
Sparse Positive Definite (SPD) matrices taken from the UFL database [2]. Finally, the tests 
have been conducted on both PLX [12] and FERMI [13] supercomputers. 

While for the detailed results of the benchmarks we refer to the associated white paperwe can 
say that in many cases non-negligible increases of performances were found. This 
strengthened our conviction on the fact the CA algorithms may be considered the most 
promising line of research among the ones trying to improve parallelism and performance of 
Krylov subspace linear solvers. 

In the near future CINECA plans to continue the testing activity on CA algorithms even 
outside of the PRACE framework, probing in particular the effectiveness of the currently 
available preconditioners for CA-CG and the efficiency of others CA algorithms (e.g. CA-
GMRES) on a wider set of benchmarks. The long term aim in case of sufficiently good results 
is to incorporate these algorithms in production codes that are commonly used on FERMI.  

4.4 Permuting Sparse Square Matrices into Block Diagonal Form with 
Overlap for Parallel Hybrid Sparse Solvers 

Supported by: S. Acer, E. Kayaaslan, C. Aykanat, T. Dayar (Bilkent University) 

Whitepaper: S. Acer, E. Kayaaslan, T. Dayar, C. Aykanat, “Permuting Sparse Matrices into Block Diagonal 
Form with Overlap for Parallel Hybrid Sparse Solvers”, PRACE technical white paper. 

In this project, the problem of symmetrically permuting a sparse square matrix into block 
diagonal form with overlap (BDO form) is defined and a graph partitioning algorithm for 
solving this problem is proposed. Results show the validity of the proposed algorithm. 

A K-way BDO form contains K diagonal blocks such that each two consecutive diagonal 
block may overlap (see Figure 4(a)). The problem of permuting a matrix into BDO form has 
the objective of minimizing total overlap size, i.e., sum of the number of rows/columns in 
overlaps, while having the constraint of maintaining balance on the number of nonzeros of the 
diagonal blocks.  

This permutation problem arises in the parallelization of an explicit formulation of the 
multiplicative Schwarz preconditioner [14] and the DDKrylov scheme [15]. In these 
parallelizations, each diagonal block and its associated computations are assigned to a distinct 
processor. The permutation objective of minimizing total overlap size corresponds to 
minimizing communication volume [14], [15] and minimizing the size of the balance system 
[15], and the permutation constraint of maintaining balance on the number of nonzeros of 
diagonal blocks relates to maintaining balance on the computational loads of processors 
during the iterations [14]. In addition to these relations, minimizing total overlap size 
corresponds to minimizing an upper bound on the number of iterations for convergence [16]. 

As the ring/chain topology can be easily embedded in almost all of the interconnection 
topologies utilized in large scale systems, the BDO form ensures nearest neighbour (one-hop) 
communication in which each processor communicates only with its left and right neighbor. 
The objective of minimizing the number of off-diagonal-block entries may incur network 
congestion in the point-to-point communications despite worm-hole routing. The adverse 
effect of multihop distant messages on the performance of the large scale parallel system has 
been recently reported in the literature and the need for topology-aware mapping is addressed. 
The nearest neighbor communication pattern achieved due to the BDO form leads to the 
contention-free communication on the fly. 
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(a) BDO form of 
matrix A 

(b) Decomposition of a diagonal 
block 

(c) oVS form 

Figure 4: BDO form of a matrix and its oVS representation. 
 
A graph partitioning problem, namely K-way ordered Graph Partitioning by Vertex 
Separators problem (oGPVS), which is equivalent to the above permutation problem is 
defined as follows: For the standard graph representation of a given matrix, find a partition of 
its vertices into K ordered vertex parts and K-1 ordered vertex separators such that each two 
consecutive vertex parts can only be connected through a distinct vertex separator and each 
vertex separator can only connect those consecutive vertex parts and the vertex separators 
neighbouring those vertex parts. This form of a given graph is referred as the Ordered Vertex 
Seperator (oVS) form (see Figure 4(c)). The partitioning objective is to minimize the sum of 
the number of vertices in the vertex separators, whereas the partitioning objective is to 
maintain balance on the vertex part weights, where the weight of each vertex is assigned as 
the number of nonzeros in its corresponding row/column of the given matrix. 

In this project, a new oGPVS algorithm that utilizes the existing graph partitioning tools is 
proposed to solve this partitioning problem, hence the permutation problem. This algorithm 
recursively bisects the graph with an existing graph partitioning tool such that the resulting 
two vertex parts are connected through a vertex separator at each recursion, and vertex parts 
and the vertex separators are ordered in the final partition. 

This permutation problem is addressed only in a recent work by Kahou et al [17], and a 
bottom-up graph-partitioning algorithm is proposed. This algorithm and the proposed 
algorithm are tested over 237 matrices collected from UFL matrix database for K = 4, 8, 16, 
32, 64, 128, and 256-way permutations. Since the objective is to minimize the total overlap 
size in the permuted matrix while maintaining balance on the number of non-zeros of 
diagonal blocks, the results of both algorithms are compared in terms of the total overlap size 
and the imbalance ratio on the number of nonzeros and these results are presented in Table 5. 
On average, 23-35% improvement is achieved in terms of total overlap size for different K 
values as seen in the last column of Table 5.  

 

K 
Number of 
Matrices 

Baseline Algorithm oGPVS Algorithm oGPVS/Baseline 
(Overlap) Imbalance Overlap  Imbalance Overlap  

4 205 3.62% 2.65% 2.36% 4.08% 0.65 
8 183 6.55% 5.13% 4.60% 7.42% 0.70 

16 155 9.42% 9.07% 6.62% 9.57% 0.70 
32 106 9.91% 9.45% 7.63% 9.38% 0.77 
64 63 9.63% 10.26% 7.39% 9.34% 0.77 

128 38 10.89% 8.27% 22.22% 6.11% 0.74 
256 24 12.64% 9.13% 17.86% 5.46% 0.60 

 
Table 5: Performance comparison of the baseline and oGPVS algorithms in terms of total overlap size and 

load imbalance for different number of processors (K). 
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4.5 A Parallel Sparse Hybrid Solver and Its Relation to Graphs and 
Hypergraphs 

Supported by:  M. Gundogan (Bilkent University), M. Manguoglu (METU), C. Aykanat (Bilkent University) 

Whitepaper: M. Gundogan, M. Manguoglu, C. Aykanat, “A Parallel Sparse Hybrid Solver and Its Relation to 
Graphs and Hypergraphs”, PRACE technical white paper. 

Given a system of equations of the form Ax = f, where A is large and sparse, it is known that 
hybrid solvers that contain both direct and iterative components are promising in terms of 
robustness and scalability on parallel computing platforms. A state-of-the-art hybrid solver, 
which uses the generalized form parallel DS factorization, is the focus of this work [18]. In the 
DS factorization scheme, D is the block diagonal of A, and the factor S, given by D−1A 
(assuming D is nonsingular), consists of the block diagonal identity matrix modified by 
“spikes” to the right and left of each partition. The generalized DS factorization of the system 
involves reordering A to extract the block diagonal D, then, multiplying both sides of the 
system with D−1, from the left side. The resulting multiplied system contains a smaller 
reduced system of equations based on the nonzero entries in off-diagonal blocks of the 
reordered system. The solution of the original system, Ax = f, can be obtained from the 
solution of this reduced system, which can be solved independently. After DS factorization, the 
process of solving Ax = f reduces to a sequence of steps that are ideally suited for parallel 
execution and performance. In general, the scalability of this factorization scheme depends on 
decreasing the solution time of the reduced system. Among other factors, the solution time of 
the reduced system depends on the size and the number of nonzeros of the reduced system.  

In this project two different reordering strategies are investigated for a successful DS 
factorization preconditioning scheme: Reordering via graph partitioning (GP) and reordering 
via hypergraph partitioning (HP). In the GP scheme, the standard graph representation G(A) 
on matrix A is used. In the HP scheme, the column-net hypergraph model [1] Hcn(A) of matrix 
A is used. 

For a K processor system, in the GP and HP schemes, a K-way partitioning is performed on 
G(A) and H(A), respectively, and the resulting partition is decoded as inducing a K-way 
symmetric permutation on the rows and columns of [1]. In both schemes, the partitioning 
constraint of maintaining balance on the part weights corresponds to maintaining balance on 
the nonzero counts of the diagonal blocks of the reordered matrix. In the GP scheme, the 
partitioning objective of minimizing the edge cutsize corresponds to minimizing the total 
number of nonzeros in the off-diagonal blocks of the reordered matrix. In the HP scheme, the 
partitioning objective of minimizing the cutsize according to the cut-net metric corresponds to 
minimizing the total number of nonzero columns in the off-diagonal blocks of the reordered 
matrix. The partitioning objective of the GP scheme relates to minimizing the number of 
nonzeros in the reduced system, whereas the partitioning objective of the HP scheme exactly 
models minimizing the size of the reduced system. Hence, the HP scheme can be expected to 
achieve better preconditioning compared to the GP scheme. 

In this project, the experimental performance comparison of the proposed GP and HP 
schemes for preconditioning with DS factorization are investigated by using the successful 
multi-level graph and hypergraph partitioning tools MeTiS and PaToH [1] on 71 matrices 
selected from UFL sparse matrix collection [19]. The biconjugate gradient stabilized 
(BiCGStab) solver is used as an iterative solver for both inner and outer systems, whereas 
PARDISO is used as a direct solver for the diagonal blocks. The target parallel architecture is 
an Intel cluster of 46 nodes located at Middle East Technical University, where each node 
contains 2 Intel Xeon E5430 Quad-Core CPUs. Table 6 displays the performance 
improvement of the HP and GP schemes over the unordered scheme in terms of solution 
times on a 64-processor system averaged over different problem categories. 
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Problem Category 
# of 

matrices GP HP HP/GP 
Chemistry 14 20.8% 26.7% 0.93 
Circuit Simulation 9 22.3% 30.6% 0.89 
Computational Fluid Dynamics 9 15.6% 27.8% 0.86 
Modeling 6 26.1% 17.8% 1.11 
Structural 7 18.9% 20.4% 0.98 
Other 26 21.5% 32.9% 0.85 

Table 6: Performance improvement of HP over GP in terms of solution times on a 64-processor system 
averaged over different problem categories. 

 
 
As seen in Table 6, HP and GP schemes achieve 10-30% improvement in the solution times 
for different problem categories on average. The last column of Table 6 displays the ratio of 
the solution times of HP and GP schemes averaged over problem categories. Values smaller 
than one indicate the categories where HP scheme performs better than the GP scheme on 
average. As seen in the last column of Table 6, the HP scheme performs considerably better 
than the GP scheme in all problem categories except the “Modeling” category.  

Figure 5 displays speedup curves for the solution of four different linear systems selected 
from the list of matrices used in the experiments. As seen in the figure, HP achieves 
considerably better speedup than GP and with increasing number of processors the 
performance gap slightly increases in favor of HP.  

 

  

  
Figure 5: Speedup curves for the solution of four different linear systems on a 64-

processor system. 
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4.6 Topology-Aware Subdomain-to-Processor Assignment 

Supported by:  R. O. Selvitopi, A. Turk, A. Guvenir, C. Aykanat, (Bilkent University) 

Whitepaper: R. O. Selvitopi, A. Turk, A. Guvenir, C. Aykanat, “Topology-Aware Subdomain-to-Processor 
Assignment”, PRACE technical white paper. 

The task/process to processor mapping in parallel systems can be vital for the performance of 
the executed programs. Especially for architectures that consist of thousands of processors 
(such as IBM BlueGene/P), the poor mapping of tasks to processors can lead to contention 
since the network resources are usually shared by multiple tasks. This causes increase in 
message latencies and degrades the overall system performance. In such architectures, the 
message latencies are not independent of the number of links between two processors, which 
is counter to the assumption made by the cut-through and wormhole routing. Hence, the 
number of links (or hops) between processors becomes important while mapping tasks to 
processors. Taking this observation into account, careful mapping of tasks to processors 
which exploits the topology of the parallel architecture and the interaction between tasks can 
be very beneficial for the overall performance of the parallel system. 

In this project, an iterative-improvement-based algorithm is proposed and implemented for 
mapping tasks to processors. The algorithm utilizes the topology of the parallel architecture 
and the interaction between tasks. The algorithm starts from a random initial mapping and 
improves this mapping by a number swaps between tasks. Given n processors with topology 
information and n tasks with interaction information between the tasks, the proposed 
algorithm finds a one-to-one mapping so as to minimize the communicated volume between 
tasks using hop-bytes metric [20]. The hop-bytes for a total of N messages is computed as 
∑ ݀௜ ൈ ܾ௜

ே
௜ୀଵ , where ܾ௜ is the size of message in bytes and ݀௜ is the number of links message 

uses. 

Using the interaction graphs for standard parallel SpMxV application, the proposed algorithm 
is tested for various test matrices collected from the UFL matrix database. The parallelization 
of the application is done via utilizing the row-net and column-net hypergraph partitioning 
models [1]. The number of tasks/processors is varied from 64 to 2048. Table 7 presents the 
maximum task interaction degrees for the tested matrices under both row-net (RN) and 
column-net (CN) models. 

  Matrices 

  2cubessphere fullb G3_circuit language stokes128 ted_A tmt_sym 

ntasks 

RN CN RN CN RN CN RN CN RN CN RN CN RN CNnprocs 

64 12,3 12,3 7,3 7,2 5,1 5,3 63,0 62,8 5,0 5,1 4,6 4,4 5,3 5,2

128 13,5 13,3 7,9 7,7 5,3 5,2 123,4 122,2 5,6 5,5 6,2 6,0 5,5 5,4

256 13,8 13,8 8,3 8,1 5,7 5,6 201,7 197,7 5,7 5,7 8,6 9,7 5,7 5,7

512 14,2 14,0 9,3 9,3 5,9 6,0 224,7 221,6 6,0 6,0 12,1 13,5 5,8 5,7

1024 14,4 14,6 9,7 9,6 6,6 6,6 176,6 184,2 6,2 6,3 15,9 18,9 5,8 5,9

2048 14,5 14,6 9,7 9,6 6,6 7,7 115,3 124,3 6,6 6,6 21,0 28,6 5,9 5,9

Table 7: Average task degrees for the task interaction graphs (RN = row-net, CN = column-net) 

Table 8 presents the maximum hops of the tested topologies. These topologies are extracted 
from JUGENE Blue Gene/P system using the TopoManager API [21]. The maximum hops is 
defined as the maximum shortest path between two processors. 
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Number of processors 
in the topology 

Maximum hops 

64 9 

128 13 

256 17 

512 12 

1024 16 

2048 24 

 
Table 8: Maximum hops for each topology 

 
As mentioned, our algorithm improves an initial random assignment. The improvement 
percentage values compared to a random mapping of tasks to processors are given in Table 9. 
As seen in the table, improvements ranging from 14% to 63% are observed in terms of the 
hop bytes metric. 
 
 

 Matrices 

 2cubessphere fullb G3_circuit language stokes128 ted_A tmt_sym 

ntasks 
nprocs 

RN CN RN CN RN CN RN CN RN CN RN CN RN CN 

64 37.5 38.7 48.4 48.7 45.4 41.4 14.0 16.2 55.9 46.3 51.3 53.2 47.8 40.2

128 48.1 43.2 52.4 50.0 48.3 51.7 17.6 18.9 57.2 53.8 55.9 58.6 51.8 57.4

256 51.6 52.9 51.3 54.2 53.2 56.9 19.3 23.0 57.2 55.1 57.4 55.8 56.0 56.9

512 51.8 51.8 54.0 54.4 59.5 58.2 18.7 20.2 56.0 56.7 55.7 55.8 57.7 56.7

1024 55.3 53.5 59.8 59.5 62.1 62.0 20.2 23.8 61.5 61.6 58.6 58.3 60.2 60.3

2048 59.1 57.2 59.8 58.7 61.5 62.5 21.9 25.6 63.0 63.1 58.1 57.2 62.5 62.9

Table 9: Percentage improvement (%) for tested matrices 

4.7 Multicore Parallelization of Block Cyclic Reduction Algorithm 

Supported by: D. Lecas (IDRIS), R. Chevalier (IDRIS), P. Joly (LJLL) 

Whitepaper: D. Lecas, R. Chevalier, P. Joly, “Multicore Parallelization of Block Cyclic Reduction Algorithm”, 
PRACE technical white paper. 

The goal of this project is to evaluate how to parallelize the block cyclic reduction using MPI 
and OpenMP. This algorithm is used to solve elliptic problems much faster than the 
traditional iterative methods. Suppose the linear system can be written as follows, where B 
and T are two square matrices, U is the unknown, and F is the right hand side. 

 ሺܲሻ  ฻ ܺܣ ൌ ܻ ฻

ۉ

ۈ
ۇ

ܤ ܶ
ܶ ܤ ܶ

ܶ ڰ ڰ
ڰ ܤ ܶ

ܶ ܤ ی

ۋ
ۊ

ۉ

ۈ
ۇ

ଵܷ
ܷଶ
ܷଷ
ڭ

ܷ௠೤ی

ۋ
ۊ

ൌ

ۉ

ۈ
ۇ

ଵܨ
ଶܨ
ଷܨ
ڭ

ی௠೤ܨ

ۋ
ۊ
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The concept of block cyclic reduction is to iteratively eliminate half of the unknowns until 
there is an only single block system which can be solved directly. After the k-th elimination 
we have this kind of system: 

ۉ

ۈ
ۇ

ሺ௞ሻܤ ܶሺ௞ሻ

ܶሺ௞ሻ ሺ௞ሻܤ ܶሺ௞ሻ

ܶሺ௞ሻ ڰ ڰ
ڰ ሺ௞ሻܤ ܶሺ௞ሻ

ܶሺ௞ሻ یሺ௞ሻܤ

ۋ
ۊ

ۉ

ۈۈ
ۇ

ܷଶೖ

ܷଶೖכଶ
ܷଶೖכଷ

ڭ
ܷଶೖכቀଶೕ೜షೖିଵቁی

ۋۋ
ۊ

ൌ

ۉ

ۈ
ۈ
ۈ
ۇ

ଶܨ
ሺ௞ሻ

ସܨ
ሺ௞ሻ

଺ܨ
ሺ௞ሻ

ڭ
௠೤ିଵܨ

ሺ௞ሻ
ی

ۋ
ۋ
ۋ
ۊ

 

After solving the only block equation, the « odd » values are computed using the « even » 
values that were computed in the previous step. Buneman’s variant is selected due to it 
numerically stable results [22]. 

In summary, the Buneman’s variant of block cyclic reduction takes the following form: 

1. Computation of Buneman’s series (P and Q) 

For ݆ ൌ 1, … , 2௝೜ െ 1 

 ௝ܲ
ሺ଴ሻ ൌ 0 and ܳ௝

ሺ଴ሻ ൌ ௝ܨ
ሺ଴ሻ ൌ  ௝ܨ

For  ݇ ൌ 1, … , ݆௤ െ 1 
For ݆ ൌ 1, … , 2௝೜ି௞ െ 1 

ࡼ
૛࢐כ࢑
ሺ࢑ሻ ൌ ࡼ

૛࢐כ࢑
ሺ࢑ି૚ሻ െ ሺ࢑ି૚ሻ൧࡮ൣ

ି૚
ቂࢀሺ࢑ି૚ሻ ቀࡼ

૛࢐ିכ࢑૛࢑ష૚
ሺ࢑ି૚ሻ ൅ ࡼ

૛࢐כ࢑ା૛࢑ష૚
ሺ࢑ି૚ሻ ቁ െ ࡽ

૛࢐כ࢑
ሺ࢑ି૚ሻቃ 

ࡽ
૛࢐כ࢑
ሺ࢑ሻ ൌ ሺ࢑ି૚ሻࢀ ቀࡽ

૛࢐ିכ࢑૛࢑ష૚
ሺ࢑ି૚ሻ ൅ ࡽ

૛࢐כ࢑ା૛࢑ష૚
ሺ࢑ି૚ሻ ቁ െ ૛ࢀሺ࢑ି૚ሻࡼ

૛࢐כ࢑
ሺ࢑ሻ  

2. Solve the single block equation  

For ݇ ൌ ݆௤ െ 1 

ࢁ 
૛ିࢗ࢐૛ࢗ࢐ష૚

ሺିࢗ࢐૚ሻ
ൌ ૚ሻ൧ିࢗሺ࢐࡮ൣ

ି૚
ࡽ

૛ିࢗ࢐૛ࢗ࢐ష૚

ሺିࢗ࢐૚ሻ
൅ ࡼ

૛ିࢗ࢐૛ࢗ࢐ష૚

ሺିࢗ࢐૚ሻ
 

3. Backward substitution  

For ݇ ൌ ݆௤ െ 1 , … , 1 
For ݆ ൌ 2, … , 2௝೜ି௞ െ 1  

ܷ
ଶೖכ௝ିଶೖషభ
ሺ௞ିଵሻ ൌ ሺ௞ିଵሻ൧ܤൣ

ିଵ
൬ܳ

ଶೖכ௝ିଶೖషభ
ሺ௞ିଵሻ െ ܶሺ௞ିଵሻ ቀܷ

ଶೖכ௝
ሺ௞ሻ ൅ ܷ

ଶೖכ௝ିଶೖ
ሺ௞ሻ ቁ൰ െ

ଶܲೖכ௝ିଶೖషభ
ሺ௞ିଵሻ  

For ݆ ൌ 1 

ࢁ
૛࢑ି૛࢑ష૚
ሺ࢑ି૚ሻ ൌ ሺ࢑ି૚ሻ൧࡮ൣ

ି૚
ቀࡽ

૛࢑ି૛࢑ష૚
ሺ࢑ି૚ሻ െ ࢁሺ࢑ି૚ሻࢀ

૛࢑
ሺ࢑ሻቁ െ ࡼ

૛࢑ି૛࢑ష૚
ሺ࢑ି૚ሻ  

For ݆ ൌ 2௝೜ି௞ 

ࢁ
૛ିࢗ࢐૛࢑ష૚
ሺ࢑ି૚ሻ ൌ ሺ࢑ି૚ሻ൧࡮ൣ

ି૚
ቀࡽ

૛ିࢗ࢐૛࢑ష૚
ሺ࢑ି૚ሻ െ ࢁሺ࢑ି૚ሻࢀ

૛ିࢗ࢐૛࢑
ሺ࢑ሻ ቁ െ ࡼ

૛ିࢗ࢐૛࢑ష૚
ሺ࢑ି૚ሻ  

 

In this algorithm, there are two levels of parallelization; the j-loop can be distributed and the 
ࢄሺ࢘ି૚ሻ࡮ ൌ  .result in computing 2r resolution of linear system with Cholesky decomposition ࢅ
Two parallel versions of this algorithm are implemented, one with OpenMP and the other 
with MPI. The two-level parallelization forces the use of group of processors. With MPI, this 
is easy using communicators, but there is no such feature in OpenMP. So the OpenMP 
version cannot use the work-sharing directives (DO, SINGLE, ...), all the distribution is made 
explicitly using rank of threads. 

Figure 6 shows the speedup curves of the two parallel algorithms on a single SMP node of 
Vargas, which is an IBM Power 6 composed of 112 SMP nodes p575 IH with 32 cores Power 
6 per node. As seen in the figure, the OpenMP version has a lower scalability because of the 



D12.2 Exploration of Scalable Numerical Algorithms 
 

PRACE-2IP - RI-283493  27.08.2012 19

global barrier used when a group barrier is needed. Managing the load balance is not easy in 
Buneman’s series computation and this affect the scalability of the algorithm.  
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Figure 6: Speedup curves of the two parallel algorithms on a single SMP node of Vargas. 

 

In conclusion, it’s possible to parallelize the Buneman’s variant of the block cyclic reduction, 
but there are some load balancing issues. A possible improvement is to use the task feature of 
OpenMP for better load balancing. Also there is a Fourier variation that exhibits more 
parallelism [23]. 

4.8 Enabling FFTE library and FFTW3 Threading in the Quantum Espresso 

Supported by: D. Stankovic, D. Vudragovic, V. Slavnic, A. Jovic, P. Jovanovic (Institute of Physics Belgrade, 
Serbia) 

Whitepaper: D. Stankovic, D. Vudragovic, V. Slavnic, A. Jovic, P. Jovanovic, “Enabling FFTE library and 
FFTW3 Threading in the Quantum Espresso”, PRACE technical white paper. 

In this project, Quantum Espresso [24] computing codes are extended to use the FFTE [25] 
numerical library, as well as a threaded version of FFTW3 [26] numerical library. The work 
has been motivated by excellent performance results of FFTE described in [27], and by the 
expectation that the Quantum Espresso FFTW3 hybrid approach will achieve better 
performance compared to the existing MPI implementation. The development is done 
according to [28], which defines guidelines regarding programming style (variable naming 
and capitalization, indentation style, use of automatic variables, use of pointers, etc.). The 
latest version of the modified code is available at the URL given in [29]. 

The development used Quantum Espresso (QE) version 5.0 (currently the latest version) as 
the baseline, and it focused on the parts of the code responsible for FFT. Detailed analysis of 
the QE code shows that all FFT routines are located in Modules/fft_scalar.f90 file of the 
distribution. Routines for 1D, 2D, and 3D FFT, defined in this file, serve as wrappers and 
invoke corresponding FFT routines of the supported numerical libraries (FFTW, FFTW3, 
ESSL, SCSL, MathKeisan and Sunperf). Specification of the particular FFT numerical library 
is performed by conditional compilation. Using the pre-processor directives (#ifdef, #elif, 
etc.), individual sections of the Modules/fft_scalar.f90 file are compiled, depending on which 
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parameter macros are defined. In the case when the configuration process is successfully 
performed and any of the QE supported FFT numerical libraries is available in the 
environment, matching macros will be listed in the parameters section of the Makefile. For 
example, __FFTW3 macro parameter will be generated in the Makefile parameters section if 
the FFTW3 numerical library is available. 

The project extends the QE code to use the FFTE numerical library following the described 
conventions. The new FFTE-specific macro parameter is introduced and named __FFTE. 
Further, FFTE-specific invoke routines are placed in Modules/fft_scalar.f90 file, accompanied 
by the appropriate pre-processor directives. Variables required to initialize and execute FFTE 
are introduced so as to be easily distinguishable by their prefix (ffte_). The new code is 
compatible with the FFTE version 5.0 (currently the latest version). 

In the second part of the project, the threading support for the FFTW3 numerical library is 
implemented together with the existing QE MPI parallelization, creating a hybrid mode. Two 
realizations of threading are provided: 

 implicit mode - FFTW3 library with OpenMP support is used instead of a serial 
FFTW3 library, 

 explicit mode - inside of an OpenMP parallel region, a serial FFTW3 library is called. 

Implementation of the explicit mode is facilitated by QE FFT computation implementation. 
Since it is divided in many FFT 1D and 2D calls, it is possible to efficiently distribute 
workload among the threads. Furthermore, FFTW3 routines are thread-safe, and therefore 
they can be called from the multiple threads at the same time. 

In order to enable threading support for the FFTW3 numerical library in QE, it is necessary to 
initiate configuration with --enable-openmp flag, and to edit make.sys file after the 
configuration process. Implicit mode is enabled by defining -D__FFTW3 (instead of -
D__FFTW) and -D__FFTW3_OMP_IMPL macro parameters in make.sys DFLAGS variable. 
In addition, it is necessary to specify FFTW3 library location within FFT_FLAGS variable (-
L/path/to/FFTW3), as well as FFTW3 linker flags in the same line (-lfftw3_omp -lfftw3). 
Explicit mode can be enabled using -D__FFTW3_OMP_EXPL macro parameters (instead of 
-D__FFTW3_OMP_IMPL), and -L/path/to/FFTW3-lfftw3 as linker flags. 

Performance of the extended QE using its PW and CP components are measured. Initial 
configuration input files for these components are obtained from the download page of the QE 
web site [30], subsection Benchmarks for PW and CP components. 

Execution times and scalability of the QE FFTE extension is compared with QE FFTW3 
implementation. Results are obtained using NIIFI SC in Hungary [31], a 2x12-cores AMD 
Magny-Cours Opteron 6174 cluster with Infiniband interconnection. 

Figure 7(a) shows that the FFTE extension has better overall execution times for different 
numbers of MPI processes. Since the results are obtained using the fixed three-dimensional 
FFT mesh (125x125x125), the difference between execution times slowly decreases with an 
increasing number of MPI processes. This is more obvious from Figure 7(b), which shows 
speedup in the execution time over the same number of MPI processes. Although the speedup 
of FFTW3 library is better, execution times are smaller for FFTE library. On the other hand, 
larger FFT mesh will increase the time each process spends in FFT routine, and thus 
performance of QE FFTE part of the code will be more significant. This is illustrated in 
Figure 7(c), where execution time is given as a function of the FFT mesh size. Again, it is 
possible to observe that FFTE library outperforms FFTW3. 
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(a) (b) (c) 

Figure 7: Performance of QE FFTE extension compared with the QE FFTW3 implementation: (a) 
Execution times of QE FFTW3/FFTE codes for different number of MPI processes; (b) Speedup in the 

execution time of QE FFTW3/FFTE codes as functions of a number of MPI processes; (c) QE 
FFTW3/FFTE execution times as functions of 3D FFT mesh size. 

 
The project also compares performance of the implicit and explicit QE FFTW3 hybrid 
extensions with the internal QE FFTW hybrid support at PARADOX Cluster at IPB, a 2x4-
cores Intel Xeon E5345 cluster with Gigabit Ethernet interconnection. Figure 8(a) shows 
execution times obtained for pure MPI version and hybrid ones when 2 threads are used per 
MPI process, while Figure 8(b) illustrates the case when 4 and 8 threads are used per MPI 
process. Both QE FFTW3 hybrid codes produced in this project give shorter execution times 
compared to the default QE FFTW hybrid code and no significant difference in performance 
between the two versions of FFTW3 hybrid implementations was noticed when using this 
particular QE input dataset and computing infrastructure. 

(a) (b) 

Figure 8: Performance of the pure MPI, implicit and explicit QE FFTW3 hybrid extensions, and QE 
FFTW hybrid code for various numbers of CPU cores used: (a)Execution times when pure MPI and 2 
threads per MPI process hybrid versions are used; (b) Execution times when 4 and 8 threads per MPI 

process hybrid versions are used. 
 
QE FFT extension produced in this project shows better performance compared to the default 
QE FFT. In the case of FFTE extension, this performance improvement could be significant 
when large charge density FFT mesh is required by the configuration of physical system. QE 
FFTW3 hybrid implicit and explicit extensions illustrate better performance compared to QE 
FFTW internal hybrid approach, but still worse than the pure MPI one. As evidenced in [32], 
this is probably because the overhead related to thread management outweighs the benefits of 
reduced MPI communication, up to a certain number of MPI processes. 
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4.9 A Hybrid Hermitian General Eigenvalue Solver 

Supported by: R. Solcà (ETH Zürich) 

Whitepaper: R. Solcà, T. C. Schulthess, A. Haidar, S. Tomov, I. Yamazaki, J. Dongarra, “A hybrid Hermitian 
general eigenvalue solver”, http://arxiv.org/abs/1207.1773 

In this project the focus is on dense eigensolvers, and in particular, generalized Hermitian-
definite problems of the form Ax=λBx, where A is a Hermitian dense matrix and B is 
Hermitian positive definite. 

Many scientific computing applications, ranging from computing frequencies of waves that 
will propagate through a medium, to earthquake response of a bridge, or energy levels of 
electrons in nanostructure materials, require the solution of eigenvalue problems. These 
solvers are also needed for solving electronic structure problems in material science and 
chemistry [33]. In particular we will focus on algorithms that can compute either the complete 
eigenspace, or a fraction (typically 10-20%) of it. 

Particularly problems with modest matrix dimensions of a few thousand to ten or twenty 
thousand seem to pose a challenge for most practical purposes. Typically these problems must 
be solved many times in the context of a parallel code. The known power limits in current 
processors, that would prevent the clock frequency to keep increasing with time, necessitates 
the solution of the eigenvalue problem on nodes with larger number of threads that are 
executed on slower cores. 

In this project, in collaboration with the Innovative Computing Laboratory of University of 
Tennessee, in the context of the MAGMA project, single node hybrid (CPUs + GPU, and 
CPUs + GPUs) general eigenvalue solvers are being developed. 

 
 

Figure 9: Time to solution of double complex general eigensolver with matrix size 8000. On the left the 
whole eigenspace is computed, on the right only 10% of the eigenvectors. 

Figure 9 shows the results of the hybrid algorithms compared with a shared memory library 
(MKL) and a distributed memory library (ELPA) [34] with two different algorithms. To have 
a fair comparison on a node of the Castor cluster located at CSCS (Each node is a dual 6-
cores Intel Xeon 5650 with two Nvidia M2090 system) we compare our hybrid routines, 
tested with six threads on one CPU socket and one GPU, against non-GPU routines tested 
using both the CPU’s sockets – 12 threads for shared-memory routines and 12 processes for 
distributed-memory processes [36]The two algorithms differ in the tridiagonalisation step. 
The one-stage approach reduces the matrix to tridiagonal in one step using Householder 
transformations. This approach spends most of the time in the tridiagonalisation that is 
inefficient since half of the operation are level 2 BLAS (memory bounded) operations. The 
two-stage approach [35] first reduces the matrix to a band matrix and then, using a bulge 
chasing technique, reduces the band matrix to be tridiagonal. Unfortunately this increases the 
time needed for the transformation of the eigenvectors. 
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Both the one-stage and two-stage approaches are comparable while computing the whole 
eigenspace, whereas the two-stage approach is faster when only a fraction of the eigenvectors 
is computed. 

The maximum matrix size that can be used in the solver is limited by the memory available 
on the GPU. One possibility to get around this problem is to implement the algorithm on a 
multiGPU system. 

Figure 10 shows the time spent in each step of the multiGPU one-stage algorithm on a 2 6-
cores Intel Xeon 5660 and an 8 Nvidia M2090 system. 

 
Figure 10: Time to solution for different number of GPUs of double complex general eigensolver with 

matrix size 15000 and whole eigenspace. 
 

4.10 A Generic Library for Stencil Computations 

Supported by: M. Bianco (ETH Zurich/CSCS) 

Whitepaper:M.Bianco, U.Varetto,“A Generic Library for Stencil Computations”, http://arxiv.org/abs/1207.1746 

This project develops the GSCL (Generic Stencil Computing Library) to let application 
programmers specify quite general and widely used algorithms in a very synthetic way, 
namely the solution of finite difference equations on regular grids and lattice methods, for 
instance for fluidodynamics. The resulting pattern is more general and allows the use of 
GSCL in other contexts, for instance many typical dynamic programming algorithms such as 
longest common subsequence. 

Given the heterogeneity of current computer architectures, raising the level of abstraction can 
be a useful solution to exploit such diversity. Stating for all elements of the grids apply the 
function operator is a very general way of expressing the need of the computation that can be 
then implemented specifically for each particular platform. In general, raising the level of 
abstraction is suitable for specific classes of computations, as in the case of this project, to 
limit the complexity of the resulting language, in our case at a level of a C++ library.  

In the development, the approach of generic programming is followed, in which there always 
exists a generic (possibly) slow implementation for any construct. If some other 
implementation is found that is better suited for the platform or the input, then it is selected 
and used in the implementation. Ideally, the efficient implementation is developed by some 
library developer that may or may not be acquainted with the application domain of the final 
application. This may sound not satisfactory to the application developer, since the library 
developer’s response may not be fast enough. By keeping GSCL architecture as simple as 
possible, the possibility for the user to implement, and possibly contribute, to the GSCL itself, 



D12.2 Exploration of Scalable Numerical Algorithms 
 

PRACE-2IP - RI-283493  27.08.2012 24

with their own specific implementations is left open. From the productivity point of view, this 
has the advantage that, if the proper specialization already exists, the user can remain at the 
high level of abstraction and obtain the best sustained performance; while if this is not the 
case, the development is naturally split in two phases. Initially there is a quick deployment of 
the program at high-level, and then increasingly more efficient versions can be produced. 
Those versions do not impact the high level code which can still be read and understood by 
the application programmers in a much better way than the low-level dirty-but-fast detailed 
implementation targeted to the architecture. 

The diversity of the available platforms imposes certain restrictions in the high-level 
constructs that the GSCL supply and their relations. The consequences of this are tried to be 
kept at a minimum, but they have impact on the guaranteed semantics of the operations 
performed by a program. Many restrictions are due to the limitations of the C++ language, 
others are dictated by the need of exploiting accelerators like GPUs, nominally capable of 
high throughput that is the main characteristic needed by a stencil computation. Also these 
problems could be removed if GSCL was a stand-alone language. A library development 
instead of a new language is preferred in order to utilize all the features of an existing 
language, like abstraction mechanisms, and the availability of a highly sophisticated, reliable, 
and widely adopted compiler technology. 

Figure 11 compares GSCL and C on a sample application that runs an averaging followed by 
a reduction to check convergence for different input sizes. Figure 11 (a) and Figure 11 (b) 
show the results for 2D and 3D cases, respectively. The given times are the average time 
spent on an element of the grid.  

As seen in Figure 11(a), in the 2D case, the GSCL version with a single fused reduction is on 
par with the C version. The peaks at certain given sizes are due to memory architecture issues. 
It is interesting to note that the implementation with two distinct iteration spaces has a more 
stable behavior than the other two, even though it tends to be slower in the best case. The 
reason is due to the cache of the system is less stressed by splitting the operations, thus 
behaving more smoothly. 

(a) (b) 

Figure 11: Comparison of GSCL and C99 code on (a) 2D and (b) 3D grids. The fused version (GSL_do_reduce 
fussed) is algorithmically equivalent to the C version, while the other (GSL_do+all+do_reduce) does an additional 

scan of the memmory since the loops are not fused. 
 
In Figure 11(b) the results show that GSCL is still the fastest, but the two-iteration spaces 
implementation is actually faster than the others. This is again due to the memory pressure 
since the stencil operator accesses 6 elements at different strides instead of 4 in the 2D case. 
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The two algorithmic equivalent versions are still on par up to a 6400x6400 input size. After 
that the C++ version exhibits slightly higher execution times. Note that, all the optimizations 
available for the C version could be applied to the GSCL versions, with the advantage that 
main application code is not affected. Also, the difference between the two iteration spaces 
and the fused operators versions differ by only a couple of lines of code. 

 

(a) (b) 

Figure 12: Running GSCL code on a Cray XT5 machine. Each node has 24 cores divided in two sockets. (a) One 
MPI process per node is used and then a varying number of OpenMP threads for process are used. (b) The node 

is half filled with MPI processes and none or 2 OpenMP threads are utilized. 
 

To prove that GSCL can run efficiently on traditional parallel machines, the same application 
used in Figure 11 is implemented in C, and compiled using MPI and OpenMP. A weak 
scaling experiment, in which each MPI process has a tile of 6000x6000 elements, is 
performed. Results shown in Figure 12(a) place a single MPI process in a node of the 
machine. The process then employs from 1 to 24 openMP threads to work on the tile. As can 
be seen, the time with one OpenMP thread is the same as the sequential time shown in Figure 
11(a). With increasing number of OpenMP threads the execution time improves as expected. 

Figure 12 (b) shows the same experiment by placing 12 MPI processes on each node. As 
expected, the execution time increases due to contention of the many processes. The weak 
scalability of the application is, however, very good. 

4.11 Design and Implementation of New Hybrid Algorithm and Solver for 
Large Sparse Linear Systems 

Supported by: A. Duran (ITU), M. S. Celebi (ITU-UHeM), M. Tuncel (ITU-UHeM) 

Whitepaper: A. Duran (ITU), M. S. Celebi (ITU-UHeM), M. Tuncel, “Design and Implementation of New 
Hybrid Algorithm and Solver for Large Sparse Linear Systems”, PRACE technical white paper. Related academic 
publication "Scalability of SuperLU solvers for large sparse linear systems" has been accepted for oral presentation at the SPE & SIAM 
Conference on "Mathematical Methods in Fluid Dynamics and Simulation of Giant Oil and Gas Reservoirs", 3-5 September 2012, Istanbul, 
Turkey. 

It is important to have a fast, robust and scalable algorithm to solve a sparse linear system 
AX=B in many science and engineering applications. In this project, a new hybrid algorithm 
and solver for large sparse linear systems is designed and implemented. Scalable direct 
solvers are considered for various reasons. First, the effectiveness of the SuperLU_DIST 3.0 
for distributed memory and SuperLU_MT 2.0 for shared memory parallel machines among 
several sparse direct solvers is examined (see [37], [38], [39], [40], [41], [42]).  
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SuperLU_MT (see [44]) has three major steps including sparsity ordering, factorization that 
arranges partial pivoting, symbolic factorization and numerical factorization steps to perform 
in an alternating fashion, and triangular solution. While SuperLU_DIST uses BLAS 3 for 
factorization, SuperLU_MT has only BLAS 2.5 with multiple matrix vector multiplication. 
Therefore, SuperLU_DIST outperforms SuperLU_MT (see [45]). SuperLU_DIST (see [46]) 
uses static pivoting [47] instead of partial pivoting because the implementation of numerical 
pivoting is complicated on distributed memory architecture. It is advantageous that symbolic 
and numerical factorization steps can be separated due to the static pivoting. On the other 
hand, the backward error of a matrix cannot be decreased to machine precision and 
SuperLU_DIST may be considered for a certain types of matrices. Therefore, it is important 
to determine and classify those matrices where SuperLU_DIST works well. The maximum 
matching algorithm (see Duff and Koster [49]) is utilized to maximize the product of the 
magnitudes of the diagonal entries for a matrix. SuperLU_DIST can use ParMeTiS [50] or 
MeTiS [51] ordering on the structure of A+AT in addition to the multiple minimum degree 
ordering on the structure of A+AT

 or ATA for fill-in reducing preordering. Unlike sequential 
SuperLU, SuperLU_DIST does not have a COLAMD option that works well for many 
unsymmetric sparse matrices to reduce fill-ins. 

In this work, advantages and limitations of the SuperLU solvers are discussed. Although the 
existing versions of SuperLU are scalable and tuned for many matrices, they are sensitive to 
tuning and needs further customization for various large sparse matrices. Therefore, a 
collection of large patterned and random sparse matrices, which are larger than most of the 
real matrices from the University of Florida sparse matrix collection [19], are generated. 
Sensitivity analyses for several parameters including number of nonzero (NNZ) and sparsity 
level for randomly located sparse matrices are performed. SuperLU_DIST shows scalable 
speed-up between 256 and 512 cores for many test matrices, for example in Figure 13, on the 
Linux Nehalem Cluster available at UHeM [52]. On the other hand, for randomly located 
large sparse matrices, numerical factorization, symbolic factorization, and consequently wall 
clock time spike up around the sparsity level of 7 related to the ability to find supernodes, for 
example see Figure 14 and Table 10. The wall clock time decreases gradually as sparsity level 
decreases from 9 to 75 with a slow rise at 100 number of nonzeros per row. Moreover, the 
memory overhead coming from ParMeTiS becomes one of the dominating factors in the 
overall runtime on n-diagonal sparse matrices. Furthermore, new unsymmetric matrices, 
which consist of the lower triangular part of a symmetric matrix and an upper subdiagonal 
with d distance from the main diagonal are also generated. While SuperLU_DIST performs 
properly for symmetric matrices, it produces segmentation fault for the corresponding new 
unsymmetric matrices.  

 

Figure 13:  Speed up for matrix RAND_40K_3.
 

Figure 14: Average wall clock time as a function of 
various sparsity levels for randomly located sparse 

matrices. 
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NNZ per 

row 3 5 7 9 11 30 50 75 100 

Wall 
clock 
time 

6187 352.10 721.95 583.15 527.20 500.66 465.00 450.08 553.23 

Table 10: Wall clock time for randomly located sparse matrices as sparsity level decreases with 64 core 
(8x8) 

 
The code of SuperLU_MT has been tested up to 64 threads for all sparse matrices in the list 
on the HP Integrity Superdome SD32B (see[53]) computing server available at UHeM. 
Speedup between 4 and 32 is achieved depending on the sparsity level, NNZ and structural 
symmetry, as shown in [44] with different machines. Finally, very large sparse matrices with 
less sparsity for which SuperLU_DIST works well while SuperLU_MT gives segmentation 
fault related to memory usage are also generated. 

In this project the scalability of the SuperLU solver is improved via several ways. A new 
hybrid algorithm utilizing the MPI+OpenMP hybrid programming approach that combines the 
advantages of SuperLU_DIST and SuperLU_MT and diminishes some of their limitations is 
proposed so that it is possible to avoid extra communication overhead with MPI within nodes.  

4.12 Scalable and Improved SuperLU on GPU for Heterogeneous Systems 

Supported by: A. Duran (ITU), M. S. Celebi (ITU-UHeM), M. Tuncel (ITU-UHeM) 

Whitepaper: A. Duran (ITU), M. S. Celebi (ITU-UHeM), M. Tuncel, “Scalable and improved SuperLU on 
GPU for heterogeneous systems”, PRACE technical white paper. 

It is important to use graphic processing units (GPU) as accelerators when we consider a fast, 
robust and scalable solver for a sparse linear system AX=B in many science and engineering 
applications. In this project, a new parallel hybrid direct solver is designed and implemented 
on GPU for large sparse linear systems. In particular, GPU programming using directive 
based Open ACC is used in order to obtain a scalable and improved SuperLU on CPU+GPU 
heterogeneous systems. 

As a first step, the effectiveness of the SuperLU_DIST 3.0 for distributed memory and 
SuperLU_MT 2.0 for shared memory parallel machines among several sparse direct solvers 
(see [37],[38],[39],[40],[41],[42]) on CPU and (see [43] for small matrices) on CPU-GPU are 
studied. SuperLU_MT (see [44]) has three major steps including sparsity ordering, 
factorization that arranges partial pivoting, symbolic factorization and numerical factorization 
steps to perform in an alternating fashion, and triangular solution. While SuperLU_DIST uses 
BLAS 3 for factorization, SuperLU_MT has only BLAS 2.5 with multiple matrix vector 
multiplication. SuperLU_DIST (see [46]) uses static pivoting [47] instead of partial pivoting 
because the implementation of numerical pivoting is complicated on distributed memory 
architecture. It is advantageous that symbolic and numerical factorization steps can be 
separated due to the static pivoting. Therefore, SuperLU_DIST outperforms SuperLU_MT 
(see [45] and [48]) for many sparse matrices. 

Second, SuperLU is a complex algorithm and it is important to choose right combination for 
better intra-node communications and inter-node communications within CPU+GPU 
heterogeneous systems, given current technology limitations and developments. While 
SuperLU_MT is a good starting reference for intra-node communications, SuperLU_DIST is 
more appealing for GPU clusters having inter-node communications using infiniband (IB) 
network among its several advantages. In this project, SuperLU_DISTs features such as the 
usage of the extract parallelism reducing communication by avoiding and defining 
dependencies of data in addition to the usage of static pivoting and BLAS 3 for factorization 
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are utilized. Moreover, utilization of multicore approach inside node analogous to 
SuperLU_MT is also performed. The first goal is to complete intra-node multi-GPU 
programming. Next step would be inter-node multi-GPU programming. 

 

Figure 15: Speed up for matrix 
RAND_40K_3. 

 

Figure 16: Average wall clock time as a function of 
various sparsity levels for randomly located sparse 

matrices. 

           

NNZ per row 3 5 7 9 11 30 

Wall clock time 124.46 750.10 1448.22 2003.09 2346.67 3062.57 

Table 11: Wall clock time using SuperLU_MT for randomly located sparse matrices as sparsity level 
decreases with 16 cores 

 

The code of SuperLU_MT has been tested up to 64 threads for randomly located sparse 
matrices on HP Integrity Superdome SD32B (see [53]) computing server available at UHeM. 
Almost linear speedup is achieved (see for example Figure 15 for RAND_40K_3). Moreover, 
the scalability of SuperLU_MT depending on the sparsity level in terms of NNZ per row is 
also tested. Figure 16 and Table 11 show that average wall clock time increases slowly as 
sparsity levels decrease for randomly located sparse matrices of order 30000. 

In sum, after obtaining a robust version of scalable SuperLU, a new hybrid algorithm for 
CPU+GPU heterogeneous systems by taking SuperLU_DIST as a starting reference is 
designed in this project. Directive based parallelization approach using OpenACC for 
CPU+GPU heterogeneous systems is implemented.  

4.13 Optimization of SHAKE and RATTLE Algorithms 

Supported by: M. Uchroński (WCSS), M. Gębarowski (WCSS), A. Kwiecień (WCSS) 

Whitepaper: M. Uchroński, M. Gębarowski, A. Kwiecień, “Optimization of SHAKE and RATTLE 
Algorithms”, PRACE technical white paper. 

This project is focused on optimization of SHAKE and RATTLE algorithms using the 
DL_POLY Molecular Simulation Package [54]. The project evaluates these algorithms and 
develops the OpenCL versions of the main parts of them (Leapfrog Verlet and Velocity Verlet 
integration schemes). The main goal is to increase the potential of the algorithms to support 
asynchrony and check the possibility of improving the accuracy of the GPU code. 

The SHAKE is a two stage algorithm based on the Leapfrog Verlet integration scheme. The 
RATTLE algorithm fits within the concept of the Velocity Verlet integration scheme [55]. 
These algorithms are widely used in molecular dynamics simulations and for this reason are 
relevant for a broad range of scientific applications. DL_POLY application already contains 
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implementations of the SHAKE and RATTLE algorithms (on CPU and some parts on GPU 
using CUDA), and an OpenCL partial implementation, developed by WCSS (within Work 
Package 7 of PRACE-1IP [59]).  

In this project, implementation of the SHAKE algorithm for DL_POLY application has been 
continued and the code has been analyzed for further optimizations. Tests have been 
performed on local WCSS GPU machines (2x GTX480 [57], 2x AMD Radeon HD 6900 
Series [58]). Performance results for H2O benchmark show that the OpenCL implementation 
runs slower than the CUDA version of the same algorithms (Figure 17). The biggest 
performance difference between the NVIDIA-CUDA and the NVIDIA-OpenCL 
implementations occurs for kernels: k1_th (OpenCL code is 10 times slower than CUDA 
code), and install_red_struct (OpenCL code is 5.5 times slower than CUDA code). For other 
kernels OpenCL calls are 2 times slower than particular CUDA calls.  

 
Figure 17: CUDA vs OpenCL kernels for DL_POLY constraints shake component. 

The results presented in Figure 18 reveal some of the performance bottlenecks of SHAKE 
OpenCL implementation. In this table, the kernels gather_dv_scatter_hs and 
gather_hs_scatter_dv are both used for improving efficiency of data transfers between host 
(_hs) and GPU device (_dv). The data transfers are required for a synchronization of MPI 
processes and they are large in volume. The kernels are packing or unpacking data in parallel 
on a device, depending on a direction of communication: 

 Initialization of the OpenCL environment – a possible solution for this issue is to 
divide the OpenCL routines to separate contexts, for example create one OpenCL 
context for SHAKE algorithm and another OpenCL context for RATTLE algorithm; 

 GPU I/O operations – this is a well known issue for GPU computations; 
 Synchronization between MPI processes in a multi-GPU environment – this kind of 

synchronization requires copying data from GPU memory to local memory, 
synchronizing the data and then copying synchronized data back to the GPU memory. 
So far, the only solution for this issue in MPI+OpenCL code is to minimize the 
number of synchronization operations. 
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Figure 18: CUDA vs OpenCL I/O and communication for DL_POLY constraints shake component. 

The RATTLE algorithm has been analyzed and parts of it identified as good candidates for 
optimization by moving computations to GPU. These parts have been successfully ported to 
OpenCL and partially integrated with the DL_POLY application. Results for a subset of test 
cases [56] are presented in Table 12. Tests have been performed at WCSS (2x GTX480). The 
results are promising, but as for the SHAKE algorithm the OpenCL environment initialization 
and I/O operations constitute performance bottlenecks. Performance results in general show 
that selected parts of Fortran code can be executed faster on GPU using OpenCL (kernel 
computation time) but the bottlenecks have a great influence on overall computation time. 
Further optimization work should be focused on decreasing this influence. 

 

Benchmark Fortran 
OpenCL 

Speedup 
Initialization, I/O Kernels Overall 

H2O 0.001101 0,001792 0,000294 0,002086 0,5278 

TEST3 0,152225 0,011471 0,008079 0,01955 7,7864 

TEST4 1,247404 0,048104 0,062032 0,110136 11,3260 

TEST7 0,134984 0,022904 0,017279 0,040183 3,3592 

TEST8 1,09763 0,075339 0,136363 0,211702 5,1847 

TEST13 0,162882 0,02114 0,018883 0,040023 4,0697 

TEST14 1,280869 3,031746 0,088209 3,119955 0,4105 

Table 12: Execution times for the RATTLE algorithm integrated with the DL_POLY code (in seconds). 

4.14 Optimization of FHP Algorithms 

Supported by: S. Szkoda (WCSS), A. Kwiecień (WCSS) 

Whitepaper: S. Szkoda, Z. Koza, M. Tykierko “Accelerating cellular automata simulations using AVX and 
CUDA”, http://arxiv.org/abs/1208.2428. 

The FHP model [60] was introduced by Frish, Hasslacher and Pomeau in 1986 as a Cellular 
Automaton algorithm which is designed to solve the Navier-Stokes equation derived from 
Newtonian Mechanics to describe the motion of fluid substances. Throughout the years many 
researchers have examined FHP usability and compared it to methods that have an established 
position in science, like Finite Element Method or Lattice Boltzmann Method. FHP methods 
are used for Computational Fluid Dynamics (CFD) simulations and the area in which they are 
most useful is Physics of Porous Media [61]. For simulating even very small porous specimen 
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a very large cellular automata lattice is needed, which is why a well optimized parallel 
implementation usage is essential [62]. Every step of a system evolution in the FHP algorithm 
is split in two sub-steps: motion and collision. In the first sub-step particles move to the 
nearest neighbor node according to their velocity, which for every particle is given by: 

పሬሬሬԦݒ ൌ ቀcos ቀ
ߨ
3

݅ቁ , sin ቀ
ߨ
3

݅ቁቁ , ݅ ൌ 1, … ,6 

In the second sub-step the state of the system is changed through collisions with respect to the 
rules shown on Figure 19. 

 
Figure 19: FHP III collision rules 

This project investigates the possibility of accelerating FHP algorithms using the Single 
Instruction, Multiple Data (SIMD) approach. The overall goal of the optimization is to 
increase the asynchrony and performance of the algorithms by making better use of today's 
multi-core architectures. The work focuses on modifications of the FHP algorithms and 
addresses the memory access and domain decomposition schemes. 

The FHP algorithm was implemented with the use of main parallel programming 
technologies: POSIX Threads, MPI, SSE, AVX and NVIDIA CUDA. Each of the 
implementations was compared to a single-core code, optimized only with the “-O3” GNU 
GCC compiler flag. Hardware used for testing was a variety of common desktop and server 
processors. Correctness of each implementation has been tested by measuring tortuosity and 
mass conservation law. 

The general idea for the domain decomposition is to divide a grid of nodes into pieces from 
which each one is calculated on a separate processing unit. For implementations using 
different technologies some optimizations to the decomposition scheme are introduced, taking 
into account memory access and communication patterns. The scheme adopted for the single 
GPGPU implementation assumes that sub-domains occurring in collision simulation step are 
independent so a simple division is sufficient. In the motion step each sub-domain has to 
exchange the information about its outermost nodes with its neighbors. The developed 
solution expands all sub-domains so that they overlap their outermost parts, what reduces the 
communication and memory copies. The size of a sub-domain is set up so that it fits in a 
shared memory of a graphics processing unit. In the case of implementations done with the 
use of Pthreads and SSE/AVX the domain decomposition for the motion step is simply done 
by splitting it between the CPU cores. Each core collectively moves particles from the grid 
nodes (16 in SSE, 32 in AVX) in each direction. A synchronization of the edges of sub-
domains has to be done. The collision step is implemented by look-up table so the vector 
extensions are not used. The MPI implementation extends previous ones by running multiple 
MPI-processes which may use CPU cores or GPGPUs for calculations. In the motion step 
MPI processes have to exchange with their neighbors the boundary columns of sub-domains 
assigned to them. 

The computational efficiency of each implementation has been measured in Million lattice 
site updates per second (Mups). The cost of processing units and electric power consumption 
during computations was estimated and the cost and energy efficiency of each implementation 
calculated. Example results are shown in Table 13 (full table is available in the whitepaper). 
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 single-core 
multi-core 
Pth+SSE 

multi-core 
MPI 

multi-core 
Pth+AVX 

single-
GPGPU 

multi-
GPGPU 

Processing 
unit type 

Intel i7 
3.2GHz 

Intel i7 
3.2GHz 

2x Intel Xeon 
2.67GHz 

Intel E3-1270 
3.4GHz 

Nvidia 
GTX480 

2x Nvidia 
GTX480 

Total CPU 
cores 

1 4 12 4 1 2 

Total CPU 
threads 

1 4 12 8 1 2 

Mups 21 340 230 657 1746 3493 

USD/Mups 14,29 0,88 8,70 0,52 0,46 0,37 

W/Mups 6,19 0,38 0,83 0,12 0,30 0,27 

Table 13: Computational, cost and power efficiency of FHP implementations on different processing unit 
types. 

The cost of hardware components (in USD) is taken as a market prize in July 2012. For the 
GPGPUs the cost incorporates the corresponding CPUs. The power consumption (in watts) is 
estimated based on nominal values delivered by producers. The analysis of the power and cost 
efficiency reveals that, in case of the FHP algorithms runs, modern multi-core CPUs are able 
to compete with the GPGPUs, if the economic factors are taken into account. 

Main results of the work are: 

1. 160 times acceleration of single-core calculations via CUDA, MPI and two 
NVIDIA GTX480 graphics cards. 

2. Possibility of reducing this enormous disproportion in calculation speed from 160 
times to 10 times using a full functionality of a common desktop processor 
(i7 960, Pthreads+ SSE ) and to 5 times with the use of a modern powerful server 
computing unit, like Intel Xeon E3-1270 (Pthreads+AVX). 

4.15 FETI Coarse Problem Parallelization Strategies and Their Comparison 

Supported by: T. Kozubek (VSB), D. Horak (VSB), V. Hapla (VSB) 

Whitepaper: T. Kozubek, D. Horak, V. Hapla, “FETI Coarse Problem Parallelization Strategies and Their 
Comparison” and T. Kozubek,_, M. Jarosova, M. Mensik, A. Markopoulos, “Hybrid Total FETI Method”, 
PRACE technical white papers. 

Parallelization of FETI/TFETI (Finite Element Tearing and Interconnecting / Total FETI) can 
be implemented mostly using data-parallel technique – distributing matrix portions among 
processing units. This allows algorithms to be almost the same for the sequential and parallel 
case; only data structure implementation differs. Most of computations (subdomain problems) 
appearing are purely local and therefore parallelizable without any data transfers. However, if 
we want to accelerate also dual actions, some communication is needed due to the primal-dual 
transition. Distribution of primal matrices is quite straightforward as every subblock reflects a 
subdomain. They can be implemented using general distributed column-block or row-block 
matrix type with nonzeros only in diagonal blocks. However, some of the primal data possess 
nice block-diagonal layout and can be implemented more sophisticatedly using block-
diagonal composite type, where subblocks are ordinary sequential matrices and every node 
holds an array of them. Nevertheless this is not directly implemented in most of 
parallelization libraries. 

A natural effort using massively parallel computers is to maximize the number of subdomains 
so that sizes of subdomain system matrices (stiffness matrices in mechanics) are reduced 
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which accelerates their factorization and subsequent pseudoinverse application, which belong 
to the most time consuming actions. On the other hand, the negative effect of that is an 
increase of the null space dimension and the number of Lagrange multipliers on subdomain 
interfaces, i.e. dual dimension, so that the bottleneck of the TFETI method becomes in this 
case the action of the projector Q=GT(GGT) -1G on a vector which includes the solution of the 
coarse problem GGT x = b for given vector b and the rectangular matrix G = RTBT. Here B 
denotes the constraint matrix ensuring the gluing and Dirichlet conditions and columns of R 
span the kernel of the system matrix. We verified that for given vectors v and w the actions 
Gv and GTw take approximately the same time for different G matrix distributions (assembled 
distributed into horizontal blocks, assembled distributed into vertical blocks, unassembled 
kept in the form RTBT). Consequently the Q action time and level of communication depend 
first of all on the solution strategy used to solve the coarse problem itself. This can be hardly 
implemented sequentially on the master core for large scale problems because of increasing 
memory requirements and losing parallel scalability. 

In this project, the set of parallelization strategies tested within PRACE-1IP [7.5]are extended 
by new strategies based on orthonormalization of G and exploiting MUMPS library. These 
strategies are tested and compared on both academic and complex engineering benchmarks 
and their implementation details are discussed in the context of the FLLOP (Feti Light Layer 
on Petsc) library regarding to computational and programming effectiveness. The machine 
used for benchmarking is the Hector system at the EPCC site. 

The tested strategies are as follows: (1) iteratively using PCG, (2) directly using Cholesky 
factorization, (3) applying explicit inverse of GGT, (4) eliminating the coarse problem - 
provided that the rows of G are orthonormalized. 

The groups of cores used for parallel solution of coarse problem - so called 
subcommunicators - arise from splitting all cores in the global “world” communicator using 
PETSc built-in pseudopreconditioner PCREDUNDANT specifying by Nred  the number of 
these subcommunicators (number of cores doing redundant work), i.e., the number of cores in 
each subcommunicator is equal to the number of cores / Nred. 

Here only the results of the most successful method, which is strategy (2) with Cholesky 
factorization implemented using MUMPS, are reported. Initially, the whole G matrix is 
transferred to all subcommunicators, which compute GGT using matrix-matrix multiplication. 
Then the coarse problem is solved directly using the Cholesky factorization implemented in 
parallel using MUMPS on subcommunicators. This strategy has a big advantage consisting in 
the reduction of memory requirements comparing to the factorization on the master core. 
Practically, there are no limits because of possible attachments of more cores into the 
subcommunicators. 

Numerical experiments were run on matrices and vectors obtained from the decomposition 
and the discretization of real world elastostatic problem of the car engine block (Figure 20).  
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Figure 20: Car engine block – total displacement distribution 
 
The sensitivity of the solution strategy (2) to the number of cores Nred doing redundant work 
is shown in Figure 21 for a problem of size 2,839,734 and the number of cores (subdomains) 
1,014. We see that the optimal Nred is about 75. 
 

 

Figure 21:  Sensitivity of the solution strategy (2) to Nred 

 
The performance of strategy (2) with Nred=75 for a problem size of 98,214,55 and the 
number of cores (subdomains) 5,012 is highlighted in Table 14. 
 
Parallelization strategy Coarse problem 

preproc. [sec] 
All coarse problem 
solutions [sec] 

All Q actions  
[sec] 

Total solution 
time [sec] 

(2) MUMPS, Nred=75 3.2 77.9 110 220 

Table 14: Results of the best strategy (2) for the problem size 98,214,55 and the number of cores 
(subdomains) 5,012 

4.16 Computer Modeling and Simulations In Strongly Heterogeneous 
Nonlinear Media 

Supported by: S. Margenov, Y. Vutov, N. Kosturski, K. Georgiev (NCSA Bulgaria) 

Whitepaper: S. Margenov, Y. Vutov, N. Kosturski, K. Georgiev, Academic publications [63] and “Computer 
Simulation of RF Liver Ablation” to be published in Proceedings of the American Institute of 
Physics (http://2012.eac4amitans.eu/resources/amitansabsbook1.pdf) 

The focus of this project is the Finite Element Method (FEM) simulation of thermal and 
electrical fields in strongly heterogeneous nonlinear media on structured and unstructured 
meshes. New developed and tuned algorithms and codes for massively parallel platform like 
IBM BlueGene/P computer are integrated and tested. Mass and heat transfer and coupled 
electrical processes involved in the radio–frequency (RF) hepatic tumor ablation are 
considered. Note that RF ablation is a modern low invasive technique for efficient treatment 
of metastatic tumors, destroying the tumor cells by heating avoiding open surgery. The RF 
ablation procedure starts by placing the straight RF probe inside the tumor. The surgeon 
performs this under computer tomography (CT) or ultrasound guidance. Once the probe is in 
place, the electrodes are deployed and RF current is initiated. Both the surfaces areas of the 
uninsulated part of the trocar and the electrodes conduct RF current. An important part of the 
work is related to the construction/selection of efficient parallel preconditioners. Among 
others, the parallel implementation of aggressive coarsening Algebraic Multigrid (AMG) 
algorithms and adaptive time stepping are studied. MPI and MPI+OpenMP programming 
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models are used in the developed algorithms. The work includes both, developing new 
algorithms and modifying some existing ones. The parallel algebraic multigrid 
implementation BoomerAMG is successfully used at the framework of the developed new 
composite iterative solvers in space.  

  

a) RF probe b) FEM mesh 

Figure 22: Inserted RF Probe and the corresponding FEM mesh 

Tests of the basic FEM modules on IBM BlueGene/P supercomputer in Sofia (Bulgaria) are 
performed on both structured (voxel) and unstructured meshes.  The results obtained during 
the developments of the computer models and their parallel implementations include: (a) 
creation of patient specific benchmark data based on a properly tuned segmentation of a high 
resolution 3D CT (Computer Tomography) medical image of the human body including the 
liver (see Figure 22 to see the inserted RF probe and the FEM mesh); (b) improved 
mathematical model of the heat transfer due to the capillary flow of the blood in the hepatic 
porous media. 

Pad position N P Timestep [sec.] Ni t CPU in sec. 

front 2 183 424 128 5.00 420 1545 

front 17 467 392 1024 1.25 1128 5711 

back 2 183 424 128 5.00 420 1584 

back 17 467 392 1024 1.25 1136 5720 

everywhere 2 183 424 128 5.00 420 1582 

everywhere 17 467 392 1024 1.25 1153 5723 

Table 15: Comparison on two meshes 

Scalability analysis results are presented in Table 15 by increasing both the problem size (N) 
and the number of processors (P) by a factor of eight. It is well seen that when the time given 
for a timestep (see the fourth column in Table 15) decreases four times and therefore the 
number of timesteps increases four times, the run time increase is less than four (see the last 
column of Table 15). The total number of inner PCG iterations (Ni t) is less than four times 
bigger for the larger problem. As a result, we solve 32 times bigger problem on eight times 
more CPUs less than four times slower, which shows good scalability of the method. 
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4.17 Cfd-Investigations For Assessing Aneurysm Rupture Risk For Individual 
Patient Using Ct Visual Diagnostics 

Supported by: S. Markov, S. Radev, S. Margenov, G. Bencheva (NCSA Bulgaria) 

3D Navier-Stokes equations for incompressible fluids are used for computer modeling of the 
blood flow in cerebral aneurisms. Realistic blood properties are incorporated in the model. 
Appropriate boundary conditions are imposed on the inflow, outflow and walls of the vessels. 
The computational domain is a patient specific blood vessel with two aneurisms close to each 
other. It is extracted using a proper setting of the software GIMIAS (Graphical Interface for 
Medical Image Analysis and Simulation) from a set of 225 images in DICOM format 
obtained after digital subtraction angiography (DSA) with application of contrast media. At 
the first step, appropriate transfer function is applied to the medical data saved in vtk format. 
The Visualization ToolKit (vtk) is an open source, freely available software system for 3D 
computer graphics, image processing, and visualization) in order to visualize the blood 
vessels and a parallelogram containing the aneurysm is cropped. Next, binary threshold 
segmentation is performed with respect to the voxel intensity. The threshold interval in the 
gray scale corresponds to blood presence is taken to be 195-280 (determined by the trial-error 
approach) and can be additionally tuned to fit more precisely the form of the blood vessels. 
Afterwards, the marching cubes algorithm and Taubin smoothing are applied to obtain the 3D 
geometry. At the third stage, the main surface is extracted and after additional smoothing of 
the domain, the data is stored in STL format. This file is then used in Netgen mesh generator 
to create a tetrahedral mesh. The output of Netgen is converted to the file format of the FEM 
(finite element method) software package Elmer. The initial mesh consists of 3500 nodes and 
13000 elements (4500 elements being on the domain boundary). After using a procedure for 
uniform compression the three meshes presented in Table 16 are obtained: 

 

Mesh Nodes Elements Elements on the boundary  

1 22 710 106 992 18 168 

2 161 495 855 936 72 672 

3 1 215 261 6 847 488 290 688 

Table 16: The number of the nodes and the different type of elements use in the discretizations. 

 

In the performed numerical tests, the preconditioned BiCGStab (Bi-conjugate gradient 
stabilized) algorithm with incomplete factorization is used. The currently obtained results for 
the three meshes show a good scalability for the stationary problem. The development of this 
subtask is based on the recent installation of Elmer on IBM BlueGene/P supercomputer in 
Sofia (Bulgaria). The output results about the CPU time in seconds for solving the stationary 
Naiver-Stockes equation form the runs using 1, 2, 4, 8, 16 and 32 processors are presented in 
Table 17. 

Mesh 
Number of processors 

1 2 4 8 16 32 

1 492.39 316.16 195.98 124.96 85.45 80.03 

2  2 820.79 1 568.68 1 128.66 703.79 696.58 

3   6 518.13 6 487.84 
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Table 17: CPU time for solving the Navier-Stokes equation on the IBM Blue Gene/P computer in Sofia  

The reason for the empty boxes in Table 17 is that the memory of 2 GB per node of the IBM 
BlueGene/P computer is not enough for solving the problem on one processor over mesh 2 
and on less than 16 processors over mesh 3. The results for runs on 16 processors show that 
when the size of the problem increases 7.1 times the CPU time for execution increase 8.7 
times (mesh 1 to mesh 2) and that when the size of the problem increases 7.5 times the CPU 
time for execution increase 9.3 times (mesh 2 to mesh 3). The conclusion which can be made 
when 32 processors are used is that when the size of the problem increases 7.1 times the CPU 
time for execution increase 8.2 times (mesh 1 to mesh 2) and that when the size of the 
problem increases 7.5 times the CPU time for execution increase again 9.3 times (mesh 2 to 
mesh 3). 
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5 Summary and Conclusions 

The main focus of WP12 is to perform research and development on four key areas for future 
multipetascale and exascale systems: Auto tuned and automatic techniques to be applied in 
parallel programming model runtimes, performance tools, file systems, and scalable 
numerical algorithms.  

Task 12.2 (Scalable Numerical Algorithms), which covers many different algorithms, 
methods, and approaches along with simple ad-hoc programs demonstrating the scalability of 
the algorithms, is composed of 17 projects that evaluate different directions for improving 
scalability in algorithms often encountered in relevant numerical problems. The findings and 
the approaches proposed and implemented in some of these projects have the potential to be 
integrated into production level numerical applications.   

The five key research areas that were under investigation in this task are: 

• Reducing Synchronization Overhead in Iterative Solvers 
• Enhancing Parallel Hybrid Sparse Solvers for Scalability 
• Topology-Awareness 
• Enabling Hybridization in Heterogeneous Architectures  
• Application Scalability 

The projects within the deliverable are grouped according to these research areas. The 
following paragraphs summarize the experiences gained from the different projects. 

Two projects on “Reducing Synchronization Overhead in Iterative Solvers” try to reduce 
synchronization overheads of parallel sparse iterative solvers in petascale computing settings 
via two different approaches. One of them exploits asynchronous techniques that avoid 
blocking behavior of synchronization operations and by permitting processors to operate on 
whatever data they have, even if new data has not yet arrived from other processors. The other 
one proposes and implements a single-phase row-column parallel SpMxV scheme in order to 
address the two-phase communication bottleneck of the conventional row-column-parallel 
algorithm that utilize successful two-dimensional sparse matrix partitioning schemes. 

Two projects on “Enhancing Parallel Hybrid Sparse Solvers for Scalability” investigate 
parallel hybrid sparse solvers that contain both direct and iterative components, which are 
promising in terms of robustness and scalability. Both projects propose, implement and 
investigate reordering sparse matrices into specific forms that enhances the scalability of the 
DDKrylov and DS factorization preconditioning schemes, respectively.  

One project on “Topology-Awareness” tries to avoid message contention that can be observed 
in architectures consisting of thousands of processors (such as IBM Blue/Gene P) due to poor 
mapping of tasks to processors. For this purpose the project proposes and implements a two-
phase framework for topology-aware task-to-processor mapping by considering both the task 
interaction and processor organization graphs. 

Seven projects on “Enabling Hybridization in Heterogeneous Architectures” investigate the 
hybrid programming approach where MPI programming across computing nodes is combined 
with OpenMP-, threading-, CUDA- and OpenCL-based programming within individual 
nodes. The proposed schemes utilize the hybrid approach on enhancing the performance of 
several numerical applications such as block-cyclic reduction, FFT, general eigenvalue solver, 
stencil computations, direct linear system solver, molecular dynamic simulation, and Navier-
Stokes solver.  

Three projects on “Application Scalability” address the elimination of parallelization 
overheads encountered in specific numerical applications due to the desire for petascale-level 
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parallelism. The first project investigates parallelizing sequential component that arises in the 
FETI method. The second and third projects mainly investigate utilization of appropriate 
parallel preconditioners for the solution of FEM simulation of thermal and electrical fields in 
strongly heterogeneous nonlinear media and parallel solution of 3D Navier-Stokes equations 
for incompressible fluids. 

 


