Presentation Open Access
Pou, Bartomeu;
Smith, Jeffrey;
Quinones, Eduardo;
Martin, Mario;
Gratadour, Damien
<?xml version='1.0' encoding='UTF-8'?> <record xmlns="http://www.loc.gov/MARC21/slim"> <leader>00000nam##2200000uu#4500</leader> <datafield tag="041" ind1=" " ind2=" "> <subfield code="a">eng</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">Adaptive Optics</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">Reinforcement Learning</subfield> </datafield> <controlfield tag="005">20220521015003.0</controlfield> <controlfield tag="001">6567127</controlfield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="u">School of Computing, Australian National University</subfield> <subfield code="a">Smith, Jeffrey</subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="u">Barcelona Supercomputing Center</subfield> <subfield code="a">Quinones, Eduardo</subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="u">Universitat Politècnica de Catalunya</subfield> <subfield code="a">Martin, Mario</subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="u">LESIA , Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, Université de Paris, Australian National University</subfield> <subfield code="a">Gratadour, Damien</subfield> </datafield> <datafield tag="856" ind1="4" ind2=" "> <subfield code="s">1293461</subfield> <subfield code="z">md5:ffc4db95eeb58c4c43c57f69df9db982</subfield> <subfield code="u">https://zenodo.org/record/6567127/files/Presentation_Bartomeu_Pou.pdf</subfield> </datafield> <datafield tag="542" ind1=" " ind2=" "> <subfield code="l">open</subfield> </datafield> <datafield tag="260" ind1=" " ind2=" "> <subfield code="c">2022-05-20</subfield> </datafield> <datafield tag="909" ind1="C" ind2="O"> <subfield code="p">openaire</subfield> <subfield code="p">user-sciops2022</subfield> <subfield code="o">oai:zenodo.org:6567127</subfield> </datafield> <datafield tag="100" ind1=" " ind2=" "> <subfield code="u">Barcelona Supercomputing Center, Universitat Politècnica de Catalunya</subfield> <subfield code="0">(orcid)0000-0001-8634-2316</subfield> <subfield code="a">Pou, Bartomeu</subfield> </datafield> <datafield tag="245" ind1=" " ind2=" "> <subfield code="a">A Non Linear Control Method with Reinforcement Learning for Adaptive Optics with Pyramid Sensors</subfield> </datafield> <datafield tag="980" ind1=" " ind2=" "> <subfield code="a">user-sciops2022</subfield> </datafield> <datafield tag="536" ind1=" " ind2=" "> <subfield code="c">873120</subfield> <subfield code="a">RISE International Network for Solutions Technologies and Applications of Real-time Systems</subfield> </datafield> <datafield tag="536" ind1=" " ind2=" "> <subfield code="c">871669</subfield> <subfield code="a">A Model-driven development framework for highly Parallel and EneRgy-Efficient computation supporting multi-criteria optimisation</subfield> </datafield> <datafield tag="540" ind1=" " ind2=" "> <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield> <subfield code="a">Creative Commons Attribution 4.0 International</subfield> </datafield> <datafield tag="650" ind1="1" ind2="7"> <subfield code="a">cc-by</subfield> <subfield code="2">opendefinition.org</subfield> </datafield> <datafield tag="520" ind1=" " ind2=" "> <subfield code="a"><p>Extreme Adaptive Optics (AO) systems are designed to provide high resolution and high contrast observing capabilities on the largest ground-based telescopes through exquisite phase reconstruction accuracy. In that context, the pyramid wavefront sensor (P-WFS) has shown promise to deliver the means to provide such accuracy due to its high sensitivity. However, traditional methods cannot leverage the highly non-linear P-WFS measurements to their full potential. We present a predictive control method based on Reinforcement Learning (RL) for AO control with a P-WFS. The proposed approach is data-driven, has no assumptions about the system&#39;s evolution, and is non-linear due to the usage of neural networks. First, we discuss the challenges of using an RL control method with a P-WFS and propose solutions. Then, we show that our method outperforms an optimized integrator controller. Finally, we discuss its possible path for an actual implementation.</p></subfield> </datafield> <datafield tag="773" ind1=" " ind2=" "> <subfield code="n">doi</subfield> <subfield code="i">isVersionOf</subfield> <subfield code="a">10.5281/zenodo.6567126</subfield> </datafield> <datafield tag="024" ind1=" " ind2=" "> <subfield code="a">10.5281/zenodo.6567127</subfield> <subfield code="2">doi</subfield> </datafield> <datafield tag="980" ind1=" " ind2=" "> <subfield code="a">presentation</subfield> </datafield> </record>
All versions | This version | |
---|---|---|
Views | 156 | 156 |
Downloads | 79 | 79 |
Data volume | 102.2 MB | 102.2 MB |
Unique views | 147 | 147 |
Unique downloads | 72 | 72 |