UPDATE: Zenodo migration postponed to Oct 13 from 06:00-08:00 UTC. Read the announcement.

Presentation Open Access

A Non Linear Control Method with Reinforcement Learning for Adaptive Optics with Pyramid Sensors

Pou, Bartomeu; Smith, Jeffrey; Quinones, Eduardo; Martin, Mario; Gratadour, Damien


JSON Export

{
  "files": [
    {
      "links": {
        "self": "https://zenodo.org/api/files/2f78aae8-4a40-4b9a-86a0-4ddbf91c27dc/Presentation_Bartomeu_Pou.pdf"
      }, 
      "checksum": "md5:ffc4db95eeb58c4c43c57f69df9db982", 
      "bucket": "2f78aae8-4a40-4b9a-86a0-4ddbf91c27dc", 
      "key": "Presentation_Bartomeu_Pou.pdf", 
      "type": "pdf", 
      "size": 1293461
    }
  ], 
  "owners": [
    352608
  ], 
  "doi": "10.5281/zenodo.6567127", 
  "stats": {
    "version_unique_downloads": 72.0, 
    "unique_views": 147.0, 
    "views": 156.0, 
    "version_views": 156.0, 
    "unique_downloads": 72.0, 
    "version_unique_views": 147.0, 
    "volume": 102183419.0, 
    "version_downloads": 79.0, 
    "downloads": 79.0, 
    "version_volume": 102183419.0
  }, 
  "links": {
    "doi": "https://doi.org/10.5281/zenodo.6567127", 
    "conceptdoi": "https://doi.org/10.5281/zenodo.6567126", 
    "bucket": "https://zenodo.org/api/files/2f78aae8-4a40-4b9a-86a0-4ddbf91c27dc", 
    "conceptbadge": "https://zenodo.org/badge/doi/10.5281/zenodo.6567126.svg", 
    "html": "https://zenodo.org/record/6567127", 
    "latest_html": "https://zenodo.org/record/6567127", 
    "badge": "https://zenodo.org/badge/doi/10.5281/zenodo.6567127.svg", 
    "latest": "https://zenodo.org/api/records/6567127"
  }, 
  "conceptdoi": "10.5281/zenodo.6567126", 
  "created": "2022-05-20T15:20:11.044593+00:00", 
  "updated": "2022-05-21T01:50:03.224310+00:00", 
  "conceptrecid": "6567126", 
  "revision": 3, 
  "id": 6567127, 
  "metadata": {
    "access_right_category": "success", 
    "doi": "10.5281/zenodo.6567127", 
    "description": "<p>Extreme Adaptive Optics (AO) systems are designed to provide high resolution and high contrast observing capabilities on the largest ground-based telescopes through exquisite phase reconstruction accuracy. In that context, the pyramid wavefront sensor (P-WFS) has shown promise to deliver the means to provide such accuracy due to its high sensitivity. However, traditional methods cannot leverage the highly non-linear P-WFS measurements to their full potential. We present a predictive control method based on Reinforcement Learning (RL) for AO control with a P-WFS. The proposed approach is data-driven, has no assumptions about the system&#39;s evolution, and is non-linear due to the usage of neural networks. First, we discuss the challenges of using an RL control method with a P-WFS and propose solutions. Then, we show that our method outperforms an optimized integrator controller. Finally, we discuss its possible path for an actual implementation.</p>", 
    "language": "eng", 
    "title": "A Non Linear Control Method with Reinforcement Learning for Adaptive Optics with Pyramid Sensors", 
    "license": {
      "id": "CC-BY-4.0"
    }, 
    "relations": {
      "version": [
        {
          "count": 1, 
          "index": 0, 
          "parent": {
            "pid_type": "recid", 
            "pid_value": "6567126"
          }, 
          "is_last": true, 
          "last_child": {
            "pid_type": "recid", 
            "pid_value": "6567127"
          }
        }
      ]
    }, 
    "communities": [
      {
        "id": "sciops2022"
      }
    ], 
    "grants": [
      {
        "code": "873120", 
        "links": {
          "self": "https://zenodo.org/api/grants/10.13039/501100000780::873120"
        }, 
        "title": "RISE International Network for Solutions Technologies and Applications of Real-time Systems", 
        "acronym": "Rising STARS", 
        "program": "H2020", 
        "funder": {
          "doi": "10.13039/501100000780", 
          "acronyms": [], 
          "name": "European Commission", 
          "links": {
            "self": "https://zenodo.org/api/funders/10.13039/501100000780"
          }
        }
      }, 
      {
        "code": "871669", 
        "links": {
          "self": "https://zenodo.org/api/grants/10.13039/501100000780::871669"
        }, 
        "title": "A Model-driven development framework for highly Parallel and EneRgy-Efficient computation supporting multi-criteria optimisation", 
        "acronym": "AMPERE", 
        "program": "H2020", 
        "funder": {
          "doi": "10.13039/501100000780", 
          "acronyms": [], 
          "name": "European Commission", 
          "links": {
            "self": "https://zenodo.org/api/funders/10.13039/501100000780"
          }
        }
      }
    ], 
    "keywords": [
      "Adaptive Optics", 
      "Reinforcement Learning"
    ], 
    "publication_date": "2022-05-20", 
    "creators": [
      {
        "orcid": "0000-0001-8634-2316", 
        "affiliation": "Barcelona Supercomputing Center, Universitat Polit\u00e8cnica de Catalunya", 
        "name": "Pou, Bartomeu"
      }, 
      {
        "affiliation": "School of Computing, Australian National University", 
        "name": "Smith, Jeffrey"
      }, 
      {
        "affiliation": "Barcelona Supercomputing Center", 
        "name": "Quinones, Eduardo"
      }, 
      {
        "affiliation": "Universitat Polit\u00e8cnica de Catalunya", 
        "name": "Martin, Mario"
      }, 
      {
        "affiliation": "LESIA , Observatoire de Paris, Universit\u00e9 PSL, CNRS, Sorbonne Universit\u00e9, Universit\u00e9 de Paris, Australian National University", 
        "name": "Gratadour, Damien"
      }
    ], 
    "access_right": "open", 
    "resource_type": {
      "type": "presentation", 
      "title": "Presentation"
    }, 
    "related_identifiers": [
      {
        "scheme": "doi", 
        "identifier": "10.5281/zenodo.6567126", 
        "relation": "isVersionOf"
      }
    ]
  }
}
156
79
views
downloads
All versions This version
Views 156156
Downloads 7979
Data volume 102.2 MB102.2 MB
Unique views 147147
Unique downloads 7272

Share

Cite as