Presentation Open Access
Pou, Bartomeu;
Smith, Jeffrey;
Quinones, Eduardo;
Martin, Mario;
Gratadour, Damien
<?xml version='1.0' encoding='utf-8'?> <resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd"> <identifier identifierType="DOI">10.5281/zenodo.6567127</identifier> <creators> <creator> <creatorName>Pou, Bartomeu</creatorName> <givenName>Bartomeu</givenName> <familyName>Pou</familyName> <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0001-8634-2316</nameIdentifier> <affiliation>Barcelona Supercomputing Center, Universitat Politècnica de Catalunya</affiliation> </creator> <creator> <creatorName>Smith, Jeffrey</creatorName> <givenName>Jeffrey</givenName> <familyName>Smith</familyName> <affiliation>School of Computing, Australian National University</affiliation> </creator> <creator> <creatorName>Quinones, Eduardo</creatorName> <givenName>Eduardo</givenName> <familyName>Quinones</familyName> <affiliation>Barcelona Supercomputing Center</affiliation> </creator> <creator> <creatorName>Martin, Mario</creatorName> <givenName>Mario</givenName> <familyName>Martin</familyName> <affiliation>Universitat Politècnica de Catalunya</affiliation> </creator> <creator> <creatorName>Gratadour, Damien</creatorName> <givenName>Damien</givenName> <familyName>Gratadour</familyName> <affiliation>LESIA , Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, Université de Paris, Australian National University</affiliation> </creator> </creators> <titles> <title>A Non Linear Control Method with Reinforcement Learning for Adaptive Optics with Pyramid Sensors</title> </titles> <publisher>Zenodo</publisher> <publicationYear>2022</publicationYear> <subjects> <subject>Adaptive Optics</subject> <subject>Reinforcement Learning</subject> </subjects> <dates> <date dateType="Issued">2022-05-20</date> </dates> <language>en</language> <resourceType resourceTypeGeneral="Text">Presentation</resourceType> <alternateIdentifiers> <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/6567127</alternateIdentifier> </alternateIdentifiers> <relatedIdentifiers> <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.5281/zenodo.6567126</relatedIdentifier> <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://zenodo.org/communities/sciops2022</relatedIdentifier> </relatedIdentifiers> <rightsList> <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights> <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights> </rightsList> <descriptions> <description descriptionType="Abstract"><p>Extreme Adaptive Optics (AO) systems are designed to provide high resolution and high contrast observing capabilities on the largest ground-based telescopes through exquisite phase reconstruction accuracy. In that context, the pyramid wavefront sensor (P-WFS) has shown promise to deliver the means to provide such accuracy due to its high sensitivity. However, traditional methods cannot leverage the highly non-linear P-WFS measurements to their full potential. We present a predictive control method based on Reinforcement Learning (RL) for AO control with a P-WFS. The proposed approach is data-driven, has no assumptions about the system&#39;s evolution, and is non-linear due to the usage of neural networks. First, we discuss the challenges of using an RL control method with a P-WFS and propose solutions. Then, we show that our method outperforms an optimized integrator controller. Finally, we discuss its possible path for an actual implementation.</p></description> </descriptions> <fundingReferences> <fundingReference> <funderName>European Commission</funderName> <funderIdentifier funderIdentifierType="Crossref Funder ID">10.13039/100010661</funderIdentifier> <awardNumber awardURI="info:eu-repo/grantAgreement/EC/H2020/873120/">873120</awardNumber> <awardTitle>RISE International Network for Solutions Technologies and Applications of Real-time Systems</awardTitle> </fundingReference> <fundingReference> <funderName>European Commission</funderName> <funderIdentifier funderIdentifierType="Crossref Funder ID">10.13039/100010661</funderIdentifier> <awardNumber awardURI="info:eu-repo/grantAgreement/EC/H2020/871669/">871669</awardNumber> <awardTitle>A Model-driven development framework for highly Parallel and EneRgy-Efficient computation supporting multi-criteria optimisation</awardTitle> </fundingReference> </fundingReferences> </resource>
All versions | This version | |
---|---|---|
Views | 160 | 160 |
Downloads | 79 | 79 |
Data volume | 102.2 MB | 102.2 MB |
Unique views | 151 | 151 |
Unique downloads | 72 | 72 |