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1 Introduction

Atiyah and MacDonald’s book referred to in the title is of course the famous Introduction to
Commutative Algebra.

Here are some links to texts related to this book:

• Errata https://mathoverflow.net/q/42241/461

• Allen Altman and Steven Kleiman, A term of Commutative Algebra,
https://www.researchgate.net/publication/325591008_A_term_of_Commutative_Algebra
See also https://mathoverflow.net/a/385313/461

• Jeffrey Daniel Kasik Carlson, Exercises to Atiyah and MacDonald’s Introduction to Commutative
Algebra, https://spaces.ac.cn/usr/uploads/2017/07/4208763092.pdf

• Thomas Lam and Dustin Clausen
http://abel.math.harvard.edu/archive/221_spring_08/Math221.html

• Brent R. Doran
https://www2.math.ethz.ch/education/bachelor/lectures/hs2014/math/comm_alg.html

• Thomas J. Haines, Lectures on Commutative Algebra
http://www.math.umd.edu/∼tjh/CommAlg.pdf

• Sarah Glaz https://www2.math.uconn.edu/∼glaz/math5020f14/

• Athanasios Papaioannou, Solutions to Atiyah and MacDonald’s Introduction to Commutative
Algebra https://tinyurl.com/r3y453b

• Shengtian Yang, http://arxiv.codlab.net/book/note-am-ica/note-am-ica_0.1.2.pdf

• Dave Karpuk
https://mycourses.aalto.fi/pluginfile.php/426996/mod_resource/content/1/chap1solutions.pdf

• Joshua Ruiter https://tinyurl.com/3hj9btp3

• J. David Taylor
https://www.math.arizona.edu/∼jtaylor/notes/atiyah_macdonald_solutions.pdf

* * *

You can get the last version of this text directly at https://tinyurl.com/yxb32wmu or indirectly
at the Google sites

https://sites.google.com/site/pierreyvesgaillard

https://sites.google.com/view/pierreyvesgaillardmath
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2 About Chapter 1

2.1 Comments

2.1.1 Page 6

Proposition 1.9 will be used several times below. Here is the statement:

Proposition 1 (Proposition 1.9). x ∈ R ⇐⇒ 1− xy is a unit in A for all y ∈ A.

[Recall that R is the Jacobson radical of A.]

Note 2. The intersection and the product of the empty family of ideals is the unit ideal.

It is written

In the ring Z, ∩ and + are distributive over each other. This is not the case in general.

Here is an example: In the ring K[x, y], where K is a field and x and y are indeterminates, we
have

(x+ y) ∩
(

(x) + (y)
)
6⊂
(

(x+ y) ∩ (x)
)

+
(

(x+ y) ∩ (y)
)
.

2.1.2 Page 7, Proposition 1.10

Chinese Remainder Theorem. Let A be a commutative ring and a1, . . . , an ideals such that
ai + aj = A for i 6= j. Then the natural morphism from A to the product of the A/ai is surjective.
Moreover the intersection of the ai coincides with their product.

Proof. We have
A = a1 + a2 · · · an. (1)

Indeed, this can be checked either by multiplying together the equalities A = a1 + ai for i = 2, . . . , n,
or by noting that a prime ideal containing a product of ideals contains one of the factors. Then
(1) implies the existence of an a1 in A such that a1 ≡ 1 mod a1 and a1 ≡ 0 mod ai for all i > 1.
Similarly we can find elements ai in A such that ai ≡ δij mod aj (Kronecker delta). This proves the
first claim.

Let a be the intersection of the ai. Multiplying (1) by a we get

a = a1a + aa2 · · · an ⊂ a1 (a2 ∩ · · · ∩ an) ⊂ a.

This gives the second claim, directly for n = 2, by induction for n > 2.

2.1.3 Page 8

• Proposition 1.11i, Prime Avoidance

The following is taken from Wikipedia:
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https://en.wikipedia.org/wiki/Prime_avoidance_lemma

Let A be a commutative ring and S a multiplicatively closed additive subgroup of A. Let a1, . . . , an,
n ≥ 1 be ideals such that ai is prime for i ≥ 3. If S is not contained in any ai, then S is not
contained in their union.

Proof. We argue by induction on n. It suffices to find an element s that is in S and not in ai for
any i.

1. The case n = 1 is trivial.

2. Suppose n ≥ 2. For each i choose si in S \
⋃
j 6=i aj, this set being nonempty by inductive

hypothesis. We can assume si ∈ ai for all i; otherwise, some si avoids all the aj’s and we are done.

Claim: the element s := s1 · · · sn−1 + sn is in S but not in ai for any i.

2.1. If s is in ai for some i ≤ n− 1, then sn is in ai, contradiction.

2.2. If s is in an, then s1 · · · sn−1 is in an.

2.2.1. If n is 2, we get s1 ∈ a2, contradiction.

2.2.2. If n > 2 then, since an is prime, there is an i less than n such that si is in an, contradiction.

This proves the claim, and thus the statement.

Here is a version which is slightly weaker but sufficient for our purpose:

Proposition 3 (Proposition 1.11i p. 8 of the book). Let A be a ring, let a be an ideal, and let
p1, . . . , pn, n ≥ 1 be prime ideals. If a is not contained in any pi, then a is not contained in their
union.

Proof. We can assume that n ≥ 2 and that there are elements a1, . . . , an in a such that

ai ∈ pi \
⋃
j 6=i

pj.

Then a := a1 · · · an−1 + an is in a but not in pi for any i.

• Proposition 1.11ii

Note that p is prime ⇐⇒
p ⊃ ab =⇒ p ⊃ a or p ⊃ b.

Recall Proposition 1.11ii:

Proposition 4 (Proposition 1.11ii p. 8 of the book). Let a1, . . . , an be ideals and let p be a prime
ideal containing

⋂n
i=1 ai. Then p ⊃ ai for some i. If p =

⋂
ai, then p = ai for some i.

• Quotient ideal

We have
a ⊂ a′, b′ ⊂ b =⇒ (a : b) ⊂ (a′ : b′),

(1 : b) = (1) = (a : 0) and (a : 1) = a.
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2.1.4 Page 8, Exercise 1.12

Statement. (i) a ⊂ (a : b)

(ii) (a : b)b ⊂ a

(iii) ((a : b) : c) = (a : bc) = ((a : c) : b)

(iv) (
⋂
i ai : b) =

⋂
i (ai : b)

(v) (a :
∑

i bi) =
⋂
i (a : bi).

Solution. Left to the reader.

Comments.

(a) The inclusion a ⊂ (a : b) in (i) is strict in general. To see this let A be nonzero and set
a = b = (0).

(b) The inclusion (a :b) b ⊂ (a : b) in (ii) is strict in general. To see this let A be nonzero and set
a = (1), b = (0).

2.1.5 Page 9, Exercise 1.13

Statement. (i) r(a) ⊃ a

(ii) r(r(a)) = r(a)

(iii) r(ab) = r(a ∩ b) = r(a) ∩ r(b)

(iv) r(a) = (1) ⇐⇒ a = (1)

(v) r(a + b) = r(r(a) + r(b))

(vi) if p is prime, r(pn) = p for all n > 0.

Solution. Left to the reader.

2.1.6 Page 9, extended ideal

If f : A→ B is a morphism of rings and a is an ideal of A, then we can define ae by the formula

ae :=
∑
α∈a

(f(α)).
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2.1.7 Page 10, Exercise 1.18

Statement.

(a1 + a2)e = ae1 + ae2, (b1 + b2)c ⊃ bc1 + bc2,

(a1 ∩ a2)e ⊂ ae1 ∩ ae2, (b1 ∩ b2)c = bc1 ∩ bc2,

(a1a2)e = ae1a
e
2, (b1b2)c ⊃ bc1b

c
2,

(a1 : a2)e ⊂ (ae1 : ae2), (b1 : b2)c ⊂ (bc1 : bc2),

r(a)e ⊂ r(ae), r(b)c = r(bc).

The set of ideals E is closed under sum and product, and C is closed under the other three operations.

Hint. Let us prove that C is closed under quotients [the other claims being left to the reader]. For
a, b ∈ C we have

(a : b) ⊂ (a : b)ec ⊂ (ae : be)c ⊂ (aec : bec) = (a : b).

Indeed, the first inclusion follows from Proposition 1.17 p. 10, whereas the second and third inclusions
follow from the first part of the exercise.

Comments.

(a) Let K be a field and let X and Y be indeterminates. If a is an ideal of K[X, Y ], we denote by x
and y the images of X and Y in K[X, Y ]/a.

• Let us show that the inclusion (a1 ∩ a2)e ⊂ ae
1 ∩ ae

2 is strict in general. Set [with obvious notation]

A := K[X, Y ]/(X2, XY, Y 2), B := K[X]/(X2), f : A→ B, f(x) := x, f(y) := 0,

a1 := (x), a2 := (x− y).

• Let us show that the inclusion bc
1 + bc

2 ⊂ (b1 + b2)c is strict in general. Set [with obvious notation]

A := K[X]/(X2), B := K[X, Y ]/(X2, XY, Y 2),

f : A→ B, f(x) := x, b1 := (y), b2 := (x− y).

• Let us show that the inclusion bc
1b

c
2 ⊂ (b1b2)c is strict in general. Set A := K[XY ], B := K[X, Y ],

and let f : A→ B be the inclusion. Then we have (X)c(Y )c = (X2Y 2) and (XY )c = (XY ).

• Let us show that the inclusion (a1 : a2)
e ⊂ (ae

1 : ae
2) is strict in general. Set A := K[X],

B := K[X, Y ]/(XY ), f(X) := x. Then we have

y ∈ ((0)e : (X)e) = ((0) : (X)e), y /∈ (0) = (0)e = ((0) : (X))e.

• Let us show that the inclusion (b1 : b2)c ⊂ (bc
1 : bc

2) is strict in general. Set A := K, B := K[X],
b1 := (0), b2 := (X). Then we have 1 ∈ (bc

1 : bc
2) \ (b1 : b2)c.

• Let us show that the inclusion r(a)e ⊂ r(ae) is strict in general. Set A := K[X2], B := K[X],
a := (X2). Then we have X ∈ r(ae) \ r(a)e.
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(b) For arbitrary sums and intersections we have(∑
ai

)e

=
∑

ae
i ,

(∑
bi

)c

⊃
∑

bc
i ,

(⋂
ai

)e

⊂
⋂

ae
i ,

(⋂
bi

)c

=
⋂

bc
i .

We prove the first of these four statements, leaving the others to the reader. We have(∑
ai

)e

=
∑

α∈
∑

ai

(f(α)),
∑

ae
i =

∑
i

∑
αi∈ai

(f(αi)).

The inclusion ⊃ is clear. Let us prove the inclusion ⊂. Let α be in
∑

ai. This means that α is of
the form

∑
αi with αi ∈ ai, αi = 0 for almost all i. This yields

f(α) =
∑
i

f(αi) ∈
∑
i

∑
αi∈ai

(f(αi)) =
∑

ae
i .

2.2 Exercises

2.2.1 Page 10, Exercise 1.1

Statement. Let x be a nilpotent element of a ring A. Show that 1 + x is a unit of A. Deduce that
the sum of a nilpotent element and a unit is a unit.

Solution. If x is nilpotent, then
∑

n≥0 x
n is the inverse of 1− x. If u is a unit and x is nilpotent,

then u+ x = u (1 + x
u
) is a unit.

2.2.2 Page 11, Exercise 1.2

Statement. Let A be a ring and let A[x] be the ring of polynomials in an indeterminate x, with
coefficients in A. Let f = a0 + a1x+ · · ·+ anx

n ∈ A[x]. Prove that

(i) f is a unit in A[x] ⇐⇒ a0 is a unit in A and a1, . . . , an are nilpotent. [If b0 + b1x+ · · ·+ bmx
m

is the inverse of f , prove by induction on r that ar+1
n bm−r = 0. Hence show that an is nilpotent, and

then use Ex. 1.]

(ii) f is nilpotent ⇐⇒ a0, a1, . . . an are nilpotent.

(iii) f is a zero-divisor ⇐⇒ there exists a 6= 0 in A such that af = 0. [Choose a polynomial
g = b0 +b1x+ · · ·+bmxm of least degree m such that fg = 0. Then anbm = 0, hence ang = 0 (because
ang annihilates f and has degree < m). Now show by induction that an−rg = 0 (0 ≤ r ≤ n).]

(iv) f is said to be primitive if (a0, a1, . . . , an) = (1). Prove that if f, g ∈ A[x], then fg is primitive
⇐⇒ f and g are primitive.

Solution. This will follow from Exercise 1.3.

17 Thursday 5th August, 2021 08:42



2.2.3 Page 11, Exercise 1.3

Statement. Generalize the results of Exercise 2 to a polynomial ring A[x1, . . . , xr] in several
indeterminates.

Solution.

• (i) The condition “a0 is a unit in A and a1, . . . , an are nilpotent” becomes “the constant term is a
unit in A and the coefficients of the nonconstant monomials are nilpotent”.

If the constant term is a unit in A and the coefficients of the nonconstant monomials are nilpotent,
then f is a unit by Exercise 1.1. Assume f is a unit in A[x1, . . . , xr] and let p be a prime ideal of A.
Then the image of f in A/p[x1, . . . , xr] is again a unit, that is the constant term is a unit in A/p,
and the coefficients of the nonconstant monomials are in p. Since p is arbitrary, this shows that
these coefficients are nilpotent.

• (ii) The condition “a0, a1, . . . , an are nilpotent” becomes “all the coefficients of f are nilpotent”.

If the coefficients of f are nilpotent, then f is nilpotent by Exercise 1.1. Assume f is is nilpotent
and let p be a prime ideal of A. Then the image of f in A/p[x1, . . . , xr] is again nilpotent, that is
zero, and the coefficients of f are in p. Since p is arbitrary, this shows that these coefficients are
nilpotent.

• (iii) We will give two solutions to Part (iii), and these solutions will be spelled out in Section 2.2.4
below.

• (iv) Let f, g ∈ A[x1, . . . , xr]. Let a, b, c be respectively the ideals generated by the coefficients of
f, g, fg. We must show c = (1) ⇐⇒ a = (1) = b. Since we have c ⊂ ab ⊂ a ∩ b, it suffices to prove
a = (1) = b =⇒ c = (1), or equivalently c 6= (1) =⇒ (a 6= (1) or b 6= (1)). If c 6= (1), then c ⊂ m
for some maximal ideal m, and the images f and g of f and g in (A/m)[x1, . . . , xr] satisfy f g = 0,
so that we get f = 0 or g = 0, which implies a 6= (1) or b 6= (1).

2.2.4 Exercise 1.3iii

First solution. In the three statements below, A and B are rings, p, q, r, s are nonnegative integers
satisfying q > 0 and r < s, and the xi and yj are indeterminates.

Recall the statement of Exercise 1.3iii:

(?) If f ∈ A[x1, . . . , xp] has a nonzero annihilator in A[x1, . . . , xp], then f has a nonzero annihilator
in A.

Lemma 5. If f ∈ B[y1, . . . , yq] has a nonzero annihilator in B[y1], then f has a nonzero annihilator
in B.

Lemma 6. If f ∈ A[x1, . . . , xs] has a nonzero annihilator in A[x1, . . . , xr+1], then f has a nonzero
annihilator in A[x1, . . . , xr].

Clearly Lemma 6 implies (?). Moreover, Lemma 6 follows from Lemma 5 by setting B =
A[x1, . . . , xr], q = s− r, yi = xr+i. Thus it only remains to prove Lemma 5. To do so set

f = a0 + · · ·+ any
n
1 ,
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where n is the y1-degree of f [we can assume f 6= 0] and ai ∈ B[y2, . . . , yq]. Let

g = b0 + · · ·+ bmy
m
1 ∈ B[y1]

be a nonzero polynomial of least degree m such that

fg = 0. (2)

It suffices to prove
m = 0. (3)

It even suffices to prove
aig = 0 ∀ i. (4)

Assume (4) is false, and let i be the largest index satisfying aig 6= 0. Then (2) implies aibm = 0
[because aibm 6= 0 would imply degy1(fg) = i+m, where degy1 is the y1-degree, but we have fg = 0]
and thus degy1(aig) < m. As f · (aig) = 0, this entails aig = 0, contradiction. This proves (4) and
thus (3), completing the proof of Lemma 5.

Second solution. Let f ∈ A[x1, . . . , xn] be a nonzero zero-divisor. We must show that there is a
nonzero b in A such that bf = 0. We equip the monomials with the graded lexicographic order, as
defined in https://en.wikipedia.org/wiki/Monomial_order.

We denote the multi-degree of g ∈ A[x1, . . . , xn] by deg g. Put

f = a0 + · · ·+ aαx
α,

where α is the multi-degree of f . Let

g = b0 + · · ·+ bβx
β ∈ A[x1, . . . , xn]

be a nonzero polynomial of least multi-degree β such that

fg = 0. (5)

It suffices to prove
β = 0. (6)

It even suffices to prove
aγg = 0 ∀ γ. (7)

Assume (7) is false, and let γ be the largest multi-index satisfying aγg 6= 0. Then (5) implies
aγbβ = 0 [because aγbβ 6= 0 would imply deg(fg) = γ+β, but we have fg = 0] and thus deg aγg < β.
As f · (aγg) = 0, this entails aγg = 0, contradiction. This proves (7) and thus (6).

2.2.5 Page 11, Exercise 1.4

Statement. In the ring A[x], the Jacobson radical is equal to the nilradical.

Solution. Let f be in the Jacobson radical of A[x]. It suffices to show that f is nilpotent. By
Proposition 1.9 p. 6 of the book [Proposition 1 p. 13], 1− xf is a unit. Now use Exercise 1.2 p. 11
[Section 2.2.2 p. 17]: Part (i) implies that the coefficients of f are nilpotent, and Part (ii) implies
that f itself is nilpotent.
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2.2.6 Page 11, Exercise 1.5

Statement. Let A be a ring and let A[[x]] be the ring of formal power series f =
∑∞

n=0 an x
n with

coefficients in A. Show that

(i) f is a unit in A[[x]] ⇐⇒ a0 is a unit in A.

(ii) If f is nilpotent, then an is nilpotent for all n ≥ 0. Is the converse true? (See Chapter 7,
Exercise 2 [Section 8.2.2 p. 130].)

(iii) f belongs to the Jacobson radical of A[[x]] ⇐⇒ a0 belongs to the Jacobson radical of A.

(iv) The contraction of a maximal ideal m of A[[x]] is a maximal ideal of A, and m is generated by
me and x.

(v) Every prime ideal of A is the contraction of a prime ideal of A[[x]].

Solution.

• (i) The formal series g = b0 + b1x + · · · ∈ A[[x]] is an inverse of f if and only if we have
a0b0 = 1 and a0bn + · · · + anb0 = 0 for n ≥ 1, that is, if and only if b0 is an inverse of a0 and
bn = −(a1bn−1 + · · ·+ anb0)/a0 for n ≥ 1. This proves the statement.

• (ii) Assume that f is nilpotent and let p be a prime ideal. Then the image of f in A/p[[x]] is
again nilpotent, that is zero. This implies that all the coefficients of f are in p. Since p is arbitrary,
this entails that these coefficients are nilpotent.

Here is an example of a non-nilpotent formal power series all of whose coefficients are nilpotent.
Put B := Z[y2, y3, . . . ] where y2, y3, . . . are indeterminates. Let a be the ideal of B generated by the
yii for i ≥ 2 and the yiyj for i 6= j. Let ai be the image of yi in A := B/a. We clearly have ai−1

i 6= 0,
and f := a2x

2 + a3x
3 + · · · satisfies fn =

∑
i>n a

n
i x

in 6= 0.

• (iii) [Other wording: R(A[[x]]) = R(A) + (x).] Proof: Let f ∈ A[[x]]. Then we have: f ∈ R(A[[x]])
⇐⇒ 1− fg is a unit for all g ∈ A[[x]] ⇐⇒ 1− a0b is a unit in A for all b ∈ A ⇐⇒ a0 ∈ R(A).

• (iv) Let m be a maximal ideal of A[[x]]. We must show that mc is maximal and that m = mc + (x).
We have

(a) x ∈ m. Proof: this follows from (iii).

(b) A[[x]] = A+ m. Proof: A[[x]] = A+ (x)
(a)
⊂ A+ m.

(c) A/mc ' A[[x]]/m. Proof: A/mc = A/(A ∩m) ' (A+ m)/m
(b)
= A[[x]]/m.

Then (c) implies that mc is maximal.

(d) m = mc + (x). Proof: Let f = a0 + a1x+ · · · ∈ A[[x]]. We have f = a0 + xg for some g ∈ A[[x]].
Since xg ∈ m by (a), we have f ∈ m ⇐⇒ a0 ∈ m ⇐⇒ a0 ∈ mc.

• (v) In the next few lines, A∗ shall designate the set of prime ideals of the ring A, and f ∗ : B∗ → A∗

shall denote the map induced by the ring morphism f : A→ B.

We must show that A[[x]]∗ → A∗ is surjective.

If A f−→ B
g−→ C are ring morphisms and if (g◦f)∗ : C∗ → A∗ is surjective, then so is f ∗ : B∗ → A∗.

We solve Exercise 1.5v by applying this observation to the natural morphisms A → A[[x]] → A,
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whose composition is the identity of A.

2.2.7 Page 11, Exercise 1.6

Statement. A ring A is such that every ideal not contained in the nilradical contains a non-zero
idempotent [that is, an element e such that e2 = e 6= 0]. Prove that the nilradical and Jacobson
radical of A are equal.

Hint. This is an immediate consequence of the following lemma:

Lemma 7. Let e = e2 be an idempotent in a ring A. If e is a unit, then e = 1. If e ∈ R, then
e = 0.

Proof. The first claim is clear. If e ∈ R, then the element 1− e, which is again idempotent, is a
unit by Proposition 1.9 p. 6 of the book [Proposition 1 p. 13], and the first claim implies 1− e = 1,
that is e = 0. [Other argument: If e ∈ R, since we have (e)2 = (e), Nakayama’s Lemma, stated as
Proposition 14 p. 34, implies e = 0.]

2.2.8 Page 11, Exercise 1.7

Statement. Let A be a ring in which every element x satisfies xn = x for some n > 1 (depending
on x). Show that every prime ideal in A is maximal.

Solution. We can assume that A is a domain, and it suffices to show that it is a field. We have, in
above notation, x (xn−1 − 1) = 0. This implies that x is zero or a unit.

2.2.9 Page 11, Exercise 1.8

Statement. Let A be a ring 6= 0. Show that the set of prime ideals of A has minimal elements
with respect to inclusion.

Hint. The intersection of a totally ordered set of prime ideals is a prime ideal.

Comment. Let X be the set of prime ideals of A. If Y is a subset of X, and if the intersection of
any totally ordered subset of Y belongs to Y , then Y has a minimal element.

In particular, if p0 ∈ X and if a is an ideal of A, then then the set {p ∈ X | a ⊂ p ⊂ p0} has a
minimal element.

2.2.10 Page 11, Exercise 1.9

Statement. Let a be an ideal 6= (1) in a ring A. Show that a = r(a) if and only if a is an
intersection of prime ideals.

Solution. Recall:

Proposition 8. [Proposition 1.14] The radical of an ideal a is the intersection of the prime ideals
which contain a.
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In particular a = r(a) implies that a is an intersection of prime ideals. Conversely, if a is an
intersection of prime ideals, then it is the intersection of the prime ideals which contain a, intersection
which coincides with r(a).

2.2.11 Page 11, Exercise 1.10

Statement. Let A be a ring, N its nilradical. Show that the following are equivalent:

(i) A has exactly one prime ideal;

(ii) every element of A is either a unit or nilpotent;

(iii) A/N is a field.

Solution.

(i) =⇒ (ii): The unique prime ideal of A is equal to N. Let a be in A \N. If a was not a unit, it
would be contained in a maximal ideal, which would coincide with N.

(ii) =⇒ (iii): Let x be a nonzero element of A/N, and let a ∈ A be a lift of x. Since a is not in N, it
is a unit, and so is its image x.

(iii) =⇒ (i): If p is a prime ideal, then N ⊂ p, and thus N = p because N is maximal.

2.2.12 Page 11, Exercise 1.11

Statement. A ring A is Boolean if x2 = x for all x ∈ A. In a Boolean ring A, show that

(i) 2x = 0 for all x ∈ A;
(ii) every prime ideal p is maximal, and A/p is a field with two elements;

(iii) every finitely generated ideal in A is principal.

Solution.

(i) We have x+ 1 = (x+ 1)2 = x2 + 2x+ 1 = 3x+ 1.

(ii) We can assume A is a domain and it suffices that A/p is a field with two elements. Since the
equation x2 = x has exactly two solutions, this is clear.

(iii) Let A be boolean, and let us show that any finitely generated ideal a is principal. We can
assume a = (x, y). Then z := x+ y − xy ∈ a satisfies xz = x, yz = y, and we get a = (z).

2.2.13 Page 11, Exercise 1.12

Statement. A local ring (A,m) contains no idempotent 6= 0, 1.

Solution. Let e ∈ A be idempotent. If e is a unit, Lemma 7 p. 21 yields e = 1. If e is not a unit,
then e ∈ m = R, and the same lemma implies e = 0.
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2.2.14 Page 11, Exercise 1.13

Statement. [Construction of an algebraic closure of a field (E. Artin).] Let K be a field and let Σ
be the set of all irreducible monic polynomials f in one indeterminate with coefficients in K. Let A
be the polynomial ring over K generated by indeterminates xf , one for each f ∈ Σ. Let a be the
ideal of A generated by the polynomials f(xf ) for all f ∈ Σ. Show that a 6= (1).

Let m be a maximal ideal of A containing a, and let K1 = A/m. Then K1 is an extension field
of K in which each f ∈ Σ has a root. Repeat the construction with K1 in place of K, obtaining
a field K2, and so on. Let L =

⋃∞
n=1Kn. Then L is a field in which each f ∈ Σ splits completely

into linear factors. Let K be the set of all elements of L which are algebraic over K. Then K is an
algebraic closure of K.

Hints. To show a 6= (1), let f1, . . . , fn be in Σ, set xi := xfi for i = 1, . . . , n. Assuming a = (1)
by contradiction, we can choose f1, . . . , fn as above in such a way that there are gi(x1, . . . , xn) in
K[x1, . . . , xn] such that

n∑
i=1

gi(x1, . . . , xn)fi(xi) = 1.

Letting L be an extension of K in which each fi has a root αi, we get the equality 0 = 1 in L by
evaluating the above display at (α1, . . . , αn).

To show that each f ∈ Σ has a root in K1, note the equality f(xf) = 0, where xf ∈ K1 is the
image of xf .

To show that each f ∈ Σ splits completely into linear factors in L, let g be an irreducible monic
divisor of f in L[x]. It suffices to prove that g has a root in L. Note that g is an irreducible monic
polynomial in Kn[x] for some n, and thus g has a root in Kn+1 ⊂ L.

Let f be in Σ. To show that K is an algebraic closure of K, it suffices to check that f has a
root in K. We saw that f has a root in L, and this root is certainly in K.

2.2.15 Page 12, Exercise 1.14

Statement. In a ring A, let Σ be the set of all ideals in which every element is a zero-divisor. Show
that the set Σ has maximal elements and that every maximal element of Σ is a prime ideal. Hence
the set of zero-divisors in A is a union of prime ideals.

Hints. More precisely, for each a ∈ Σ there is a maximal element b ∈ Σ such that a ⊂ b. To show
that Σ has maximal elements, note that the union of a totally ordered subset of Σ is in Σ. The proof
that every maximal element of Σ is a prime ideal is similar to that of Proposition 1.8 p. 5 of the
book. Here are some details. Let p be a maximal element of Σ, and let a and b be in A \ p. Since
the ideals p + (a) and p + (b) contain elements which are not zero-divisors, so does their product
p + (ab). This implies that ab is not in p.
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2.2.16 Page 12, Exercise 1.15

Statement. [The prime spectrum of a ring.] Let A be a ring and let X be the set of all prime
ideals of A. For each subset E of A, let V (E) denote the set of all prime ideals of A which contain
E. Prove that

(i) if a is the ideal generated by E, then V (E) = V (a) = V (r(a));

(ii) V (0) = X, V (1) = ∅;

(iii) if (Ei)i∈I is any family of subsets of A, then

V

(⋃
i∈I

Ei

)
=
⋂
i∈I

V (Ei);

(iv) V (a ∩ b) = V (ab) = V (a) ∪ V (b) for any ideals a, b of A.

These results show that the sets V (E) satisfy the axioms for closed sets in a topological space.
The resulting topology is called the Zariski topology. The topological space X is called the prime
spectrum of A, and is written Spec(A).

Hints.

(i) If p contains E, then p contains a, and p = r(p) contains r(a).

Say that a radical ideal is an ideal equal to its radical. The following proposition will be useful:

Proposition 9. (a) The map a 7→ V (a) is a bijection between the radial ideals of A and the closed
subsets of Spec(A). Its inverse is given by Y 7→

⋂
Y where⋂

Y :=
⋂
p∈Y

p.

(b) The above bijections are decreasing.

(c) If a and b are ideals of A, then V (a) ⊂ V (b) ⇐⇒ b ⊂ r(a).

(d) The set V (
⋂
Y ) is the closure of Y for all Y ⊂ X := Spec(A).

Proof. (a) As just observed, each V (E) is equal to V (a) where a is the radical ideal generated by
E. We have

⋂
V (a) = a if a is a radical ideal by Proposition 8 p. 21 above [proposition which says

that the radical of an ideal is the intersection of the prime ideals which contain that ideal]. Let us
show that V (a) 6= V (b) if a and b are distinct radical ideals. We can assume there is an a in a \ b.
Using Proposition 8 again we see that there is a prime ideal p which contains the ideal b but not
the element a, and we get p ∈ V (b) \ V (a).

(b) Clear.

(c) Clear.

(d) Note that the inclusion Y ⊂ V (
⋂
Y ) is obvious. Let a be an ideal of A satisfying Y ⊂ V (a). It

suffices to show V (
⋂
Y ) ⊂ V (a). But this is clear because we have a ⊂ p for all p ∈ Y , and thus

a ⊂
⋂

p∈Y p =
⋂
Y .

24 Thursday 5th August, 2021 08:42



(ii) Clear.

(iii) Clear.

(iv) If p contains ab, then p contains a or b. In both cases p contains a ∩ b.

2.2.17 Page 12, Exercise 1.16

Statement. Draw pictures of Spec(Z), Spec(R), Spec(C[x]), Spec(R[x]), Spec(Z[x]).

Solution. Omitted.

2.2.18 Page 12, Exercise 1.17

Statement. For each f ∈ A, let Xf denote the complement of V (f) in X = Spec(A). The sets Xf

are open. Show that they form a basis of open sets for the Zariski topology, and that

(i) Xf ∩Xg = Xfg;

(ii) Xf = ∅ ⇐⇒ f is nilpotent;

(iii) Xf = X ⇐⇒ f is a unit;

(iv) Xf = Xg ⇐⇒ r((f)) = r((g));

(v) X is quasi-compact [that is, every open covering of X has a finite sub-covering].

(vi) More generally, each Xf is quasi-compact.

(vii) An open subset of X is quasi-compact if and only if it is a finite union of sets Xf .

The sets Xf are called basic open sets of X = Spec(A).

Hints.

To show that the Xf form a basis of open sets for the Zariski topology, let p be in X and a an ideal
such that p 6⊃ a, and note that there is an f in a \ p. This implies p ∈ Xf ⊂ X \ V (a).

(i) Clear.

(ii) It suffices to show V (f) = X ⇐⇒ f is nilpotent, which follows from Proposition 8 p. 21
[proposition which says that the radical of an ideal is the intersection of the prime ideals which
contain that ideal].

(iii) Clear.

(iv) It suffices to show V (f) = V (g) ⇐⇒ r(f) = r(g). But this follows from Proposition 9.a p. 24.

(v) Will follow from (vi).

(vi) We must show that Xf is quasi-compact, that is, assuming Xf ⊂
⋃
i∈I Xgi , we must show that

there is a finite subset F of I such that

Xf ⊂
⋃
i∈F

Xgi . (8)

Our assumption means
⋂
i∈F V (gi) ⊂ V (f). Writing a for the ideal generated by the gi, the above

display is equivalent to V (a) ⊂ V (f), that is to fn ∈ a for some n [see Proposition 9.c p. 24]. But
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this holds if and only if fn belongs to the ideal generated by {gi | i ∈ F} for some finite subset F of
I, and F clearly satisfies (8).

(vii) If U is a quasi-compact open subset of X, then U is covered by basic open subsets, and thus by
finitely many such subsets. Conversely a finite union of quasi-compact open subsets is quasi-compact
and open.

2.2.19 Page 13, Exercise 1.18

Statement. For psychological reasons it is sometimes convenient to denote a prime ideal of A by a
letter such as x or y when thinking of it as a point of X = Spec(A). When thinking of x as a prime
ideal of A, we denote it by px (logically, of course, it is the same thing). Show that

(i) the set {x} is closed (we say that x is a “closed point”) in Spec(A) ⇐⇒ px is maximal;

(ii) {x} = V (px);

(iii) y ∈ {x} ⇐⇒ px ⊂ py;

(iv) Prove that Spec(A) is a T0-space [this means that if x, y are distinct points of Spec(A), then
either there is a neighborhood of x which does not contain y, or else there is a neighborhood of y
which does not contain x].

Solution.

(i) Will follow from (ii).

(ii) Follows from Proposition 9.d p. 24 above.

(iii) Follows from (ii).

(iv) Let p, q ∈ Spec(A) be distinct. It suffices to show that there is an ideal a such that either p ⊃ a
and q 6⊃ a or q ⊃ a and p 6⊃ a. We can assume q 6⊂ p, and it suffices to set a := p.

2.2.20 Page 13, Exercise 1.19

Statement. A topological space X is said to be irreducible if X 6= ∅ and if every pair of
non-empty open sets in X intersect, or equivalently if every non-empty open set is dense in X. Show
that Spec(A) is irreducible if and only if the nilradical of A is a prime ideal.

Observations.

• The statement implies that the closed irreducible subsets of Spec(A) are the closures of the
singletons, i.e. the V (p).

• X 6= ∅ is irreducible if and only if X = C ∪D with C and D closed implies C = X or D = X.

Assume X 6= ∅. Let us show that X is irreducible if and only if every non-empty open set is
dense in X, or, equivalently, let us prove that X is reducible if and only if some non-empty open set
is not dense in X.

If X is reducible, there are disjoint non-empty open subsets U and V . Then V is contained in
the complement of the closure of U , and U is not dense.
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If some non-empty open subset U is not dense in X, the complement of the closure of U is
non-empty open subset disjoint from U .

Hint. The following conditions are equivalent:

(a) X is reducible,

(b) there are ideals a and b such that a 6⊂ N, b 6⊂ N, ab ⊂ N,

(c) N is not prime.

2.2.21 Page 13, Exercise 1.20

Statement. Let X be a topological space.

(i) If Y is an irreducible (Exercise 19) subspace of X, then the closure Y of Y in X is irreducible.

(ii) Every irreducible subspace of X is contained in a maximal irreducible subspace.

(iii) The maximal irreducible subspaces of X are closed and cover X. They are called the irreducible
components of X. What are the irreducible components of a Hausdorff space?

(iv) If A is a ring and X = Spec(A), then the irreducible components of X are the closed sets V (p),
where p is a minimal prime ideal of A (Exercise 8 [Exercise 2.2.9 p. 21]).

Solution. (i) This results immediately from the following observations:

• Y is irreducible if and only if for all open subsets U, V of X we have: U and V meet Y implies
that U ∩ V meets Y .

• An open subset of X which meets Y meets Y . [Proof: If U does not meet Y , then Y ⊂ X \ U ,
and thus Y ⊂ X \ U .]

Parts (ii) and (iii) are left to the reader.

(iv) This follows from the first observation made in Section 2.2.20 p. 26 above.

2.2.22 Page 13, Exercise 1.21

Statement. Let φ : A → B be a ring homomorphism. Let X = Spec(A) and Y = Spec(B). If
q ∈ Y , then φ−1(q) is a prime ideal of A, i.e., a point of X. Hence φ induces a mapping φ∗ : Y → X.
Show that

(i) If f ∈ A then φ∗−1(Xf ) = Yφ(f) and hence that φ∗ is continuous.

(ii) If a is an ideal of A, then φ∗−1(V (a)) = V (ae).

(iii) If b is an ideal of B, then φ∗(V (b)) = V (bc).

(iv) If φ is surjective, then φ∗ is a homeomorphism of Y onto the closed subset V (Ker(φ)) of X. (In
particular, Spec(A) and Spec(A/N) (where N is the nilradical of A) are naturally homeomorphic.)

(v) If φ is injective, then φ∗(Y ) is dense in X. More precisely, φ∗(Y ) is dense in X ⇐⇒ Ker(φ) ⊂ N.

(vi) Let ψ : B → C be another ring homomorphism. Then (ψ ◦ ψ)∗ = φ∗ ◦ ψ∗.
(vii) Let A be an integral domain with just one non-zero prime ideal p and let K be the field of
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fractions of A. Let B = (A/p)×K. Define φ : A→ B by φ(x) = (x, x), where x is the image of x
in A/p. Show that φ∗ is bijective but not a homeomorphism.

Hints. Parts (iv), (vi) and (vii) are left to the reader. The solutions to (i), (iii) and (v) are given
below.

• (i) q ∈ φ∗−1(Xf ) ⇐⇒ φ∗(q) ∈ Xf ⇐⇒ f /∈ φ∗(q) ⇐⇒ φ(f) /∈ q ⇐⇒ q ∈ Yφ(f).

• (ii) q ∈ φ∗−1(V (a)) ⇐⇒ φ∗(q) ∈ V (a) ⇐⇒ φ∗(q) ⊃ a ⇐⇒ q ⊃ ae ⇐⇒ q ∈ V (ae).

• (iii) We have

φ∗(V (b)) = V

 ⋂
p∈φ∗(V (b))

p

 = V

(⋂
q⊃b

qc

)
= V

((⋂
q⊃b

q

)c)
= V (r(b)c) = V (r(bc)) = V (bc).

• (v) We must show φ∗(Y ) = X ⇐⇒ Kerφ ⊂ N(A). More generally we have φ∗(Y ) = V (Kerφ)
by Part (iii) of the same exercise.

2.2.23 Page 13, Exercise 1.22

Statement. Let A =
∏n

i=1 Ai be the direct product of rings Ai. Show that Spec(A) is the disjoint
union of open (and closed) subspaces Xi, where Xi is canonically homeomorphic with Spec(Ai).

Conversely, let A be any ring. Show that the following statements are equivalent:

(i) X = Spec(A) is disconnected.

(ii) A ' A1 × A2 where neither of the rings A1, A2 is the zero ring.

(iii) A contains an idempotent 6= 0, 1.

In particular, the spectrum of a local ring is always connected (Exercise 12 [Section 2.2.13 p. 22]).

Solution. We can assume n ≥ 2 and Ai 6= 0 for all i. A prime ideal of A is of the form
∏n

i=1 ai
where one of the ai, say aj is a prime ideal of Aj, and each of the other ai is equal to Ai.

(i) =⇒ (iii): We assume that Spec(A) is disconnected and we must show that A has a nontrivial
idempotent. We have X = V (a) t V (b) with a, b 6= (1). This implies a + b = (1) and a ∩ b ⊂ N.
Hence there are a ∈ a and b ∈ b such that a+ b = 1 and ab ∈ N. We have

(an) + (bn) = (1), anbn = 0, (an) 6= (1) 6= (bn)

for some n, hence e+ f = 1, ef = 0 and e 6= 1 6= f for some e ∈ (an) and some f ∈ (bn). This gives
e− e2 = ef = 0, and thus e2 = e. Similarly f 2 = f .

(iii) =⇒ (ii): If e is an idempotent, then each of the ideals (e) and (1− e) has a structure of ring
which makes the natural isomorphism of A-modules A ' (e)× (1− e) an isomorphism of rings.

(ii) =⇒ (i): This follows from the first part of the exercise.

2.2.24 Page 14, Exercise 1.23

Statement. Let A be a Boolean ring (Exercise 11 [Exercise 2.2.12 p. 22]), and let X = Spec(A).
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(i) For each f ∈ A, the set Xf (Exercise 17 [Exercise 2.2.18 p. 25]) is both open and closed in X.

(ii) Let f1, . . . , fn ∈ A. Show that Xf1 ∪ · · · ∪Xfn = Xf for some f ∈ A.
(iii) The sets Xf are the only subsets of X which are both open and closed. [Let Y ⊂ X be both
open and closed. Since Y is open, it is a union of basic open sets Xf . Since Y is closed and X is
quasi-compact (Exercise 17 [Exercise 2.2.18 p. 25]), Y is quasi-compact. Hence Y is a finite union
of basic open sets; now use (ii) above.]

(iv) X is a compact Hausdorff space.

Solution.

(i) In fact we have X = Xf tX1−f for all f in A.

(ii) See the proof of Statement (iii) in Section 2.2.12 p. 22.

(iii) The hint is a complete solution.

(iv) If f ∈ p \ q then p ∈ X1−f and q ∈ Xf .

2.2.25 Page 14, Exercise 1.24

Statement. Let L be a lattice, in which the sup and inf of two elements a, b are denoted by a ∨ b
and a ∧ b respectively. L is a Boolean lattice (or Boolean algebra) if

(i) L has a least element and a greatest element (denoted by 0, 1 respectively).

(ii) Each of ∨ and ∧ is distributive over the other.

(iii) Each a ∈ L has a unique “complement” a′ ∈ L such that a∨ a′ = 1 and a∧ a′ = 0. (For example,
the set of all subsets of a set, ordered by inclusion, is a Boolean lattice.)

Let L be a Boolean lattice. Define addition and multiplication in L by the rules a + b =
(a ∧ b′) ∨ (a′ ∧ b), ab = a ∧ b. Verify that in this way L becomes a Boolean ring, say A(L).

Conversely, starting from a Boolean ring A, define an ordering on A as follows: a ≤ b means that
a = ab. Show that, with respect to this ordering, A is a Boolean lattice. [The sup and inf are given
by a ∨ b = a+ b+ ab and a ∧ b = ab, and the complement by a′ = 1− a.] In this way we obtain a
one-to-one correspondence between (isomorphism classes of) Boolean rings and (isomorphism classes
of) Boolean lattices.

Solution. Left to the reader.

2.2.26 Page 14, Exercise 1.25

Statement. From the last two exercises deduce Stone’s theorem, that every Boolean lattice is
isomorphic to the lattice of open-and-closed subsets of some compact Hausdorff topological space.

Hint. Let a and b be elements of a boolean ring A. We claim

(a) = (b) ⇐⇒ a = b. (9)

29 Thursday 5th August, 2021 08:42



In words: In a boolean ring, any principal ideal has a unique generator. Let us first show

a ∈ (b) ⇐⇒ ab = a. (10)

Assuming a ∈ (b), that is a = bc for some c, we get ab = b2c = bc = a. The other implication is
trivial. This proves (10). To prove the non-obvious implication in (9), assume (a) = (b), that is
a ∈ (b) and b ∈ (a). By (10) this gives a = ab = b. �

Since ideals in boolean rings are radical, (9) and Proposition 9 p. 24 imply Xf = Xg ⇐⇒ f = g.

Note also the following: Let A be a boolean ring. Then the map a 7→ (a) is a bijection from A
to the set P of principal ideals of A. Moreover we have (a) + (b) = (a+ b+ ab) and (a) ∩ (b) = (ab),
showing that P is the lattice attached to A and also a sublattice of the lattice of ideals of A.

2.2.27 Page 14, Exercise 1.26

Statement. Let A be a ring. The subspace of Spec(A) consisting of the maximal ideals of A,
with the induced topology, is called the maximal spectrum of A and is denoted by Max(A).
For arbitrary commutative rings it does not have the nice functorial properties of Spec(A) (see
Exercise 21 [Section 2.2.22 p. 27]), because the inverse image of a maximal ideal under a ring
homomorphism need not be maximal.

Let X be a compact Hausdorff space and let C(X) denote the ring of all real-valued continuous
functions on X (add and multiply functions by adding and multiplying their values). For each
x ∈ X, let mx be the set of all f ∈ C(X) such that f(x) = 0. The ideal mx is maximal, because it
is the kernel of the (surjective) homomorphism C(X) → R which takes f to f(x). If X̃ denotes
Max(C(X)), we have therefore defined a mapping µ : X → X̃, namely x 7→ mx.

We shall show that µ is a homeomorphism of X onto X̃.

(i) Let m be any maximal ideal of C(X), and let V = V (m) be the set of common zeros of the
functions in m: that is,

V = {x ∈ X | f(x) = 0 for all f ∈ m}.

Suppose that V is empty. Then for each x ∈ X there exists fx ∈ m such that fx(x) 6= 0. Since
fx is continuous, there is an open neighborhood Ux of x in X on which fx does not vanish. By
compactness a finite number of the neighborhoods, say Ux1 , . . . , Uxn , cover X. Let

f = f 2
x1

+ · · ·+ f 2
xn .

Then f does not vanish at any point of X, hence is a unit in C(X). But this contradicts f ∈ m,
hence V is not empty.

Let x be a point of V . Then m ⊂ mx, hence m = mx because m is maximal. Hence µ is surjective.

(ii) By Urysohn’s lemma (this is the only non-trivial fact required in the argument) the continuous
functions separate the points of X. Hence x 6= y =⇒ mx 6= my, and therefore µ is injective.

(iii) Let f ∈ C(X); let
Uf = {x ∈ X | f(x) 6= 0}
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and let
Ũf = {m ∈ X̃ | f /∈ m}.

Show that µ(Uf) = Ũf . The open sets Uf (resp. Ũf) form a basis of the topology of X (resp. X̃)
and therefore µ is a homeomorphism.

Thus X can be reconstructed from the ring of functions C(X).

Solution. Omitted. [The hint in the book is fairly complete.]

2.2.28 Page 14, Exercise 1.27

Statement. Let k be an algebraically closed field and let

fα(t1, . . . , tn) = 0

be a set of polynomial equations in n variables with coefficients in k. The set X of all points
x = (x1, . . . , xn) ∈ kn which satisfy these equations is an affine algebraic variety.

Consider the set of all polynomials g ∈ k[t1, . . . , tn] with the property that g(x) = 0 for all x ∈ X.
This set is an ideal I(X) in the polynomial ring, and is called the ideal of the variety X. The
quotient ring

P (X) = k[t1, . . . , tn]/I(X)

is the ring of polynomial functions on X, because two polynomials g, h define the same polynomial
function on X if and only if g − h vanishes at every point of X, that is, if and only if g − h ∈ I(X).

Let ξi be the image of ti in P (X). The ξi (1 ≤ i ≤ n) are the coordinate functions on X: if
x ∈ X, then ξi(x) is the ith coordinate of x. P (X) is generated as a k-algebra by the coordinate
functions, and is called the coordinate ring (or affine algebra) of X.

As in Exercise 26, for each x ∈ X let mx, be the ideal of all f ∈ P (X) such that f(x) = 0; it
is a maximal ideal of P (X). Hence, if X̃ = Max(P (X)), we have defined a mapping µ : X → X̃,
namely x 7→ mx.

It is easy to show that µ is injective: if x 6= y, we must have xi 6= yi for some i (1 ≤ i ≤ n), and
hence ξi − xi is in mx, but not in my, so that mx 6= my. What is less obvious (but still true) is that
µ is surjective. This is one form of Hilbert’s Nullstellensatz (see Chapter 7).

Solution. Omitted. [This is more a comment than an exercise.]

2.2.29 Page 16, Exercise 1.28

Statement. Let f1, . . . , fm be elements of k[t1, . . . , tn]. They determine a polynomial mapping
φ : kn → km: if x ∈ kn, the coordinates of φ(x) are f1(x), . . . , fm(x).

Let X, Y be affine algebraic varieties in kn, km respectively. A mapping φ : X → Y is said to be
regular if φ is the restriction to X of a polynomial mapping from kn to km.

If η is a polynomial function on Y , then η ◦ φ is a polynomial function on X. Hence φ induces a
k-algebra homomorphism P (Y ) → P (X), namely η 7→ η ◦ φ. Show that in this way we obtain a
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one-to-one correspondence between the regular mappings X → Y and the k-algebra homomorphisms
P (Y )→ P (X).

Solution. Assume that k is infinite [not necessarily algebraically closed] and set t := (t1, . . . , tn),
u := (u1, . . . , um), where the ti and uj are indeterminates.

To a polynomial map φ : kn → km we attach a k-algebra morphism ψ : k[u]→ k[t] by setting
ψ(g) := g ◦ φ, where g ∈ k[u] is viewed as a polynomial map g : km → k.

Conversely, to a k-algebra morphism ψ : k[u]→ k[t] we attach a polynomial map φ : kn → km

by setting φi(x) := ψ(ui)(x).

We claim that φ 7→ ψ and ψ 7→ φ are inverse bijections.

Let φ : kn → km be a polynomial map, let ψ : k[u] → k[t] be the corresponding k-algebra
morphism, and let φ′ : kn → km be the polynomial map attached to ψ. For x ∈ kn we have

φ′i(x) = ψ(ui)(x) = ui(φ(x)) = φi(x).

Conversely, let ψ : k[u]→ k[t] be a k-algebra morphism, let φ : kn → km be the corresponding
polynomial map, and let ψ′ : k[u] → k[t] be the k-algebra morphism attached to φ. For g ∈ k[u]
and x ∈ kn we have

ψ′(g)(x) = g(φ(x)) = g(φ1(x), . . . , φm(x)) = g(ψ(u1)(x), . . . , ψ(um)(x)).

As the k-algebra morphisms α, β : k[u] ⇒ k defined by

α(g) := g(ψ(u1)(x), . . . , ψ(um)(x)) and β(g) := ψ(g)(x)

coincide on the ui, they are equal, so that we get

g(ψ(u1)(x), . . . , ψ(um)(x)) = ψ(g)(x), (11)

and thus ψ′(g)(x) = ψ(g)(x). This shows that φ 7→ ψ and ψ 7→ φ are inverse bijections, proving the
claim. To complete the solution to the exercise, it suffices to show [using obvious notation]:

(a) If φ : kn → km maps X into Y , then ψ : k[u]→ k[t] maps I(Y ) into I(X).

(b) If ψ : k[u]→ k[t] maps I(Y ) into I(X), then φ : kn → km maps X into Y .

Proof of (a): For g ∈ I(Y ) and x ∈ X we have ψ(g)(x) = g(φ(x)) = 0.

Proof of (b): For x ∈ X and g ∈ I(Y ) we have

g(φ(x)) = g(φ1(x), . . . , φm(x)) = g
(
ψ(u1)(x), . . . , ψ(um)(x)

)
= ψ(g)(x) = 0,

the penultimate equality being justified by (11).
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3 About Chapter 2

3.1 Comments

3.1.1 Page 21, Proposition 2.4

Proposition 2.4 reads:

LetM be a finitely generated A-module, let a be an ideal of A, and let φ be an A-module endomorphism
of M such that φ(M) ⊆ aM . Then φ satisfies an equation of the form

φn + a1 φ
n−1 + · · ·+ an = 0

where the ai are in a.

Strictly speaking, this makes no sense because φ and the ai belong to different rings. We suggest
the following restatement:

Let M be a finitely generated A-module, let a be an ideal of A, let φ be an A-module endomorphism
of M such that φ(M) ⊆ aM , and let ψ : A→ EndA(M) be the natural morphism. Then φ satisfies
an equation of the form

φn + ψ(a1)φn−1 + · · ·+ ψ(an) = 0

where the ai are in a.

[We have used the symbol ⊆ above to make the quote accurate, but in general we denote
inclusions by ⊂.]

Another fix would be to equip EndA(M) with its natural A-module structure and change the
display to

φn + a1 φ
n−1 + · · ·+ an φ

0 = 0.

If φ = ψ(y) for some y in A we get

ψ(yn + a1y
n−1 + · · ·+ an) = 0. (12)

This yields the following:

If yM ⊂ aM for some y in A, then there is an x in A such that xM = 0 and x ≡ yn (mod a) for
some n.

Corollary 2.5 reads:

Corollary 10 (Corollary 2.5 p. 21). Let M be a finitely generated A-module and let a be an ideal
of A such that aM = M . Then there exists x ≡ 1 (mod a) such that xM = 0.

The proof reads: Take φ = identity, x = 1 + a1 + · · ·+ an in (2.4).

I suggest the following restatement of the proof:

Since φ = identity, we can take y = 1 in (12). This gives ψ(1 + a1 + · · ·+ an) = 0, and we can
set x := 1 + a1 + · · ·+ an.

Note that Corollary 2.5 can also be stated as follows:
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Corollary 11. Let M be a finitely generated A-module and let a be an ideal of A such that aM = M .
Then there exists α ∈ a such that αm = m for all m ∈M .

In other words, we go from aM = M to αm = m. Here is a particular case [take a := (a)]:

Corollary 12. Let M be a finitely generated A-module and let a ∈ A satisfy aM = M . Then there
is a b ∈ A such that abm = m = bam for all m ∈M . In particular, if the endomorphism m 7→ am
of M is surjective, then it is bijective.

Here is a particular case of the particular case:

Corollary 13. Let M be a finitely generated A-module and φ a surjective endomorphism of M .
Then φ is bijective.

Proof. Let x be an indeterminate, view M as an A[x]-module on which x acts by φ, and apply
Corollary 12 to the ring A[x] and the element x.

Let us also state Nakayama’s Lemma [Proposition 2.6 p. 21 of the book]:

Proposition 14 (Nakayama’s Lemma). Let M be a finitely generated A-module and a an ideal of
A contained in the Jacobson radical of A. Then aM = M implies M = 0.

Let us rewrite the proof of Proposition 2.4 to turn it into a proof of the corrected statement:

Let x1, . . . , xn be a set of generators of M . Then each φ(xi) ∈ aM , so that we have say φ(xi) =∑n
j=1 aijxj (1 ≤ i ≤ n; aij ∈ a), i.e.,

∑n
j=1 (δijφ− ψ(aij)) xj = 0, where δij is the Kronecker delta.

Set bij := δijφ− ψ(aij), and let us regard the matrix (bij) as a matrix with entries in the subring B
of EndA(M) generated by ψ(A) and φ, subring which is clearly commutative. Letting (cij) be the
adjoint of (bij), we get

0 =
∑
j

cij
∑
k

bjkxk =
∑
j,k

cijbjkxk =
∑
k

(∑
j

cijbjk

)
xk =

∑
k

δik det(bj`)xk = det(bj`)xi.

It follows that det(bj`) annihilates each xi, hence is the zero endomorphism of M . Expanding out
the determinant, we have an equation of the required form.

[The underlying reasoning is that we consider the natural morphism from the ring of n by n
matrices with entries in B to the endomorphism ring of the A-module Mn.]

3.1.2 Page 23, proof of Proposition 2.9 (i)

Let us prove: v injective =⇒ v surjective. If φ : M ′′ →M ′′/ Im(v) is the canonical projection, we
get

0 = φ ◦ v = v(φ) =⇒ φ = 0 =⇒ v surjective.
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3.1.3 Page 24, vanishing tensors

This is taken from Lemma 10, Chapter 1, Section 2, Subsection 11, page 41 in Nicolas Bourbaki,
Algèbre commutative: Chapitres 1 à 4, Masson, Paris 1985:

Let A be a (non necessarily commutative) associative ring with 1, let M be a right A-module, let N
be a left A-module, let (yi)i∈I ⊂ N be a generating family, let (xi)i∈I ⊂ M be a finitely supported
family, and assume that we have

∑
i∈I xi ⊗ yi = 0 in M ⊗A N . Then there is a finite set J and

there are finitely supported families (x′j)j∈J ⊂M and (aij)i∈I,j∈J ⊂ A such that
∑

j∈J x
′
jaij = xi for

all i and
∑

i∈I aijyi = 0 for all j.

Proof. Let F be the free left A-module whose basis is the family of symbols ( ei)i∈I , and consider
the exact sequence 0→ R

ι−→ F
ϕ−→ N → 0, where ϕ is defined by ϕ(ei) = yi. It induces the exact

sequence M ⊗A R
ι′−→M ⊗A F

ϕ′−→M ⊗A N → 0, and we get successively

ϕ′

(∑
i∈I

xi ⊗ ei

)
=
∑
i∈I

xi ⊗ yi = 0,

∑
i∈I

xi ⊗ ei = ι′

(∑
j∈J

x′j ⊗ rj

)
=
∑
j∈J

x′j ⊗ ι(rj)

where J is a finite set, where x′j is in M and where rj is in R, ι(rj) =
∑

i∈I aijei for some finitely
supported family (aij)i∈I,j∈J ⊂ A,

∑
i∈I

xi ⊗ ei =
∑
j∈J

x′j ⊗ ι(rj) =
∑
j∈J

x′j ⊗
∑
i∈I

aijei =
∑
i∈I

∑
j∈J

x′j ⊗ aijei =
∑
i∈I

(∑
j∈J

x′jaij

)
⊗ ei,

xi =
∑
j∈J

x′jaij and 0 = ϕ(ι(rj)) =
∑
i∈I

aijyi.

In the same spirit, we have:

Let A be a (non necessarily commutative) associative ring with 1; let I be a set; let J be a finite set;
let A⊕I φ−→ A⊕J

ψ−→ N → 0 be an exact sequence of left A-modules; let φ be given by φ(ei) =
∑

j aijfj,
where (ei) and (fj) are the obvious canonical bases; for j in J set vj := ψ(fj) ∈ N ; let M be a right
A-module; let u in M⊕J satisfy

∑
uj ⊗ vj = 0 in M ⊗A N . Then there is a w in M⊕I such that∑

iwiaij = uj for all j.

Proof. Applying M ⊗A − to the above exact sequence we get the exact sequence

M⊕I φ′−→M⊕J ψ′−→M ⊗A N → 0

and ψ′(u) = 0. Thus there is a w in M⊕I such that φ′(w) = u, and it’s easy to see that this w does
the job.
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3.1.4 Page 27, contracted ideals

If A → B is a morphism, then an ideal a of A is contracted if and only if the natural map
A/a→ B⊗AA/a is injective. In particular, if a proper ideal a is contracted, we have B⊗AA/a 6= 0.
Indeed, B ⊗A A/a ' B/ae and Ker(A/a→ B ⊗A A/a) ' aec/a.

3.1.5 Page 29, Proposition 2.19

I do not understand the proof that (ii) implies (i). Here is another argument.

We start by proving (ii)⇐⇒ (iii) as in the book. Then we prove (iii) =⇒ (i) as follows:

Let P f−→ Q
g−→ R be exact, let Q g′−→ g(Q) and g(Q)

i−→ R be the obvious maps, and let T be the
functor N ⊗A −. We must show that

T (P )
T (f)−−→ T (Q)

T (g)−−→ T (R)

is exact. The sequences
P

f−→ Q
g′−→ g(Q)→ 0, 0→ g(Q)

i′−→ R,

T (P )
T (f)−−→ T (Q)

T (g′)−−−→ T (g(Q))→ 0, 0→ T (g(Q))
T (i′)−−→ T (R),

being exact, we get Ker(T (g)) = Ker(T (i) ◦ T (g′)) = Im(T (f)).

3.1.6 Page 30, Tensor product of algebras

The claim on p. 31 that “the mapping a 7→ f(a)⊗ g(a) is a ring homomorphism A→ D” is incorrect.
The expression f(a)⊗ g(a) should be replaced with f(a)⊗ 1 [which is equal to 1⊗ g(a)].

Note that the tensor product B⊗AC of the A-algebras B and C “is” their coproduct. The tensor
product of an arbitrary family (Bλ)λ∈Λ of A-algebras defined in Exercise 23 p. 34 [Section 3.2.24
p. 47] is also the coproduct of the family: see this Mathematics Stackexchange post of Eric Wofsey:
https://math.stackexchange.com/a/2441323/660.

3.2 Exercises

3.2.1 Page 31, Exercise 2.1

Statement. Show that (Z/mZ)×Z (Z/nZ) = 0 if m,n are coprime.

Generalization: compute A/a⊗A A/b [obvious notation].

Solution. Using Exercise 2.2 in Section 3.2.2 below, we get

A

a
⊗A

A

b
' A/b

a(A/b)
' A/b

a/(a ∩ b)
' A/b

(a + b)/b
' A

a + b
.
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More precisely this means that the solid diagram

A⊗ A A

A
a
⊗ A

b
A

a+b

where the solid arrows are the obvious ones, can be completed as indicated in a unique way, and
that the induced map is bijective.

3.2.2 Page 31, Exercise 2.2

Statement. Let A be a ring, a an ideal, M an A-module. Show that (A/a)⊗AM is isomorphic to
M/aM .

[Tensor the exact sequence 0→ a→ A→ A/a→ 0 with M .]

Solution. Here is a more precise statement: there is a unique A-linear map f : (A/a) ⊗A M →
M/aM such that f(a) ⊗ x = ax for all a ∈ A, x ∈ M , where a ∈ A/a is the image of a ∈ A and
ax ∈M/aM is the image of ax ∈M . Moreover f is bijective.

Let us sketch the proof. Consider the sequence

a⊗AM
g−→M

h−→ (A/a)⊗AM → 0,

where g and h are defined by g(a ⊗ x) = ax and h(x) = 1 ⊗ x. This sequence is exact, and the
image of g is aM ⊂M .

3.2.3 Page 31, Exercise 2.3

Statement. Let A be a local ring,M and N finitely generated A-modules. Prove that ifM⊗N = 0,
then M = 0 or N = 0.

[Let m be the maximal ideal, k = A/m the residue field. Let Mk = k⊗AM ' M/mM by Exercise 2.
By Nakayama’s lemma (Proposition 14 p. 34), Mk = 0 =⇒ M = 0. But M ⊗A N = 0 =⇒
(M ⊗A N)k = 0 =⇒ Mk ⊗k Nk = 0 =⇒ Mk = 0 or Nk = 0, since Mk, Nk are vector spaces over a
field.]

Solution. Omitted. [The hint is fairly complete.]

3.2.4 Page 31, Exercise 2.4

Statement. Let Mi (i ∈ I) be any family of A-modules, and let M be their direct sum. Prove that
M is flat ⇐⇒ each Mi is flat.

Solution. This will follow from the solution to Exercise 2.20 given below in Section 3.2.21 p. 45.
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3.2.5 Page 32, Exercise 2.5

Statement. Let A[x] be the ring of polynomials in one indeterminate over a ring A. Prove that
A[x] is a flat A-algebra. [Use Exercise 4.]

Solution. As an A-module A[x] is a direct sum of copies of A. Since A is A-flat, this implies that
A[x] is also A-flat.

3.2.6 Page 32, Exercise 2.6

Statement. For any A-module, let M [x] denote the set of all polynomials in x with coefficients in
M , that is to say expressions of the form

m0 +m1x+ · · ·+mrx
r (mi ∈M).

Defining the product of an element of A[x] and an element of M [x] in the obvious way, show that
M [x] is an A[x]-module.

Show that M [x] ' A[x]⊗AM .

Solution. Left to the reader.

3.2.7 Page 32, Exercise 2.7

Statement. Let p be a prime ideal in A. Show that p[x] is a prime ideal in A[x]. If m is a maximal
ideal in A, is m[x] a maximal ideal in A[x]?

Solution. By the previous two exercises we have an isomorphism of A-modules A[x]/p[x] ' (A/p)[x],
and it is easy to check that it is in fact an isomorphism of A-algebras [and in particular an isomorphism
of rings]. If A is a field, then (0) is a maximal ideal of A but (0)[x] = (0) is not a maximal ideal of
A[x].

3.2.8 Page 32, Exercise 2.8

Statement. (i) If M and N are flat A-modules, then so is M ⊗A N .

(ii) If B is a flat A-algebra and N is a flat B-module, then N is flat as an A-module.

Hints. (i) We have (M ⊗A N)⊗A P 'M ⊗A (N ⊗A P ).

(ii) We have N ⊗A P ' N ⊗B (B ⊗A P ).

3.2.9 Page 32, Exercise 2.9

Statement. Let 0→M ′ →M →M ′′ → 0 be an exact sequence of A-modules. If M ′ and M ′′ are
finitely generated, then so is M .

Solution. Let f be the map from M ′ to M occurring in the above exact sequence; let x′1, . . . , x′m
be generators of M ′; let x′′1, . . . , x′′n be generators of M ′′; and let xj ∈ M be a pre-image of x′′j
(1 ≤ j ≤ n). It is easily seen that the f(x′i) together with the xj generate M .

38 Thursday 5th August, 2021 08:42



3.2.10 Page 32, Exercise 2.10

Statement. Let A be a ring, a an ideal contained in the Jacobson radical of A; let M be an
A-module and N a finitely generated A-module, and let u : M → N be a homomorphism. If the
induced homomorphism M/aM → N/aN is surjective, then u is surjective.

Solution. We have N = aN + u(M), and Corollary 2.7 p. 22 of the book implies N = u(M).
Recall that Corollary 2.7 is a corollary to Proposition 2.6, which is Nakayama’s lemma. Here is the
statement of Corollary 2.7:

Corollary 15 (Corollary 2.7 p. 22 of the book). Let M be a finitely generated A-module, N a
submodule of M , a ⊂ R an ideal. Then M = aM +N =⇒ M = N .

3.2.11 Page 32, Exercise 2.11

Statement. Let A be a ring 6= 0. Show that Am ' An =⇒ m = n.

[Let m be a maximal ideal of A and let φ : Am → An be an isomorphism. Then 1⊗ φ : (A/m)⊗mA →
(A/m)⊗nA is an isomorphism between vector spaces of dimensions m and n over the field k = A/m.
Hence m = n.] (Cf. Chapter 3, Exercise 15 [Section 4.2.15 p. 69].)

If φ : Am → An is surjective, then m ≥ n.

If φ : Am → An is injective, is it always the case that m ≤ n?

Hint. We only solve the last part of Exercise 2.11. We claim that if f : Am → An is an A-linear
injection, then m ≤ n. The claim is an immediate consequence of the following lemma.

Lemma 16. If A is a ring, M1 and M2 are finitely generated A-modules, M2 is faithful and
f : M1 ⊕M2 →M1 is a morphism, then f is not injective.

Proof. Suppose for the sake of contradiction that f is injective. Setting M := M1 ⊕M2, define
g : M →M by g(x+ y) := f(x+ y) for x ∈M1, y ∈M2 [we regard M1 and M2 as submodules of
M ]. Note that g is injective. By Proposition 2.4 p. 21 of the book [see Section 3.1.1 p. 33 above] we
have

gn + a1 g
n−1 + · · ·+ an−1 g

1 + an g
0 = 0 (13)

for some a1, . . . , an ∈ A. We can assume that n is minimal [note that we have n ≥ 2]. Applying
(13) to y ∈M2 yields (

gn(y) + a1 g
n−1(y) + · · ·+ an−1 g(y)

)
+ (an y) = 0.

Since the first parenthesis is in M1, both parenthesis vanish. Since y is arbitrary and M2 is faithful,
this implies an = 0, and (13) becomes

g
(
gn−1 + a1 g

n−2 + · · ·+ an−1 g
0
)

= 0.

The parenthesis being zero by injectivity of g, we get a contradiction with the minimality of n.
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3.2.12 Page 32, Exercise 2.12

Statement. Let M be a finitely generated A-module and φ : M → An a surjective homomorphism.
Show that Ker(φ) is finitely generated.

[Let e1, . . . , en be a basis of An and choose ui ∈M such that φ(ui) = ei (1 ≤ i ≤ n). Show that M
is the direct sum of Ker(φ) and the submodule generated by u1, . . . , un.]

Solution. We follow the hint. Let N be submodule of M generated by u1, . . . , un. Let x be in
M . We have φ(x) =

∑
aiei for some ai ∈ A. Set y :=

∑
aiui ∈ N . We get x = (x− y) + y with

φ(x− y) = 0. This shows M = Ker(φ) +N . Let x be in Ker(φ) ∩N . We have x =
∑
aiui for some

ai ∈ A, hence 0 = φ(x) =
∑
aiei, hence x = 0. This shows M = Ker(φ)⊕N .

3.2.13 Page 32, Exercise 2.13

Statement. Let f : A → B be a ring homomorphism, and let N be a B-module. Regarding
N as an A-module by restriction of scalars, form the B-module NB = B ⊗A N . Show that the
homomorphism g : N → NB which maps y to 1⊗ y is injective and that g(N) is a direct summand
of NB.

[Define p : NB → N by p(b⊗ y) = by, and show that NB = Im(g)⊕Ker(p).]

Hint. Note that p ◦ g = idN .

3.2.14 A digression about limits and colimits

The purpose of this section is to give a naive motivation for the expression of limits in terms of
products and equalizers, and, dually, for the expression of colimits in terms of coproducts and
coequalizers [when such exist]. These expressions are used in some of the subsequent sections.

We shall describe only limits of sets, but we shall try to do it in a way that suggests an obvious
generalization for limits in categories with products and equalizers, and for colimits in categories
with coproducts and coequalizers.

Let φ be a set such that each f ∈ Φ is a map f : Xf → Yf from a set Xf to a set Yf . Put

Ω := {Xf | f ∈ Φ} ∪ {Yf | f ∈ Φ}.

Let L be a set equipped with a map πZ : L→ Z for each Z ∈ Ω such that πYf ◦ f = πXf
:

Xf Yf

L

f

πYf
πXf

for all f ∈ Φ. Such a pair (L, (πZ)Z∈Ω) is a limit of the set Φ if for each family (A, (aZ)Z∈Ω) such
that for each aZ is a map aZ : A→ Z satisfying aYf ◦ f = aXf

for all f ∈ Φ there is a unique map
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a : A→ L making the diagram

Xf

A L

Yf

aXf

aYf

f

πXf

πXf

a

commutes.

It is clear that if such a limit exists it is unique up to unique isomorphism [we leave the precise
definition of the phrase “unique up to unique isomorphism” to the reader]. At first we assume the
such a limit exists. This will yields a recipe to construct this limit, and will be easy [end left again
to the reader] to verify that this recipe works.

Note that the πZ define a map π : L→
∏

Z∈Ω Z.

The trick is to consider the case when A is a singleton. We then see that L can be identified
with the set of all a = (aZ)Z∈Ω ∈

∏
Z∈Ω Z such that f(aXf

) = aYf for all f ∈ Φ.

Denoting by pT :
∏

Z∈Ω Z → T (for T ∈ Ω) the canonical projection, we can rewrite the condition

f(aXf
) = aYf for all f ∈ Φ

as
(f ◦ pXf

)(a) = pYf (a) for all f ∈ Φ.

We thus have two natural maps from
∏

Z∈Ω Z to Yf parametrized by f ∈ Φ, namely f ◦ pXf
and pYf .

To organize them into two maps from
∏

Z∈Ω Z to
∏

f∈Φ Yf as follows. Let qg :
∏

f∈Φ Yf → Yg be the
canonical projection, and define the maps u and v from

∏
Z∈Ω Z to

∏
f∈Φ Yf by the commutative

diagrams ∏
Z∈Ω Z

∏
f∈Φ Yf

∏
Z∈Ω Z

∏
f∈Φ Yf

Xg Yg Yg

u

pXg qg

f

v

qg
pYg

Then we see L is the equalizer of u and v.
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We can summarize this by the single diagram

Xg Yg

L
∏

Z∈Ω Z
∏

f∈Φ Yf

Yg

v

qg
pYg

u

f

pXg qg

π

This diagram makes sense whenever the appropriate products and equalizers exist.

We can also reverse the arrows and replace products with coproducts and equalizers with
coequalizers to define colimits.

3.2.15 Page 32, Exercise 2.14

Statement. A partially ordered set I is said to be a directed set if for each pair i, j in I there
exists k ∈ I such that i ≤ k and j ≤ k.

Let A be a ring, let I be a directed set and let (Mi)i∈I be a family of A-modules indexed by I.
For each pair i, j in I such that i ≤ j, let µij : Mi →Mj be an A-homomorphism, and suppose that
the following axioms are satisfied:

(1) µii is the identity mapping of Mi for all i ∈ I;
(2) µik = µjk ◦ µij whenever i ≤ j ≤ k.

Then the modules Mi and homomorphisms µij are said to form a direct system M = (Mi, µij)
over the directed set I.

We shall construct an A-module M called the direct limit of the direct system M . Let C be
the direct sum of the Mi and identify each module Mi with its canonical image in C. Let D be the
submodule of C generated by all elements of the form xi − µij(xi) where i ≤ j and xi ∈ Mi. Let
M = C/D, let µ : C →M be the projection and let µi be the restriction of µ to Mi.

The module M , or more correctly the pair consisting of M and the family of homomorphisms
µi : Mi →M , is called the direct limit of the direct system M , and is written lim−→Mi. From the
construction it is clear that µi = µj ◦ µij whenever i ≤ j.

Solution. Here is a slightly more general construction.

Assume we have an inductive system (Mi) of A-modules indexed by a category I, that is, for
each object i of I we have an A-module Mi, and for each morphism f : d(f)→ c(f) in I we have
an A-linear map Mf : Mc(f) →Md(f).
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Consider the commutative diagram

Md(f) Mi

⊕
g

Md(g)

⊕
j

Mj C

Md(f) Mc(f),

αf

βd(f)
βi

u

v

π

αf

Mf

βc(f)

where the αf and the βi are the coprojections, and the middle row is exact [i.e. the last arrow is a
coequalizer].

We claim that C is a colimit of our system [see Section 3.2.14 p. 40].

Let h :
⊕

Mj → N be A-linear. We have

h ◦ u = h ◦ v ⇐⇒ h ◦ u ◦ αf = h ◦ v ◦ αf ∀ f ⇐⇒ h ◦ βd(f) = h ◦ βc(f) ◦Mf ∀ f.

This shows that C is indeed a colimit of our system.

The following definition is taken from the Stacks Project
https://stacks.math.columbia.edu/tag/002V:

Definition 17. We say that a category I is filtered if the following conditions hold:

1. the category I has at least one object,

2. for every pair of objects x, y of I there exists an object z and morphisms x→ z, y → z, and

3. for every pair of objects x, y of I and every pair of morphisms a, b : x→ y of I there exists a
morphism c : y → z of I such that c ◦ a = c ◦ b as morphisms in C.

Assume now that the category I is filtered, and form the commutative diagram

Md(f) Mi

⊔
g

Md(g)

⊔
i

Mi C ′

Md(f) Mc(f),

α′f

β′
d(f)

β′i
γi

u

v

π′

α′f

Mf

β′
c(f)

which is the “set theoretical analog” of the previous one, that is,
⊔

denotes disjoint union, and the
middle row is exact in the category of sets [i.e. the last arrow is a set theoretical coequalizer]. Then
C ′ is the set theoretical colimit of our inductive system [see Section 3.2.14 p. 40].
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We claim that the natural set theoretical map C ′ → C is bijective.

To prove this we define a structure of A-module on C ′. To define the addition it suffices to define
γi(xi) + γj(xj) for xi ∈Mi, xj ∈Mj . To do this we choose morphisms f : i→ k, g : j → k, we check
that the element γk(Mf (xi) +Mg(xj)) ∈ C ′ does not depend on the choice of k, f and g, and we set

γi(xi) + γj(xj) := γk(Mf (xi) +Mg(xj)) ∈ C ′.

Then we define the map A × C ′ → C ′ [details left to the reader], we check that we have indeed
defined a structure of A-module on C ′, we use it to define a morphism C → C ′, and we check that
this morphism is inverse to the morphism C ′ → C previously defined. Again, the details are left to
the reader.

3.2.16 Page 33, Exercise 2.15

Statement. In the situation of Exercise 14, show that every element of M can be written in the
form µi(xi) for some i ∈ I and some xi ∈Mi.

Show also that if µi(xi) = 0 then there exists j ≥ i such that µij(xi) = 0 in Mj.

Solution. This follows from the comments made in the previous section [Section 3.2.15 p. 42].

3.2.17 Page 33, Exercise 2.16

Statement. Show that the direct limit is characterized (up to isomorphism) by the following
property. Let N be an A-module and for each i ∈ I let αi : Mi → N be an A-module homomorphism
such that αi = αj ◦ µij whenever i ≤ j. Then there exists a unique homomorphism α : M → N
such that αi = α ◦ µi for all i ∈ I.
Solution. This follows from the comments made in Section 3.2.15 p. 42.

3.2.18 Page 33, Exercise 2.17

Statement. Let (Mi)i∈I be a family of submodules of an A-module, such that for each pair of
indices i, j in I there exists k ∈ I such that Mi +Mi ⊂Mk. Define i ≤ j to mean Mi ⊂Mj and let
µij : Mi →Mj be the embedding of Mi in Mj. Show that

lim−→Mi =
∑

Mi =
⋃

Mi.

In particular, any A-module is the direct limit of its finitely generated submodules.

Solution. This follows from the comments made in Section 3.2.15 p. 42.

3.2.19 Page 33, Exercise 2.18

Statement. Let M = (Mi, µij), N = (Ni, νij) be direct systems of A-modules over the same directed
set. Let M,N be the direct limits and µi : Mi →M , νi : Ni → N the associated homomorphisms.
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A homomorphism Φ : M → N is by definition a family of A-module homomorphisms
φi : Mi → Ni such that φj ◦ µij = νij ◦ φi whenever i ≤ j. Show that Φ defines a unique
homomorphism φ = lim−→φi : M → N such that φ ◦ µi = νi ◦ φi for all i ∈ I.
Solution. Left to the reader.

3.2.20 Page 33, Exercise 2.19

Statement. A sequence of direct systems and homomorphisms

M→ N→ P

is exact if the corresponding sequence of modules and module homomorphisms is exact for each
i ∈ I. Show that the sequence M → N → P of direct limits is then exact. [Use Exercise 15
(Section 3.2.16 p. 44).]

Hint. Using obvious notation, writing Φ : M→ N, Ψ : N→ P, φ : M → N and ψ : N → P for
the morphisms in the statement and denoting by µji, νji, πji what the book designates by µij, νij, πij ,
let y ∈ Kerψ. Then y is of the form νi(yi) for some i ∈ I and yi ∈ Ni such that πi(ψi(yi)) = 0.
Thus there is a j ≥ i with πji(ψi(yi)) = 0, that is ψj(νji(yi)) = 0. Hence there is an xj ∈Mj with
νji(yi) = φj(xj), and it is straightforward to check that we have y = φ(µj(xj)).

Note that colimits are not exact in general. For instance cokernels are not exact, as shown by
the following example. Consider the exact sequence

0→ 4Z→ Z and 0→ 2Z→ Z,

where the morphisms are the inclusions. A morphism from the first exact sequence to the second
one is given by the commutative diagram

0 4Z Z

0 2Z Z

[the morphisms are again the inclusions]. The sequence of cokernels is clearly not exact.

3.2.21 Page 33, Exercise 2.20

Statement. Keeping the same notation as in Exercise 14, let N be any A-module. Then (Mi ⊗
N,µij ⊗ 1) is a direct system; let P = lim−→ (Mi ⊗N) be its direct limit.

For each i ∈ I we have a homomorphism µi ⊗ 1 : Mi ⊗ N → M ⊗ N , hence by Exercise 16
[Section 3.2.17 p. 44] a homomorphism ψ : P →M ⊗N . Show that ψ is an isomorphism, so that

lim−→ (Mi ⊗N) '
(
lim−→Mi

)
⊗N.

[For each i ∈ I, let gi : Mi ×N →Mi ⊗N be the canonical bilinear mapping. Passing to the limit
we obtain a mapping g : M ×N → P . Show that g is A-bilinear and hence define a homomorphism
φ : M ⊗N → P . Verify that φ ◦ ψ and ψ ◦ φ are identity mappings.]
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Solution. In view of Section 3.2.15 p. 42, to prove that

the tensor product commutes with colimits, (14)

it suffices to check that it commutes with direct sums.

To do so, let M be an A-module, let (Ni) be a family of A-module, let αi : Ni →
⊕

iNi and
βi : M ⊗ Ni → M ⊗ (

⊕
iNi) be the canonical coprojections [in this section the tensor products

are taken over A], and define the morphism f : M ⊗ (
⊕

iNi)→
⊕

i(M ⊗Ni) by the commutative
diagram ⊕

i(M ⊗Ni) M ⊗ (
⊕

iNi)

M ⊗Ni M ⊗Ni.

f

βi 1⊗αi

It suffices to show that f is bijective. We will define a morphism

g : M ⊗ (
⊕
i

Ni)→
⊕
i

(M ⊗Ni)

and show that it is inverse to f . Let x be in M . We define

gx :
⊕
i

Ni →
⊕
i

(M ⊗Ni)

by the commutative diagram ⊕
iNi

⊕
i(M ⊗Ni)

Ni M ⊗Ni,

gx

αi βi

gx,i

where gx,i sends y to x⊗y. Since gx(y) depends linearly on x, the family (gx)x∈M induces the desired
morphism g, and we leave it to the reader to check that g is inverse to f .

3.2.22 Page 34, Exercise 2.21

Statement. Let (Ai)i∈I be a family of rings indexed by a directed set I, and for each pair i ≤ j
in I let αij : Ai → Aj be a ring homomorphism, satisfying conditions (1) and (2) of Exercise 14.
Regarding each Ai as a Z-module we can then form the direct limit A = lim−→Ai. Show that A
inherits a ring structure from the Ai so that the mappings Ai → A are ring homomorphisms. The
ring A is the direct limit of the system (Ai, αij).

If A = 0 prove that Ai = 0 for some i ∈ I. [Remember that all rings have identity elements!]

Solution. Follows from the hint and Exercise 2.15 [Section 3.2.16 p. 44].
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3.2.23 Page 34, Exercise 2.22

Statement. Let (Ai)i∈I be a direct system of rings and let Ni be the nilradical of Ai. Show that
lim−→Ni is the nilradical of lim−→Ai.

If each Ai is an integral domain, then lim−→Ai is an integral domain.

Solution. Follows from Exercise 2.15 [Section 3.2.16 p. 44].

3.2.24 Page 34, Exercise 2.23

Statement. Let (Bλ)λ∈Λ be a family of A-algebras. For each finite subset J of Λ let BJ denote the
tensor product (over A) of the Bλ for λ ∈ J . If J ′ is another finite subset of Λ and J ⊂ J ′, there is
a canonical A-algebra homomorphism BJ → BJ ′ . Let B denote the direct limit of the rings BJ as J
runs through all finite subsets of Λ. The ring B has a natural A-algebra structure for which the
homomorphisms BJ → B are A-algebra homomorphisms. The A-algebra B is the tensor product
of the family (Bλ)λ∈Λ.

Solution. Follows from Exercise 2.21 [Section 3.2.22 p. 46].

Note. As mentioned in Section 3.1.6 p. 36 above, the A-algebra B defined in the statement of
the exercise is the coproduct of the family (Bλ)λ∈Λ. We repeat the reference to this Mathematics
Stackexchange post of Eric Wofsey: https://math.stackexchange.com/a/2441323/660.

Here is an important consequence of the above note:

Theorem 18. If A is a ring, then the category of A-algebras has all limits and all colimits.

Proof (sketch). In view of the argument described in Section 3.2.14 p. 40 and Section 3.2.15 p. 42, it
suffices to show that the following particular limits and colimits exist in the category of A-algebras:
products, equalizers, coproducts and coequalizers. Products and equalizers can be computed in
the category of sets. As just indicated, arbitrary coproducts are given by tensor products. The
coequalizer of a pair of parallel morphisms f, g : B ⇒ C is furnished by the canonical projection
C → C/c where c is the ideal generated by the elements of the form f(b)− g(b). The details are left
to the reader.

Comment. Exercises 2.21 and 2.22 of the book imply that B = 0 if and only if Bλ1⊗A · · ·⊗ABλn = 0
for some family (λ1, . . . , λn) of distinct elements of Λ.

3.2.25 Page 34, Exercise 2.24

Statement. If M is an A-module, the following are equivalent:

(i) M is flat;

(ii) TorAn (M,N) = 0 for all n > 0 and all A-modules N ;

(iii) TorA1 (M,N) = 0 for all A-modules N .
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[To show that (i) =⇒ (ii), take a free resolution of N and tensor it with M . Since M is flat, the
resulting sequence is exact and therefore its homology groups, which are the TorAn (M,N), are zero
for n > 0. To show that (iii) =⇒ (i), let 0 → N ′ → N → N ′′ → 0 be an exact sequence. Then,
from the Tor exact sequence,

TorA1 (M,N ′′)→M ⊗N ′ →M ⊗N →M ⊗N ′′ → 0

is exact. Since TorA1 (M,N ′′) = 0 it follows that M is flat.]

Solution. Omitted.

3.2.26 Page 34, Exercise 2.25

Recall the statement of Exercise 2.25:

Proposition 19 (Exercise 2.25). Let 0→ N ′ → N → N ′′ → 0 be an exact sequence, with N ′′ flat.
Then N ′ is flat if and only if N is flat.

Here is a [very long!] solution to Exercise 2.25 which does not use the Tor functor. Of course,
the solution using the Tor functor [and assuming the Tor functor and some of its basic properties
are known] is much simpler.

The proof below follows closely the proof of Proposition 1.2.5.5 in Bourbaki’s Algèbre com-
mutative.

In this section, the ground ring is denoted by R, not by A.

Part 1: The Snake Lemma. Let

A B C

A′ B′ C ′

α

u

β

v

γ

u′ v′

(15)

be a commutative diagram of R-modules with exact rows.

Lemma 20. If γ is injective, we have Im(β) ∩ Im(u′) = Im(u′ ◦ α) = Im(β ◦ u).

Proof. We clearly have Im(u′ ◦α) = Im(β ◦u) ⊂ Im(β)∩ Im(u′). Conversely, let b′ ∈ Im(β)∩ Im(u′).
There is a b ∈ B such that b′ = β(b). As v′ ◦ u′ = 0, we have 0 = v′(b′) = v′(β(b)) = γ(v(b)), whence
v(b) = 0 since γ is injective. The first row of (15) being exact, there is an a ∈ A such that b = u(a),
whence b′ = β(u(a)).

Lemma 21. If α is surjective, we have Ker(β) + Im(u) = Ker(v′ ◦ β) = Ker(γ ◦ v).

Proof. As v ◦ u = 0 and v′ ◦ u′ = 0, it is clear that Ker(β) + Im(u) ⊂ Ker(v′ ◦ β) = Ker(γ ◦ v).
Conversely, let b ∈ Ker(v′ ◦ β). Then β(b) ∈ Ker(v′), and there is a a′ ∈ A′ such that u′(a′) = β(b)
since the bottom row of (15) is exact. As α is surjective, there is an a ∈ A such that α(a) = a′,
whence β(b) = u′(α(a)) = β(u(a)); this implies that b− u(a) is in in Ker(β).
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We extend the commutative diagram (15) as follows:

Ker(α) Ker(β) Ker(γ)

A B C

A′ B′ C ′

Coker(α) Coker(β) Coker(γ),

u1

j

v1

k

α

u

β

v

γ

p

u′

q

v′

u2 v2

(16)

the new maps being the natural ones.

Recall that we are working under the assumption that the second and third rows of (16) are
exact.

Lemma 22. The sequence Ker(α)
u1−→ Ker(β)

v1−→ Ker(γ) is a complex. Moreover, if u′ is injective,
this complex is exact.

Proof. The first claim is clear. We have Ker(v1) = Ker(β)∩Ker(v) = Ker(β)∩Im(u) = Im(j)∩Im(u).
Assume that u′ is injective. As Lemma 20 implies Im(j) ∩ Im(u) = Im(j ◦ u1) = Im(u1), we get
Ker(v1) = Im(u1).

Lemma 23. The sequence Coker(α)
u2−→ Coker(β)

v2−→ Coker(γ) is a complex. Moreover, if v is
surjective, this complex is exact.

Proof. As u2 and v2 are obtained from u and v by taking quotients, it is clear that v1 ◦ u2 = 0.
Suppose v is surjective; q and p being surjective, we get, in view of the assumptions and Lemma 21,

Ker(v2) = q(Ker(v2 ◦ q)) = q(Ker(v′) + Im(β)) = q(Ker(v′))

= q(Im(u′)) = Im(q ◦ u′) = Im(u2 ◦ p) = Im(u2).

(Lemma 21 is used to prove the second equality.)

Theorem 24 (Snake Lemma). Assume that u′ is injective and that v is surjective. Then the
correspondence [see Bourbaki’s Théorie des ensembles, Section II.3]

δ := p ◦ u′−1 ◦ β ◦ v−1 ◦ k
is an R-linear map. On other words, there is a unique R-linear map δ : Ker(γ)→ Coker(α) having
the following property: if c ∈ Ker(γ), b ∈ B and a′ ∈ A′ satisfy v(b) = k(c) and u′(a′) = β(b), then
we have δ(c) = p(a′). Moreover the sequence

Ker(α) Ker(β) Ker(γ)

Coker(α) Coker(β) Coker(γ).

u1 v1

δ

u2 v2

is exact.
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The name “Snake Lemma” comes from the fact that the above exact sequence can be displayed
as

Ker(α) Ker(β) Ker(γ)

Coker(α) Coker(β) Coker(γ).

u1 v1

u2 v2

Proof. (a) The correspondence δ is a map: For c ∈ Ker(γ) there is a b ∈ B such that v(b) = k(c)
because v is surjective; moreover, we have v′(β(b)) = γ(k(c)) = 0, and thus there is a unique a′ ∈ A′
such that u′(a′) = β(b) because u′ is injective. Let us show that the element p(a′) ∈ Coker(α) does
not depend on the choice of the element b ∈ B such that v(b) = k(c). Indeed, if b∗ ∈ B is another
element such that v(b∗) = k(c), we have b∗ = b+ u(a) where a ∈ A; let us show that if a′∗ ∈ A′ is
such that u′(a′∗) = β(b∗), then a′∗ = a′ + α(a); indeed we have

u′(a′ + α(a)) = u′(a′) + u′(α(a)) = β(b) + β(u(a)) = β(b+ u(a)) = β(b∗) = u′(a′∗),

and the injectivity of u′ implies a′ +α(a) = a′∗. Finally, we conclude that p(a′∗) = p(a′) + p(α(a)) =
p(a′). We can thus set δ(c) = p(a′) and we have defined a map δ : Ker(γ)→ Coker(α).

(b) Linearity of δ: If c1, c2 are in Ker(γ) and c = c1 + c2, pick b1 and b2 in B such that v(b1) = k(c1)
and v(b2) = k(c2), and define b ∈ B by b := b1 + b2; it is then obvious that δ(c) = δ(c1) + δ(c2). We
prove similarly that δ(rc) = rδ(c) for r ∈ R.
(c) Exactness at Ker(β) and Coker(β): Follows from Lemmas 22 and 23 respectively.

(d) Equality δ ◦ v1 = 0: Suppose that c = v1(b) with b ∈ Ker(β); we then take for b ∈ B the element
j(b). As β(j(b)) = 0, we see that δ(c) = 0, hence δ ◦ v1 = 0.

(e) Exactness at Ker(γ): Suppose that δ(c) = 0. It suffices to show that we have c = v1(b∗) for some
b∗ ∈ Ker(β). Defining b and a′ as in (a), we get p(a′) = δ(c) = 0. Thus there is an a in A such that
a′ = α(a), and we get β(b) = u′(a′) = u′(α(a)) = β(u(a)), that is, β(b − u(a)) = 0. The element
b− u(a) is thus of the form j(b∗) for some b∗ ∈ Ker(β). It is enough to show c = v1(b∗). We have

k(c) = v(b) = v(u(a) + j(b∗)) = v(j(b∗)) = k(v1(b∗)).

The injectivity of k yields c = v1(b∗), as desired.

(f) Equality u2 ◦ δ = 0: We have [still with the notation of (a)]

u2(δ(c)) = u2(p(a′)) = q(u′(a′)) = q(β(b)) = 0.

(g) Exactness at Coker(α): Suppose that an element p(a′) in Coker(α) (with a′ ∈ A′) satisfies
u2(p(a

′)) = 0. It suffices to prove p(a′) = δ(c) for some c ∈ Ker(γ). We have q(u′(a′)) = 0, and
thus u′(a′) = β(b) for some b ∈ B; as v′(u′(a′))) = 0, we get v′(β(b)) = 0, thus γ(v(b)) = 0, that is
v(b) = k(c) for some c ∈ Ker(γ), and we obtain the sought-for equality p(a′) = δ(c) by definition of
δ.
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Part 2.

Lemma 25. If M is a flat R-module, if 0 → M1 → M2 → M → 0 is an exact sequence of
R-modules, and if N is an R-module, then the sequence

0→M1 ⊗R N →M2 ⊗R N →M ⊗R N → 0

is exact.

Proof. Let 0→ P → F → N → 0 be an exact sequence of R-modules such that F is free, and form
the diagram

M1 ⊗ P M2 ⊗ P M ⊗ P 0

0 M1 ⊗ F M2 ⊗ F M ⊗ F

M1 ⊗N M2 ⊗N

0 0,

f g

where the tensor products are taken over R, and where the maps are the natural ones. This diagram
is clearly commutative and exact. By the Snake Lemma [Theorem 24] there is an exact sequence
Ker(f)→ Ker(g)→M1 ⊗N →M2 ⊗N. As M is flat, g is injective. Thus M1 ⊗N →M2 ⊗N is
also injective.

Clearly the following lemma implies Exercise 2.25 [stated as Proposition 19 p. 48].

Lemma 26. Let 0→M ′ →M →M ′′ → 0 be an exact sequence of R-modules with M ′′ flat. Then
M ′ if flat if and only if M is flat.

Proof. Let N ′ → N be a monomorphism of R-modules and form the commutative diagram

0

0 M ′ ⊗N ′ M ⊗N ′ M ′′ ⊗N ′ 0

0 M ′ ⊗N M ⊗N M ′′ ⊗N 0,

α

f

β γ

g

the maps being the natural ones. The diagram is exact by flatness of M ′′ and Lemma 25.

Assume that M is flat. Then β is injective, and so is β ◦ f = g ◦α. This shows that α is injective,
and thus that M ′ is flat.

Assume that M ′ is flat. Then α is injective, and Lemma 22 implies that β is injective, and thus
that M is flat.

The solution to Exercise 2.25 p. 34 of the book is now complete.
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3.2.27 Page 35, Exercise 2.26

The goal is to show:

Theorem 27. In the above setting, M is flat if and only if for all finitely generated ideal a the
morphism M ⊗ a→M sending x⊗ a to xa is injective.

Here is the sketch of a solution [following Bourbaki’s Algèbre commutative].

Given A-modules M and N we say that M is N-flat if for all submodule N ′ of N the natural
morphism M ⊗N ′ →M ⊗N is injective. [Here and in the sequel “⊗” means “⊗A”.]
(a) If M ⊗ N ′ → M ⊗ N is injective for all finitely generated submodule N ′ of N , then M is
N -flat.

Proof. Let N ′′ be an arbitrary submodule of N ; let x1, . . . , xn be in M ; let y1, . . . , yn be in N ′′;
define t′′ ∈ M ⊗N ′′ by t′′ =

∑
xi ⊗ yi; define t ∈ M ⊗N by t =

∑
xi ⊗ yi; and assume t = 0. It

suffices to show t′′ = 0. Let N ′ be the submodule of N ′′ generated by the yi. By assumption the
tensor t′ ∈ M ⊗ N ′ defined by t′ =

∑
xi ⊗ yi vanishes. As the natural map M ⊗ N ′ → M ⊗ N ′′

sends t′ to t′′, we have indeed t′′ = 0.

(b) If M is N -flat and if P is a submodule or a quotient of N , then M is P -flat.

Proof. The case of the submodules is left to the reader. Let 0 → R
i−→ N

p−→ Q → 0 be exact,
and let us show that M is Q-flat. Let Q′ be a submodule of Q, and set N ′ := p−1(Q′). We get a
commutative diagram with exact rows

0 R N ′ Q′ 0

0 R N Q 0,

r

i′

n

p′

q

i p

where r is the identity of R, and the maps i′, p′, n and q are the obvious ones. Letting S 7→ S be
the functor M ⊗− we obtain the commutative diagram with exact rows

R N ′ Q′ 0

R N Q 0,

r

i′

n

p′

q

i p

where r is the identity of R. As n is injective, so is q.

(c) If N =
⊕

i∈I Ni is the direct sum of a family of submodules, and if M is Ni-flat for each i, then
M is N -flat.
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Proof. Let (Ni)i∈I be our family.

• First assume I = {1, 2}. Consider the split exact sequence 0→ N1
i−→ N1⊕N2

p−→ N2 → 0, let N ′
be a submodule of N , set N ′1 := N ′ ∩N1, let N ′2 be the image of N ′ in N2, and let

0 N ′1 N ′ N ′2 0

0 N1 N N2 0

f1

i′

f

p′

f2

i p

be the obvious commutative diagram with exact rows. Writing again S 7→ S for the functor M ⊗−,
we obtain the commutative diagram with exact rows

N ′1 N ′ N ′2

N1 N N2.

f1

i′

f

p′

f2

i p

It is easy to see that f1, f2 and i are injective, and that this implies that f is also injective. This
completes the proof of (c) in the case I = {1, 2}.
• Second assume that I is finite. We prove the statement by induction.

• Third assume that I is arbitrary, and let N ′ be a finitely generated submodule of N =
⊕

i∈I Ni.
Then there is a finite subset J of I such that N ′ ⊂

⊕
j∈J Nj, and we have

N =

(⊕
j∈J

Nj

)
⊕

⊕
i∈I\J

Ni

 .

We leave the rest of the proof to the reader.

From this point, the proof of Theorem 27 p. 52 is straightforward. The details are again left to
the reader.

3.2.28 Page 35, flat modules (a digression)

Taken from Chapter 1, Section 2, Subsection 11 in Nicolas Bourbaki, Algèbre commutative:
Chapitres 1 à 4, Masson, Paris 1985:

Let A be a [non necessarily commutative] associative ring with 1, let M be a right A-module, and let
N be a left A-module. Then M is N-flat [see §3.2.27] if and only if the following condition holds:

For all finite families (xi) ⊂M, (yi) ⊂ N such that
∑
xi ⊗ yi = 0 there are finite families (aij) ⊂ A

and (x′j) ⊂M such that
∑

j x
′
jaij = xi for all i and

∑
i aijyi = 0 for all j.

Proof. This follows easily from §3.1.3. �
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We also have:

Let A be a [non necessarily commutative] associative ring with 1 and M a right A-module. Then M
is flat if and only if the following condition holds:

For all finite families (xi) ⊂ M, (ai) ⊂ A such that
∑
xiai = 0 there are finite families (a′ij) ⊂ A

and (x′j) ⊂M such that
∑

j x
′
ja
′
ij = xi for all i and

∑
i a
′
ijai = 0 for all j.

Proof. We set N := A in the previous statement and use §3.2.27. �

There is also a statement and a proof of this result in the Stacks Project; see the tag
http://stacks.math.columbia.edu/tag/00HK

3.2.29 Page 35, Exercise 2.27

Statement. A ring A is absolutely flat if every A-module is flat. Prove that the following are
equivalent:

(i) A is absolutely flat.

(ii) Every principal ideal is idempotent.

(iii) Every finitely generated ideal is a direct summand of A.

[(i) =⇒ (ii). Let x ∈ A. Then A/(x) is a flat A-module, hence in the diagram

(x)⊗ A (x)⊗ A/(x)

A A/(x)

β

α

the mapping α is injective. Hence Im(β) = 0, hence (x) = (x2). (ii) =⇒ (iii). Let x ∈ A. Then
x = ax2 for some a ∈ A, hence e = ax is idempotent and we have (e) = (x). Now if e, f are
idempotents, then (e, f) = (e + f − ef). Hence every finitely generated ideal is principal, and
generated by an idempotent e, hence is a direct summand because A = (e)⊕ (1− e). (iii) =⇒ (i).
Use the criterion of Exercise 26 (see Theorem 27 p. 52).]

Solution.

• (i) =⇒ (ii): Let x be in A. Tensoring the exact sequence 0→ (x)→ A with the flat module A/(x)

yields the exact sequence 0 → (x)/(x)2 f−→ A/(x). We clearly have Im f = 0, hence f = 0, hence
(x)2 = (x).

Note: On replacing the principal ideal (x) with an arbitrary ideal this shows that all ideals of an
absolutely flat ring are idempotent. Here is a naive way of proving that “all principal ideals of A
are idempotent” implies “arbitrary ideals of A are idempotent”: Otherwise there would be an x in
a \ a2 for some ideal a, which would yield x ∈ (x2) ⊂ a2, contradiction.

• (ii) =⇒ (iii): The hint given in the book is complete.

• (iii) =⇒ (i): Let M be an A-module and a a finitely generated ideal. By Theorem 27 p. 52 above it
suffices to check that the natural morphism a⊗M →M is injective [in this section tensor products
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are taken over A]. This morphism is the composite of the obvious morphisms

a⊗M → (a⊕ b)⊗M = A⊗M →M,

where b is an ideal such that A = a⊕ b [such an ideal exists by assumption]. These morphisms are
clearly injective.

Note 28. The above arguments show that (i), (ii) and (iii) are also equivalent to

(iv) every finitely generated ideal is generated by an idempotent,

and also to

(v) for all a in A there is an x in A such that a = a2x.

In particular an absolutely flat ring has no nonzero nilpotent element.

Each of the following three conditions is equivalent to (i):

(vi) each ideal is idempotent,

(vii) each principal ideal is radical,

(viii) each ideal is radical.

Indeed, we already know that (i) and (vi) are equivalent [see the note after the proof that (i)
implies (ii)], and that (viii) implies trivially (vii). To prove that (ii) implies (viii), assume an ∈ a
for some element a of A, some positive integer n and some ideal a of A, and observe that we
get a ∈ (a) = (an) ⊂ a. To show that (vii) implies (ii), let a be in A and note that we have
a ∈ r(a2) = (a2).

3.2.30 Page 35, Exercise 2.28

Statement. A Boolean ring is absolutely flat. The ring of Chapter 1, Exercise 7 [Section 2.2.8
p. 21] is absolutely flat. Every homomorphic image of an absolutely flat ring is absolutely flat. If a
local ring is absolutely flat, then it is a field.

If A is absolutely flat, every non-unit in A is a zero-divisor.

Solution. The first three sentences follow from Property (v) above [Section 3.2.29]. The fact that
an absolutely flat local ring is a field follows immediately from Property (iv) above and Exercise 1.12
p. 11 of the book [see Section 2.2.13 p. 22 above].
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4 About Chapter 3

4.1 Comments

4.1.1 Page 37

Recall that f : A→ S−1A is the canonical morphism.

It is written:

"Conversely, these three conditions determine the ring S−1A up to isomorphism. Precisely:

Corollary 3.2. If g : A→ B is a ring homomorphism such that

(i) s ∈ S =⇒ g(s) is a unit in B;

(ii) g(a) = 0 =⇒ as = 0 for some s ∈ S;
(iii) Every element of B is of the form g(a)g(s)−1.

Then there is a unique isomorphism h : S−1A→ B such that g = h ◦ f ."
The following wording would be slightly better:

Conversely, these three conditions determine the ring S−1A up to unique isomorphism. Precisely:

Corollary 3.2. If g : A→ B is a ring homomorphism such that

(i) s ∈ S =⇒ g(s) is a unit in B;

(ii) g(a) = 0 =⇒ as = 0 for some s ∈ S;
(iii) Every element of B is of the form g(a)g(s)−1.

Then there is a unique morphism h : S−1A→ B such that g = h ◦ f . Moreover this morphism is an
isomorphism.

4.1.2 Page 39, Proposition 3.4

It is easy to see that we have S−1
∑
Mi =

∑
S−1Mi. It is also easy to see that we have

S−1
⋂

Mi ⊂
⋂

S−1Mi.

But the converse inclusion ⋂
S−1Mi ⊂ S−1

⋂
Mi

is not true in general. Here is a counterexample. Let K be a field and x an indeterminate. Setting
A := K[x], S := K[x] \ {0} we get⋂

n

S−1(xn) = K(x), S−1
⋂
n

(xn) = (0).

4.1.3 Pages 39-40, Propositions 3.5 and 3.7

Recall the statements of these propositions:
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Proposition 29 (Proposition 3.5 of the book). Let M be an A-module. Then the S−1A modules
S−1M and S−1A ⊗A M are isomorphic; more precisely, there exists a unique isomorphism f :
S−1A⊗AM → S−1M for which

f((a/s)⊗m) = am/s for all a ∈ A,m ∈M, s ∈ S.

Proposition 30 (Proposition 3.7 of the book). If M,N are A-modules, there is a unique isomor-
phism of S−1A-modules

f : S−1M ⊗S−1A S
−1N → S−1(M ⊗A N)

such that
f((m/s)⊗ (n/t)) = (m⊗ n)/st.

In particular, if p is any prime ideal, then

Mp ⊗Ap Np ' (M ⊗A N)p

as Ap-modules.

The natural A-linear map f : M → S−1M has the following universal property:

For all A-linear map g : M → N from M to an S−1A-module N such that sm = 0 for some s in
S and some m in m implies g(m) = 0 there is a unique S−1A-linear map h : S−1M → N such that
g = h ◦ f .

Using this universal property one can describe explicitly the respective inverses of the isomor-
phisms in Propositions 3.5 and 3.7.

4.1.4 Page 39, Proposition 3.5

In the setting of Proposition 3.5 p. 39 [Proposition 29] we have:

If 1⊗ x = 0 in S−1A⊗AM then we have sx = 0 for some s ∈ S.
Proof. We have 1⊗ x = 0 in N ⊗AM where N is some finitely generated sub-A-module of S−1A.
For any s ∈ S set A/s := {a/s | a ∈ A}; this is also a sub-A-module of S−1A. Then N ⊂ A/s for
some s, and we have 1⊗ x = 0 in A/s⊗AM . Defining f : A→ A/s by f(a) := a/s and letting B
be the kernel of f , and g : M → A/s⊗A N the map induced by f , we get exact sequences

B ⊗AM →M
g−→ A/s⊗AM → 0 and 0→ BM →M

g−→ A/s⊗AM → 0.

We have g(sx) = 0 and thus sx =
∑n

i=1 bixi with bi ∈ B and xi ∈M . As bi/s = 0 in S−1A there is
a t ∈ S such that tbi = 0 for all i. This gives tsx = 0. �

4.1.5 Page 40, Proposition 3.8

Recall the statement of Proposition 3.8.
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Proposition 31 (Proposition 3.8 p. 40). Let M be an A-module. Then the following are equivalent:

(i) M = 0;

(ii) Mp = 0 for all prime ideals p of A;

(iii) Mm = 0 for all maximal ideals m of A.

Here is a corollary:

Corollary 32. For a ∈ A and p ∈ Spec(A) write ap for the element a/1 ∈ Ap. Then we have for
a ∈ A:

a = 0 ⇐⇒ ap = 0 ∀ p ∈ Spec(A) ⇐⇒ am = 0 ∀ m maximal.

This follows from Proposition 3.8 and the easy equality (a)p = (ap).

4.1.6 Page 40, Proposition 3.9

Here is a mild generalization:

The complex of A-modules M f−→ N
g−→ P is exact if and only if the complex Mm

fm−→ Nm
gm−→ Pm is

exact for all maximal ideal m of A.

Proof. Use the isomorphism Ker(gm)/ Im(fm) ' (Ker(g)/ Im(f))m and Proposition 3.8 of the book.

4.1.7 Pages 41-42, Proposition 3.11

Recall the proposition:

Proposition 33 (Proposition 3.11 p. 41 of the book). (i) Every ideal in S−1A is an extended ideal.

(ii) If a is an ideal in A, then aec =
⋃
s∈S(a : s). Hence ae = (1) if and only if a meets S.

(iii) a ∈ C ⇐⇒ no element of S is a zero-divisor in A/a.

(iv) The prime ideals of S−1A are in one-to-one correspondence (p↔ S−1p) with the prime ideals
of A which don’t meet S.

(v) The operation S−1 commutes with formation of finite sums, products, intersections and radicals.

Here are some additional comments about Parts (ii) and (iv).

Part (ii).

• Here is a more detailed proof of the statement

If a is an ideal in A, then aec =
⋃
s∈S (a : s).

We have

x ∈ aec = (S−1a)c
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⇐⇒ x

1
=
a

s′
for some a ∈ a, s′ ∈ S

⇐⇒ (xs′ − a)t′ = 0 for some a ∈ a and some s′, t′ ∈ S
⇐⇒ xst ∈ a for some s, t ∈ S
⇐⇒ xs ∈ a for some s ∈ S
⇐⇒ x ∈

⋃
s∈S (a : s).

To prove

xst ∈ a for some s, t ∈ S =⇒ (xs′ − a)t′ = 0 for some a ∈ a and some s′, t′ ∈ S,
we set a := xst, s′ := st, t′ := 1.

• A particular case of the statement
ae = (1) if and only if a meets S

is
(0)e = (1) if and only if 0 ∈ S,

that is
S−1A = 0 ⇐⇒ 0 ∈ S. (17)

[It is easy to prove this particular case directly.]

Part (iv). Set X := Spec(A), Y := Spec(S−1A) and let c : Y → X be the contraction map. In
view of Proposition 1.17iii p. 10 of the book, it suffices to show: c(Y ) = {p ∈ X | p ∩ S = ∅} and
p ∈ c(Y ) =⇒ S−1p ∈ X. The conclusion is that

The contraction and extension maps are inverse inclusion preserving bijections between Y and c(Y ).

4.1.8 Page 43, Proposition 3.14

The inclusion S−1 AnnM ⊂ AnnS−1M holds even is M is not finitely generated. Here is a
counterexample to the reverse inclusion:

Let K be a field and x an indeterminate. Set

A := K[x], S := K[x] \ {0}, M :=
⊕

A/(xn).

We get AnnM = (0), S−1M = 0, AnnS−1M = (1).

4.1.9 Page 43, Proposition 3.16

Here is the statement:

Proposition 34 (Proposition 3.16). Let A → B be a ring homomorphism and let p be a prime
ideal of A. Then p is the contraction of a prime ideal of B if and only if pec = p.

Compare with Exercise 3.21iv p. 47 of the book [Section 4.2.21 p. 72 below].
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4.1.10 Proof of Proposition 3.16

The commutative diagram
p < A B > pB

pp < Ap Bp > m ⊃ pBp.

α

f

β

fp

might help. Note that we have f−1
p (m) = pp.

4.1.11 Strengthening of Proposition 3.16

Proposition 3.16 can also be stated as follows:

Let A→ B be a morphism of commutative rings, let a be a contracted ideal in A, and let Σ be the
set of those ideals in B which contract to a. [In particular Σ is nonempty.] Order Σ by inclusion.
Then we have

(a) ae is the least element of Σ, or, equivalently, ae is the intersection of all the elements of Σ,

(b) Σ has one, or more, maximal elements,

(c) if a is prime, then any maximal element of Σ is also prime.

The proofs of these statements are straightforward and elementary. We will prove (c), the proofs
of (a) and (b) being similar and left to the reader.

To prove (c), let q be a maximal element of Σ. Assume by contradiction that q is not prime.
Then there are ideals b, b′ in B such that q 6⊃ b, q 6⊃ b′, q ⊃ bb′. Replacing b and b′ with b + q
and b′ + q, we can assume that q is a proper sub-ideal of b and b′. By maximality of q, the prime
ideal a is a proper sub-ideal of bc and b′ c. By Exercise 1.18 p. 10 [Section 2.1.7 p. 16] we also have
bcb′ c ⊂ (bb′)c ⊂ qc = a, in contradiction with the primality of a.

4.1.12 Related result

Here is a related result:

p is the contraction of a prime ideal if and only if Ap/pp ⊗A B 6= 0. (18)

This will follow from Claim 1 and Claim 2 below.

Claim 1. Let C1, . . . , C5 be the five B-algebras

Ap ⊗A B/pB, (B/pB)p, Bp/ppB,
Ap

pp
⊗A B, (A/p)p ⊗A B.

Then for any 1 ≤ i, j ≤ 5 there is a unique B-algebra morphism Ci → Cj, and this morphism is
bijective.

Proof of Claim 1. Left to the reader.
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Note that Ci is an initial object in the category of those B-algebras C such that the image of
a ∈ A in C is zero if a ∈ p and is a unit if a /∈ p.

Claim 2. We have
(
B/pe

)
p

= 0 ⇐⇒ pec 6= p.

Proof of Claim 2.(
B/pe

)
p

= 0 ⇐⇒ 1

1
=

0

1
in
(
B/pe

)
p
⇐⇒ ∃ s ∈ A\p | f(s) ∈ pe ⇐⇒ ∃ s ∈ pec \p ⇐⇒ pec 6= p.

Statement (18) follows also from Exercise 3.21iv p. 47 of the book [see Section 4.2.21 p. 72 below].

4.2 Exercises

4.2.1 Page 43, Exercise 3.1

Statement. Let S be a multiplicatively closed subset of a ring A, and let M be a finitely generated
A-module. Prove that S−1M = 0 if and only if there exists s ∈ S such that sM = 0.

Solution. If there exists s ∈ S such that sM = 0 and if x ∈ M , then we have x
1

= sx
s

= 0. If
S−1M = 0 and x1, . . . xn generate M , then for all i there is an si ∈ S such that sixi = 0, and the
product s1 · · · sn annihilates M .

4.2.2 Page 43, Exercise 3.2

Statement. Let a be an ideal of a ring A, and let S = 1 + a. Show that S−1a is contained in the
Jacobson radical of S−1A.

Use this result and Nakayama’s lemma [Proposition 14 p. 34] to give a proof of (2.5) [Corollary 10
p. 10] which does not depend on determinants. [If M = aM , then S−1M = (S−1a)(S−1M), hence
by Nakayama we have S−1M = 0. Now use Exercise 1.]

Hint. S−1a is contained in the Jacobson radical of S−1A: For α, β, γ ∈ a and a ∈ A we have

1− α

1 + β

a

1 + γ
=

1 + β + γ + βγ − αa
1 + β + γ + βγ

with 1 + β + γ + βγ − αa ∈ S.

4.2.3 Page 43, Exercise 3.3

Statement. Let A be a ring, let S and T be two multiplicatively closed subsets of A, and let U be
the image of T in S−1A. Show that the rings (ST )−1A and U−1(S−1A) are isomorphic.

Solution. We have U = { t
1
∈ S−1A | t ∈ T}.

We define the A-algebra morphism

f : (ST )−1A→ U−1(S−1A)
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as follows. Let f ′ be the composite of the natural morphisms A → S−1A → U−1(S−1A), and let
s ∈ S, t ∈ T . To define f it suffices to show that f ′(st) is a unit. Clearly the inverse of

f ′(st) =
st
1
1
1

is
1
s
t
1

.

We define the A-algebra morphism

g : U−1(S−1A)→ (ST )−1A

as follows. We first define the A-algebra morphism g′ : S−1A→ (ST )−1A by noting that the image
of the element s ∈ S under the natural A-algebra morphism A→ (ST )−1A is a unit. Let t be in T .
To complete the definition of g it suffices to show that g′( t

1
) = t

1
is a unit, which is clear.

We then have
f
( a
st

)
=

a
s
t
1

and g

( a
s
t
1

)
=

a

st

for all a ∈ A, s ∈ S, t ∈ T , and it is clear that f and g are inverse A-algebra isomorphisms.

4.2.4 Page 44, Exercise 3.4

Statement. Let f : A → B be a homomorphism of rings and let S be a multiplicatively closed
subset of A. Let T = f(S). Show that S−1B and T−1B are isomorphic as S−1A-modules.

Hint. S−1B is the quotient of B × S by a certain equivalence relation ∼, and f(S)−1B is the
quotient of B × f(S) by a certain equivalence relation ≈. Define g : B × S → B × f(S) by
g(b, s) = (b, f(s)). One easily checks that, for b, c ∈ B and s, t ∈ S the conditions (b, s) ∼ (c, t) and
(b, (f(s)) ≈ (c, f(t)) are equivalent. This implies that there is a bijection h : S−1B → T−1B such
that h( b

s
) = b

f(s)
for all b ∈ B, s ∈ S. It is straightforward to verify that h is S−1A-linear.

4.2.5 Page 44, Exercise 3.5

Statement. Let A be a ring. Suppose that, for each prime ideal p, the local ring Ap has no
nilpotent element 6= 0. Show that A has no nilpotent element 6= 0. If each Ap is an integral domain,
is A necessarily an integral domain?

Hint. First part: Use Corollary 32 p. 58 above. Alternatively, use Proposition 31 p. 58 and
Corollary 3.12 p. 42 of the book1. Second part: take the zero ring [or a product of two fields].

1Statement of the corollary: If N is the nilradical of A, the nilradical of S−1A is S−1N.
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4.2.6 Page 44, Exercise 3.6

Statement. Let A be a ring 6= 0 and let Σ be the set of all multiplicatively closed subsets S of
A such that 0 /∈ S. Show that Σ has maximal elements, and that S ∈ Σ is maximal if and only if
A \ S is a minimal prime ideal of A.

Hint. The union of a chain in Σ belongs to Σ. If S ∈ Σ is maximal, then S−1A 6= 0. In particular
A has a prime ideal p disjoint from S, and A \ p is an element of Σ containing S, hence equal to S
by maximality of S.

4.2.7 Page 44, Exercise 3.7

Preliminaries. Here are a few comments one can make at the outset.

Note 35. Let S and T be two multiplicative subsets of A. Then there is at most one A-algebra
morphism from S−1A→ T−1A. Moreover such a morphism exists if and only if for each s ∈ S the
image of s in T−1A is a unit.

Note 36. Let S be a multiplicative subset of A. Then the following five subsets of A are equal:

• the intersection of all saturated multiplicative subsets of A containing S,

• the set of all those elements of A whose image in S−1A is a unit,

• the complement in A of the union of the prime ideals of A which are disjoint from S,

• the set of all those elements a ∈ A such that ab ∈ S for some b ∈ A.
Moreover this set is the least saturated multiplicative subset of A containing S.

This set is called the saturation of S and is denoted by S.

Note 37. The unique A-algebra morphism S−1A→ S
−1
A is bijective. Moreover, if T is another

multiplicative subset, then there is a [necessarily unique] A-algebra morphism S−1A→ T−1A if and
only if S ⊂ T .

Note 38. Let A be a ring, let A be the category whose objects are the A-algebras of the form S−1A,
where S is a multiplicative subset of A, and whose morphisms are the A-algebra morphisms, let B be
the category whose objects are the subsets of Spec(A) and whose morphisms are defined by

HomB(Y, Z) =

{
{∅} if Z ⊂ Y

∅ otherwise

[that is Bop is the poset given by power set of Spec(A), poset viewed as a category], and let F : A → B
the functor S−1A 7→ Spec(S−1A), where Spec(S−1A) is viewed as the set of those prime ideals of A
disjoint from S. Then F is an equivalence.

Statement. A multiplicatively closed subset S of a ring A is said to be saturated if

xy ∈ S ⇐⇒ x ∈ S and y ∈ S.
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Prove that

(i) S is saturated ⇐⇒ A \ S is a union of prime ideals.

(ii) If S is any multiplicatively closed subset of A, there is a unique smallest saturated multiplicatively
closed subset S containing S, and that S is the complement in A of the union of the prime ideals
which do not meet S. (S is called the saturation of S.)

If S = 1 + a, where a is an ideal of A, find S.

Solution. Let U be the union of the prime ideals which do not meet S.

(i) Implication ⇐= is easy. Let us prove =⇒ . Assume by contradiction that there is an a ∈ A \ S
which is not in U . Then a/1 belongs to no prime ideal of S−1A, and is therefore a unit of S−1A.
Hence there are b ∈ A and s ∈ S such that

ab

s
=
a

1

b

s
=

1

1
.

This implies abt ∈ S for some t ∈ S, contradicting the saturation of S.

(ii) Follows from Section 4.2.7 p. 63 above.

(iii) S is the complement of the union of the maximal ideals containing a.

Proof. Let M be the union of the maximal ideals containing a, and let P be the union of the prime
ideals disjoint from 1 + a:

M :=
⋃
m⊃a

m, P :=
⋃

p∩(1+a)=∅

p.

It suffices to show M = P .

To prove M ⊂ P , assume m ⊃ a, m maximal. It is enough to check m∩ (1 + a) = ∅. If there was
an x in m∩ (1 +a), there would be an a in a with x = 1 +a, which would imply 1 ∈ m, contradiction.

Let us verify P ⊂ M . Assume p ∩ (1 + a) = ∅, with p prime. It suffices to show p ⊂ M . We
claim p + a 6= (1). If not we would have p+ a = 1 with p ∈ p and a ∈ a, and thus

p = 1− a ∈ p ∩ (1 + a) = ∅.

As p + a 6= (1), there is a maximal ideal containing p and a. This implies p ⊂M , as announced.

4.2.8 Page 44, Exercise 3.8

Statement. Let S, T be multiplicatively closed subsets of A, such that S ⊂ T . Let φ : S−1A →
T−1A be the homomorphism which maps each a/s ∈ S−1A to a/s considered as an element of T−1A.
Show that the following statements are equivalent:

(i) φ is bijective.

(ii) For each t ∈ T , t/1 is a unit in S−1A.

(iii) For each t ∈ T there exists x ∈ A such that xt ∈ S.
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(iv) T is contained in the saturation of S (Exercise 7).

(v) Every prime ideal which meets T also meets S.

Solution.

(i) =⇒ (ii): The element x = t/1 of S−1A is a unit if and only if φ(x) is a unit of T−1A, which is
true because φ(x) is equal to t/1 ∈ T−1A.

(ii) =⇒ (iii): If a/s is the inverse of t/1 ∈ S−1A, we have a
s
t
1

= 1
1
in S−1A, that is as′t = ss′ ∈ S for

some s′ ∈ S.
(iii) =⇒ (iv): Obvious.

(iv) =⇒ (v): This follows from Part (ii) of the previous exercise.

(v) =⇒ (ii): Let t ∈ T be such that t/1 ∈ T is not a unit in S−1A. Then t/1 belongs to some prime
ideal of S−1A, that is, t belongs to some prime ideal of A disjoint from S.

(ii) =⇒ (i): There is a [necessarily unique] A-algebra morphism ψ : T−1A → S−1A such that
ψ(a/t) = a

1
( t

1
)−1, and ψ is the inverse of φ.

4.2.9 Page 44, Exercise 3.9

See Section 2.2.15 p. 23. — Actually there are two proofs of the fact that the set of zero-divisors is
a union of prime ideals: one is Exercise 1.14 p. 12, the other is Exercise 3.7 p. 44 [see Section 4.2.7
p 64].

• To show that a minimal prime ideal p consists of zero-divisors, set S := A\p. Then S is a maximal
element of the set denoted Σ in Exercise 3.6 [see Section 4.2.6 p. 63]. It suffices to prove S0 ⊂ S.
Let s0 be in S0. If s0 was not in S, then s0 and S would generate a multiplicative set not containing
0 which is larger than S, contradiction.

• (ii) Assume that a/s ∈ S−1
0 A is neither a unit nor a zero-divisor. We have a /∈ S0. Then there is a

nonzero b in A with ab = 0, and we get a
s
b
1

= 0, hence b
1

= 0, that is bs0 = 0 for some s0 ∈ S0. This
implies b = 0, contradiction.

4.2.10 Page 44, Exercise 3.10

Statement. Let A be a ring.

(i) If A is absolutely flat (Chapter 2, Exercise 27, Section 3.2.29 p. 54) and S is any multiplicatively
closed subset of A, then S−1A is absolutely flat.

(ii) A is absolutely flat ⇐⇒ Am is a field for each maximal ideal m.

Solution.

(i) We have, with obvious notation,

a = a2x =⇒ a2

s2

sx

1
=
a2xs

s2
=
a2x

s
=
a

s
.

(ii) Note that the statement to prove is equivalent to any of the following two statements:
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• A is absolutely flat if and only if for all maximal ideal m of A we have mm = (0).

• A is absolutely flat if and only if for all µ ∈ m ⊂ A with m maximal, there is an s ∈ A \m such
that sµ = 0.

Let us show that A is absolutely flat if and only if Am is a field for each maximal ideal m.

If A is absolutely flat, then so is Am by Part (i) of the same exercise, and Am is a field by
Exercise 2.28 p. 35 of the book [see Section 3.2.30 p. 55 above].

Conversely, assume that Am is a field for each maximal ideal m of A, and let a be in A. We have
(a2)m = (a)m for all maximal m, and thus (a2) = (a). This shows that A is absolutely flat by the
implication (ii) =⇒ (i) in Exercise 2.27 p. 35 of the book [see Section 3.2.29 p. 54].

4.2.11 Page 44, Exercise 3.11

Statement. Let A be a ring. Prove that the following are equivalent:

(i) A/N is absolutely flat [N being the nilradical of A].

(ii) Every prime ideal of A is maximal.

(iii) Spec(A) is a T1-space [i.e., every subset consisting of a single point is closed].

(iv) Spec(A) is Hausdorff.

If these conditions are satisfied, show that Spec(A) is compact and totally disconnected [i.e. the
only connected subsets of Spec(A) are those consisting of a single point].

Solution. We clearly have (iv) =⇒ (iii)⇐⇒ (ii).

(ii) =⇒ (iv): We assume that each prime ideal of A is maximal and we show that X = Spec(A) is
Hausdorff. Let x and y be two distinct points of X. We claim:

(?) There are elements a ∈ py \ px, b ∈ px \ py such that ab = 0.

Statement (?) implying that Xa and Xb are disjoint open neighborhoods of x and y respectively,
it suffices to prove (?).

Assume (?) is false. Then S := (A \ px)(A \ py) is a multiplicatively closed subset avoiding 0,
hence S−1A is not the zero ring, hence there is a maximal ideal m in S−1A. The contraction mc of
m in A is a prime, and thus maximal, ideal contained in A \ S ⊂ px (because A \ px ⊂ S). This
implies mc = px. Similarly we have mc = py. As px 6= py, this is a contradiction. �

At this point we know that (ii), (iii) and (iv) are equivalent.

Introduce the following notation: For any ideal a of any ring R write a for the image of a in
R := R/N(R), and define r ∈ R for r ∈ R similarly.

(i) =⇒ (ii): Let A/N be absolutely flat and assume by contradiction that there is a prime ideal p
strictly contained in a maximal ideal m. Let us denote this situation by p < m. Then we get firstly
p < m with p prime and m maximal, and secondly pm < mm with pm prime and mm maximal. But
Exercise 3.10ii p. 44 of the book [see Section 4.2.10 above] implies mm = (0). �

(ii) =⇒ (i): We assume that the prime ideals of A are maximal and we show that A/N is absolutely
flat. Let m be a maximal ideal of A. By Section 4.2.10 above it suffices to show mm = (0). But we
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have mm = N
(
Am

)
= N

(
A
)
m

= (0), the second equality following from Corollary 3.12 p. 42 of the
book. �

Proof that X is totally disconnected: Let x and y be two different points of X. We saw that there
is an a ∈ A such that x ∈ Xa and y /∈ Xa [see Statement (?) above]. It suffices to show that Xa is
closed, but this follows from the fact that X is Hausdorff and Xa is compact. �

Here is a related result:

The following conditions on a ring A are equivalent:

(a) the Krull dimension of A is at most zero,

(b) A/N is absolutely flat, where N is the nilradical of A,

(c) for each a in A the descending chain (a) ⊃ (a2) ⊃ · · · stabilizes.
Proof. In view of Exercise 3.11 p. 44 of the book [see Section 4.2.11 p. 66], it suffices to prove
(b) =⇒ (c) =⇒ (a).

(b) =⇒ (c): With obvious notation we have a = a2b for some b in A, that is (a− a2b)n = 0 for some
n ≥ 1. This is easily seen to imply an ∈ (an+1) and thus (an+1) = (an).

(c) =⇒ (a): Let p be a prime ideal of A and let a be in A \ p. We have an(1− ab) = 0 for some b in
A and some n in N. In particular an(1− ab) ∈ p, and thus 1− ab ∈ p. This implies that A/p is a
field, and therefore that p is maximal. �

4.2.12 Page 45, Exercise 3.12

Statement. Let A be an integral domain and M an A-module. An element x ∈ M is a torsion
element of M if Ann(x) 6= 0, that is if x is killed by some non-zero element of A. Show that the
torsion elements of M form a submodule of M . This submodule is called the torsion submodule
of M and is denoted by T (M). If T (M) = 0, the module M is said to be torsion-free. Show that

(i) If M is any A-module, then M/T (M) is torsion-free.

(ii) If f : M → N is a module homomorphism, then f(T (M)) ⊂ T (N).

(iii) If 0→M ′ →M →M ′′ is an exact sequence, then the sequence 0→ T (M ′)→ T (M)→ T (M ′′)
is exact.

(iv) If M is any A-module, then T (M) is the kernel of the mapping x 7→ 1⊗ x of M into K ⊗AM ,
where K is the field of fractions of A.

[For iv), show that K may be regarded as the direct limit of its submodules Aξ (ξ ∈ K); using
Chapter 1, Exercise 15 and Exercise 20 [Exercise 2.2.16 p. 24 and Exercise 2.2.21 p. 27], show that
if 1⊗X = 0 in K ⊗M then 1⊗ x = 0 in Aξ ⊗M for some ξ 6= 0. Deduce that ξ−1x = 0.]

Hints.

(i) Let x+ T (M) ∈M/T (M) with x ∈M , and let a ∈ A, a 6= 0, satisfy a(x+ T (M)) = 0, that is
ax ∈ T (M). Then there is a nonzero b ∈ A such that bax = 0, and thus x ∈ T (M).

(ii) If x ∈ T (M), then we get ax = 0 for some a ∈ A, a 6= 0, and thus af(x) = f(ax) = 0.

(iii) The exactness at T (M ′) is clear. To prove the exactness at T (M), let x be in T (M), and let
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x′′ be its image in M ′′; in particular x′′ ∈ T (M ′′). Suppose x′′ = 0. Then x is the image of some
x′ ∈M ′. We have ax = 0 for some nonzero a ∈ A, and thus ax′ = 0. This shows that x′ ∈ T (M ′).

(iv) [In the hint, “Chapter 1” should be “Chapter 2”.] By Exercise 2.20 p. 33 of the book we have

K ⊗AM '
(

colim
a∈A\{0}

Aa−1

)
⊗AM ' colim

a∈A\{0}

(
Aa−1 ⊗AM

)
.

If 1⊗x vanishes in K⊗AM , then Exercise 2.15 p. 33 of the book implies that 1⊗x already vanishes
in Aa−1 ⊗AM for some a ∈ A \ {0}, and we get 0 = 1⊗ x = a−1a⊗ x = a−1 ⊗ ax in Aa−1 ⊗AM .
This implies ax = 0 because the map M → Aa−1 ⊗AM , y 7→ a−1 ⊗ y is an isomorphism.

4.2.13 Page 45, Exercise 3.13

Statement. Let S be a multiplicatively closed subset of an integral domain A. In the notation of
Exercise 12, show that T (S−1M) = S−1(TM). Deduce that the following are equivalent:

(i) M is torsion-free.

(ii) Mp is torsion-free for all prime ideals p.

(iii) Mm is torsion-free for all maximal ideals m.

[Note the implicit assumption 0 /∈ S.]
Solution. We claim

Ann
(x
s

)
= S−1 Ann(x). (19)

Proof: We have Ann(x
s
) = Ann(x

1
) = Ann((S−1A)x

1
) = Ann(S−1(Ax)) = S−1 Ann(Ax) =

S−1 Ann(x), the equality Ann(S−1(Ax)) = S−1 Ann(Ax) following from Proposition 3.14 p. 43
of the book. This proves (19).

To show
T (S−1M) = S−1(TM) (20)

let first x
s
∈ T (S−1M). We have (0) 6= Ann(x

s
) = S−1 Ann(x) by (19). This implies Ann(x) 6= (0),

hence x ∈ T (M), hence x
s
∈ S−1T (M). Suppose now x

s
∈ S−1T (M), that is x

s
= y

t
with y ∈ T (M),

t ∈ S and tux = suy for some u ∈ S; and we get Ann(x
s
) = Ann(y

t
) = S−1 Ann(y) by (19). Since

Ann(y) is nonzero, so is S−1 Ann(y), hence x
s
∈ T (S−1M). This completes the proof of (20).

We now show that (i), (ii) and (iii) are equivalent:

(i) =⇒ (ii): Follows immediately from (20).

(ii) =⇒ (iii): Obvious.

(iii) =⇒ (i): Follows immediately from (20) and Proposition 3.8 p. 40 of the book.

4.2.14 Page 45, Exercise 3.14

Statement. Let M be an A-module and a an ideal of A. Suppose that Mm = 0 for all maximal
ideals m ⊃ a. Prove that M = aM .
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Solution. Let m be a maximal ideal of A/a. It suffices to show (M/aM)m = 0. Letting mc be the
contraction of m in A, we get (M/aM)m ' (M/aM)mc 'Mmc/(aM)mc = 0.

4.2.15 Page 45, Exercise 3.15

Statement. Let A be a ring. Show that every set of n generators of An is a basis of An. Deduce
that every set of generators of An has at least n elements. [Hint. Let x1, . . . , xn be a set of generators
and e1, . . . , en the canonical basis of An. Define φ : An → An by φ(ei) = xi. Then φ is surjective
and we have to prove that it is an isomorphism. By (3.9) we may assume that A is a local ring. Let
N be the kernel of φ and let k = A/m be the residue field of A. . . ]

Solution. Use Corollary 13 p. 34.

4.2.16 Page 46, Exercise 3.16

Statement. Let B be a flat A-algebra. Then the following conditions are equivalent:

(i) aec = a for all ideals a of A.

(ii) Spec(B)→ Spec(A) is surjective.

(iii) For every maximal ideal m of A we have me 6= (1).

(iv) If M is any non-zero A-module, then MB 6= 0.

(v) For every A-module M , the mapping x 7→ 1⊗ x of M into MB is injective.

[For (i) =⇒ (ii), use (3.16) [Proposition 34 p. 59]. (ii) =⇒ (iii) is clear.

(iii) =⇒ (iv): Let x be a non-zero element of M and let M ′ = Ax. Since B is flat over A it is
enough to show that M ′

B 6= 0. We have M ′ ' A/a for some ideal a 6= (1), hence M ′
B ' B/ae. Now

as a ⊂ m for some maximal ideal m, hence ae ⊂ me 6= (1). Hence M ′
B 6= 0.

(iv) =⇒ (v): Let M ′ be the kernel of M →MB. Since B is flat over A, the sequence 0→M ′
B →

MB → (MB)B is exact. But (Chapter 2, Exercise 13 [Section 3.2.13 p. 40], with N = MB) the
mapping MB → (MB)B is injective, hence M ′

B = 0 and therefore M ′ = 0.

(v) =⇒ (i): Take M = A/a.]

B is said to be faithfully flat over A.

Hints. We claim that Property (vi) below is equivalent to Properties (i) to (v).

(vi) For any A-linear map M ′ →M , if M ′
B →MB is injective, then so is M ′ →M .

(vi) =⇒ (v): We must prove that M → MB is injective. It suffices to show that MB → MBB is
injective. But this follows from Exercise 2.13 p. 32 of the book.

(iv) =⇒ (vi): Let 0→M ′ →M →M ′′ be an exact sequence such that MB →M ′′
B is injective. It

suffices to show M ′ = 0, or even M ′
B = 0. But this follows from the fact that 0→M ′

B →MB →M ′′
B

is exact.
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4.2.17 Page 46, Exercise 3.17

Statement. Let A f−→ B
g−→ C be ring homomorphisms. If g ◦ f is flat and g is faithfully flat, then

f is flat.

Hints. Let M ′ → M be injective. We must show that M ′
B → MB is injective. By Section 4.2.16

p. 69 and by the fact that B → C is faithfully flat, it suffices to check that M ′
BC →MBC is injective,

i.e., that M ′
C →MC is injective. But this follows from the fact that A→ C is flat.

4.2.18 Page 46, Exercise 3.18

Statement. Let f : A→ B be a flat homomorphism of rings, let q be a prime ideal of B and let
p = qc. Then f ∗ : Spec(Bq) → Spec(Ap) is surjective. [For Bp is flat over Ap by (3.10)2, and Bq

is a local ring of Bp, hence is flat over Bp. Hence Bq is flat over Ap and satisfies condition (3) of
Exercise 16.]

Hints. The phrase “Bq is a local ring of Bp” means “Bq is a localization of Bp”.

4.2.19 Page 46, Exercise 3.19

Statement. Let A be a ring, M an A-module. The support of M is defined to be the set Supp(M)
of prime ideals p of A such that Mp 6= 0. Prove the following results:

(i) M 6= 0 ⇐⇒ Supp(M) 6= ∅.

(ii) V (a) = Supp(A/a).

(iii) If 0→M ′ →M →M ′′ → 0 is an exact sequence, then Supp(M) = Supp(M ′) ∪ Supp(M ′′).

(iv) If M =
∑
Mi then Supp(M) =

⋃
Supp(Mi).

(v) If M is finitely generated, then Supp(M) = V (Ann(M)) (and is therefore a closed subset of
Spec(A)).

(vi) If M,N are finitely generated, then Supp(M ⊗A N) = Supp(M) ∩ Supp(N). [Use Chapter 2,
Exercise 3, Section 3.2.3 p. 37.]

(vii) If M is finitely generated and a is an ideal of A, then Supp(M/aM) = V (a + Ann(M)).

(viii) If f : A → B is a ring homomorphism and M is a finitely generated A-module, then
Supp(B ⊗AM) = f ∗−1(Supp(M)).

General Observation. If P (M) is a property that an A-module M may or may not have, then to
prove P (M) for all finitely generated module, it suffices to prove that

• P (A/a) holds for all ideal a,

• P (M1 + M2) holds for all finitely generated submodules M1 and M2 of a module M whenever
P (M1) and P (M2) hold.

2Proposition 3.10 p. 41 of the book says that for any A-module M , the following statements are equivalent: (i) M
is a flat A-module, (ii) Mp is a flat Ap-module for each prime ideal p; (iii) Mm is a flat Am-module for each maximal
ideal m.
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Hints. It seems better to start by proving (iii) and (iv), and then (ii). For (iv), see (14) p. 46. For
(v), use (ii) and the General Observation.

Hint for (vi): Use Proposition 3.7 p. 40 of the book [Proposition 30 p. 30].

Proof of (vii): Let b be the annihilator of M . Set A := A/a and M := M/aM . Let π : A→ A be
the canonical projection and put c := π(c) for any ideal c of A. Let p be a prime ideal of A. We
must show M p 6= 0 ⇐⇒ p ⊃ a + b. Since p 6⊃ a implies ap = (1) and thus

M p 'Mp/apMp = Mp/Mp = 0,

we can assume p ⊃ a, and we get M p 6= 0 ⇐⇒ M p 6= 0 ⇐⇒ p ⊃ b ⇐⇒ p ⊃ b by (v).

Proof of (viii): Let q ∈ Spec(B) and set p := qc. It suffices to show MB,q = 0 ⇐⇒ Mp = 0. We
claim

MB,q

qMB,q

' Bq

qq
⊗Ap/pp

Mp

pMp

. (21)

As M is finitely generated, (21) will imply

MB,q = 0 ⇐⇒ MB,q

qMB,q

= 0 ⇐⇒ Mp

pMp

= 0 ⇐⇒ Mp = 0.

Let us prove (21). We have

MB,q

qMB,q

=
(B ⊗AM)q
q(B ⊗AM)q

' Bq

qq
⊗B B ⊗AM '

Bq

qq
⊗AM

' Bq

qq
⊗Ap/pp

Ap

pp
⊗AM '

Bq

qq
⊗Ap/pp

Mp

pMp

.

Let us show that the inclusion f ∗−1(Supp(M)) ⊂ Supp(MB) holds even ifM is not finitely generated.
It suffices to prove (B ⊗AM)q ' Bq ⊗Ap Mp. We have

(B ⊗AM)q ' Bq ⊗B B ⊗AM ' Bq ⊗AM ' Bq ⊗Ap Ap ⊗AM ' Bq ⊗Ap Mp .

4.2.20 Page 46, Exercise 3.20

Statement. Let f : A → B be a ring homomorphism, f ∗ : Spec(B) → Spec(A) the associated
mapping. Show that

(i) Every prime ideal of A is a contracted ideal ⇐⇒ f ∗ is surjective.

(ii) Every prime ideal of B is an extended ideal =⇒ f ∗ is injective.

Is the converse of (ii) true?

Hints. (i) See Proposition 34 p. 59 above.

Counterexample to the converse of (ii): A := K a field, B := K[ε] with ε2 = 0, f : K → K[ε]
the inclusion.
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4.2.21 Page 46, Exercise 3.21

Statement. (i) Let A be a ring, S a multiplicatively closed subset of A, and φ : A → S−1A
the canonical homomorphism. Show that φ∗ : Spec(S−1A) → Spec(A) is a homeomorphism of
Spec(S−1A) onto its image in X = Spec(A). Let this image be denoted by S−1X.

In particular, if f ∈ A, the image of Spec(Af ) in X is the basic open set Xf (Chapter 1, Exercise 17).

(ii) Let f : A → B be a ring homomorphism. Let X = Spec(A) and Y = Spec(B), and let
f ∗ : Y → X be the mapping associated with f . Identifying Spec(S−1A) with its canonical image
S−1X in X, and Spec(S−1B)(= Spec(f(S)−1B)) with its canonical image S−1Y in Y , show that
S−1f ∗ : Spec(S−1B)→ Spec(S−1A) is the restriction of f ∗ to S−1Y , and that S−1Y = f ∗−1(S−1X).

(iii) Let a be an ideal of A and let b = ae be its extension in B. Let f : A/a → B/b be the
homomorphism induced by f . If Spec(A/a) is identified with its canonical image V (a) in X, and
Spec(B/b) with its image V (b) in Y , show that f ∗ is the restriction off f ∗ to V (b).

(iv) Let p be a prime ideal of A. Take S = A \ p in (ii) and then reduce mod S−1p as in (iii). Deduce
that the subspace f ∗−1(p) of Y is naturally homeomorphic to Spec(Bp/pBp) = Spec(k(p) ⊗A B),
where k(p) is the residue field of the local ring Ap.

Spec(k(p)⊗A B) is called the fiber of f ∗ over p.

Solution. (i) Set S−1X := {p ∈ X | p ∩ S = ∅}. By Proposition 3.11iv p. 41 of the book
[Proposition 33 p. 58] the maps

Spec(S−1A) S−1X
φ∗

S−1

are inverse bijections. Let us equip S−1X ⊂ X with the induced topology. Then the closed
subsets of S−1X are precisely the subsets of the form V (a) ∩ S−1X where a is an ideal of A. By
Proposition 3.11i p. 41 of the book [Proposition 33 p. 58], the closed subsets of S−1A are precisely
the subsets of the form V (S−1a) where a is an ideal of A. Thus it suffices to show that, given an
ideal a of A and a prime ideal p of A, we have S−1a ⊂ S−1p ⇐⇒ a ⊂ p. Implication ⇐ is clear.
Conversely S−1a ⊂ S−1p implies

a ⊂ φ∗S−1a ⊂ φ∗S−1p = p.

(ii) Let q ∈ Y . To prove the first claim it suffices to show

(S−1f)∗(S−1q) = S−1(f ∗(q)). (22)

For a ∈ A and s ∈ S we have

a

s
∈ (S−1f)∗(S−1q) ⇐⇒ f(a)

f(s)
∈ S−1q ⇐⇒ f(a) ∈ q ⇐⇒ a ∈ f ∗(q) ⇐⇒ a

s
∈ S−1(f ∗(q)).

This proves (22). Let s ∈ S and q ∈ Y . To verify S−1Y = f ∗−1(S−1X), it suffices to show
f(s) ∈ q ⇐⇒ s ∈ f ∗(q), which is clear.

(iii) We have f ∗(q/b) = f ∗(q)/b (obvious notation). We also note:
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Note 39. The diagram

X Y

V (a) V (b)

f∗

f
∗

commutes, and we have f ∗−1(V (b)) = V (a).

To prove the above equality let q ∈ Y and observe that we have b ⊂ q ⇐⇒ a ⊂ f ∗(q). More
generally we have ae ⊂ c ⇐⇒ a ⊂ cc for all ideal c of B.

(iv) This follows from (ii), (ii) and the above Note.

4.2.22 Page 47, Exercise 3.22

Statement. Let A be a ring and p a prime ideal of A. Then the canonical image of Spec(Ap) in
Spec(A) is equal to the intersection of all the open neighborhoods of p in Spec(A).

Solution. Let X := Spec(A). It suffices to show

{q ∈ X | q ⊂ p} =
⋂
f /∈p

Xf .

We have⋂
f /∈p

Xf = {q ∈ X | f /∈ p =⇒ f /∈ q} = {q ∈ X | f ∈ q =⇒ f ∈ p} = {q ∈ X | q ⊂ p}.

4.2.23 Page 47, Exercise 3.23

Statement. Let A be a ring, let X = Spec(A) and let U be a basic open set in X (i.e., U = Xf for
some f ∈ A: Chapter 1, Exercise 17).

(i) If U = Xf , show that the ring A(U) = Af depends only on U and not on f .

(ii) Let U ′ = Xg be another basic open set such that U ′ ⊂ U . Show that there is an equation of
the form gn = uf for some integer n > 0 and some u ∈ A, and use this to define a homomorphism
ρ : A(U)→ A(U ′) (i.e., Af → Ag) by mapping a/fm to aum/gmn. Show that ρ depends only on U
and U ′. This homomorphism is called the restriction homomorphism.

(iii) If U = U ′, then ρ is the identity map.

(iv) If U ⊃ U ′ ⊃ U ′′ are basic open sets in X, show that the diagram

A(U) A(U ′′)

A(U ′)
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(in which the arrows are restriction homomorphisms) is commutative.

(v) Let x(= p) be a point of X. Show that

lim−→
U3x

A(U) ' Ap.

Solution. In this Section we freely use the Notes in Section 4.2.7 p. 63 above.

(i) - (iv) In the notation of Note 38 p. 63 above we have F (Af) = Xf , and the statements follow
from Note 38.

(v) More generally, if S is any multiplicative subset of A then there is a natural isomorphism

colim
f∈S

Af
∼−→ S−1A. (23)

This can be proved as follows [using again Note 38]. For f ∈ S let φf be the unique A-algebra
morphism from Af to S−1A. Let B be an A-algebra, and for each f ∈ S let ψf : Af → B be an
A-algebra morphism. The choice of such an A-algebra morphism ψf is equivalent to the choice of a
unit bf in B, the dictionary being given by ψf (f) = bf . To prove (23) it suffices to show that there
is a unique A-algebra morphism ψ : S−1A→ B such that ψ ◦ φf = ψf for all f ∈ S, or, equivalently,
such that ψ(f) = bf for all f ∈ S. Let us check that the formula ψ( a

f
) := ψ(a)b−1

f does define our
morphism ψ. If we have a

f
= u

g
, there is an h ∈ S such that agh = bfh, hence ψ(a)bgbh = ψ(u)bfbh,

hence ψ(a)b−1
f = ψ(u)b−1

g .

4.2.24 Page 47, Exercise 3.24

Statement. Show that the presheaf of Exercise 23 has the following property. Let (Ui)i∈I be a
covering of X by basic open sets. For each i ∈ I let si ∈ A(Ui) be such that, for each pair of indices
i, j, the images of si and sj in A(Ui ∩ Uj) are equal. Then there exists a unique s ∈ A (= A(X))
whose image in A(Ui) is si for all i ∈ I. (This essentially implies that the presheaf is a sheaf.)

Solution. We can assume that I is nonempty, and that 0 ∈ I. Let αi : A→ Afi and φij : Afi → Afifj
be the natural morphisms, and consider the diagram

0→ A
α−→
∏
i∈I

Afi
β−→
∏
i,j∈I

Afifj ,

where α is induced by the αi and β is defined by β((ai)) := (φij(ai) − φji(aj)). This is clearly a
complex. It suffices to show that it is exact. By Section 4.1.6 p. 58 above, we can assume that A is
local. As the fi generate the unit ideal, one of them is a unit, so that we can assume f0 = 1. It
is easy to see that α is injective. Assuming β((ai)) = 0, it is straightforward to check that (ai) is
equal to α(a0).

4.2.25 Page 48, Exercise 3.25

Statement. Let f : A → B, g : A → C be ring homomorphisms and let h : A → B ⊗A C be
defined by h(x) = f(x)⊗ g(x). Let X, Y, Z, T be the prime spectra of A,B,C,B ⊗A C respectively.
Then h∗(T ) = f ∗(Y ) ∩ g∗(Z).
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[Let p ∈ X, and let k = k(p) be the residue field at p. By Exercise 21, the fiber h∗−1(p) is the
spectrum of (B ⊗A C)⊗A k ' (B ⊗A k)⊗k (C ⊗A k). Hence

p ∈ h∗(T ) ⇐⇒ (B ⊗A k)⊗ (C ⊗A k) 6= 0 ⇐⇒ B ⊗A k 6= 0

and C ⊗A k 6= 0 ⇐⇒ p ∈ f ∗(Y ) ∩ g∗(Z).]

Note. For the hint see Exercise 3.21iv p. 47 of the book and Section 4.1.12 p. 60 above.

4.2.26 Page 48, Exercise 3.26

For the hint see Exercise 3.21iv p. 47 of the book and Section 4.1.12 p. 60 above.

4.2.27 Page 48, Exercise 3.27

In the hint to (i), “Examples 25 and 26” should be “Exercises 25 and 26”.

Part (ii): see Exercise 1.22 p. 13 of the book [Section 2.2.23 p. 28].

For (iv), see Section 3.2.24 p. 47.

4.2.28 Page 48, Exercise 3.28

Statement. (Continuation of Exercise 27.)

(i) For each g ∈ A, the set Xg (Chapter 1, Exercise 17) is both open and closed in the constructible
topology.

(ii) Let C ′ denote the smallest topology on X for which the sets Xg are both open and closed, and
let XC′ denote the set X endowed with this topology. Show that XC′ is Hausdorff.

(iii) Deduce that the identity mapping XC → XC′ is a homeomorphism. Hence a subset E of X is
of the form f ∗(Spec(B)) for some f : A→ B if and only if it is closed in the topology C ′.

(iv) The topological space XC is compact, Hausdorff and totally disconnected.

Solution. (i) More generally, for each multiplicative subset S ⊂ A the subset

S−1X := {p ∈ X | p ∩ S = ∅}

is closed in the constructible topology. In particular, so is Xg. But Xg, being open in the Zariski
topology, is also open in the constructible topology.

(ii) Let p, q ∈ X, p 6= q. We can assume that there is a g ∈ A which is in q but not in p. Consider
the subsets Xg, V (g) ⊂ X: they are disjoint and open, and we have p ∈ Xg, q ∈ V (g).

(iii) Follows from (i) and (ii), coupled with Part (iv) of Exercise 26.

(iv) In the notation of the solution to Part (ii), the connected component of p [for the constructible
topology], being contained in Xg, does not contain q.
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4.2.29 Page 49, Exercise 3.30

Statement. Show that the Zariski topology and the constructible topology on Spec(A) are the
same if and only if A/N is absolutely flat (where N is the nilradical of A). [Use Exercise 11.]

Solution. By Exercise 3.27iii p. 48 of the book, the identity of X is a continuous map X → XC . By
Exercise 3.28iv p. 48 of the book, this map is a homeomorphism if and only if X is Hausdorff. Thus
the Zariski and constructible topologies coincide if and only if X is Hausdorff. By Exercise 3.11
pages 44 and 45 of the book, X is Hausdorff if and only if A/N is absolutely flat. Therefore the
Zariski and constructible topologies coincide if and only if A/N is absolutely flat.
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5 About Chapter 4

5.1 Comments

5.1.1 Contracted primary ideals

Section 4.1.11 p. 60 prompts the question: Is a contracted primary ideal the contraction of a primary
ideal? We show that the answer is negative.

Let K be a field and set A := K[ε] with ε2 = 0 but ε 6= 0. Note that (0) ⊂ A is primary. We
will define a ring B which contains A. Then (0) ⊂ A will be a contracted primary ideal, and we will
show that (0) ⊂ A is not the contraction of a primary ideal of B.

We define B by
B = K[X, Y1, Y2, . . . ]/b = K[x, y1, y2, . . . ]

[obvious notation] with
b = (X2Y1) +

∑
i≥2

(XnYn −XY1),

and we embed A in B by setting ε := xy1. We get εx = 0 and ε = xnyn for all n ≥ 1; in particular
ε ∈ (xn) for all n ≥ 1.

We claim that we have XY1 /∈ b, or, equivalently, ε 6= 0.

Proof of the claim: Assume by contradiction XY1 ∈ (X2Y1, X
2Y2−XY1, . . . , X

nYn−XY1). Dividing
by X we get

Y1 ∈ (XY1, XY2 − Y1, X
2Y3 − Y1, . . . , X

n−2Yn−1 − Y1, X
n−1Yn − Y1).

Setting Yi := Xn−iYn for 1 ≤ i ≤ n− 1 we get Xn−1Yn ∈ (XnYn), which is false.

The above proof was explained to me by an anonymous user, whose user name is user26857, of
the Mathematics Stackexchange forum; see https://math.stackexchange.com/q/2389114/660.

We prove that (0) ⊂ A is not the contraction of a primary ideal of B.

Let q be a primary ideal of B. If we had ε /∈ q and xn /∈ q for all n ≥ 1, then x would be a non
nilpotent zero-divisor in B/q, contradicting the assumption that q is primary. Thus we have xn ∈ q
for some n ≥ 1, or ε ∈ q. But, since ε ∈ (xn), we get ε ∈ q in both cases, and q contracts to (1)
instead of contracting to (0).

5.1.2 Page 50

Just before Proposition 4.1: In fact, the contraction of a p-primary ideal is a pc-primary ideal.

5.1.3 Page 52, Corollary to Theorem 4.5

(Theorem 4.5 is the First Uniqueness Theorem.)

Corollary 40. In the notation of Theorem 4.5, if (a : x) is prime, then (a : x) = pi for some i.
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5.1.4 Page 52, Proof of Theorem 4.5

The following statement, occurring in the proof of Theorem 4.5, is often used in the sequel of the
book:

In the setting of Theorem 4.5 we have

r(a : x) =
⋂
x/∈qj

pj. (24)

[See Note 2 p. 13.] Here are more details. Still in the setting and notation of Theorem 4.5, for x in
A set J(x) := {j | x /∈ qj}. Then (qj : x) is pj-primary for j ∈ J(x), and we have

(a : x) =
⋂

j∈J(x)

(qj : x).

In particular, we have J(xi) = {i}, and thus (a : xi) = (qi : xi) and r(a : xi) = pi.

5.1.5 Page 52, Corollary to Proposition 4.6

Note 41. If a is decomposable, then the set of prime ideals containing a has only finitely many
minimal elements.

5.1.6 Page 53, decomposable ideals

The purpose of this section is to prove the following statement:

An ideal having only finitely many minimal primes is not necessarily decomposable.

The statements in this section are due to user26857 of Mathematics Stackexchange.

Taken from https://math.stackexchange.com/a/207468/660:

In order to find an ideal which does not have a primary decomposition, the following construction
is useful. Let R be a commutative ring and M an R-module. On the set A = R×M one defines
the following two algebraic operations:

(a, x) + (b, y) = (a+ b, x+ y), (a, x)(b, y) = (ab, ay + bx).

With these two operations A becomes a commutative ring with (1, 0) as unit element. (A is called
the idealization of the R-module M or the trivial extension of R by M .)

Let us list some important properties of this ring:

1. {0}×M is an ideal of A isomorphic toM (as R-modules) and there is a ono-to-one correspondence
between the ideals of R and the ideals of A containing {0} ×M , the ideal a ⊂ R corresponding to
a×M ⊂ A.
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2. A is a Noetherian ring if and only if R is Noetherian and M is finitely generated.

3. All prime (maximal) ideals of A have the form p×M , where p is a prime (maximal) ideal of R.

4. If R is an integral domain and M is divisible, then all the ideals of A have the form a×M with
a ideal of R, or {0} ×N with N submodule of M .

Taken from https://math.stackexchange.com/a/1679116/660:

Note 42. If A is the idealization of the Z-module Q, then the primary ideals of A are

• pnZ×Q with p prime, n ≥ 1,

• {0} ×Q,

• {0} × {0}.
Moreover {0}×Q is the only minimal prime of {0}×Z, and {0}×Z has no primary decomposition
[see Note 41].

5.1.7 Page 53, proof of Proposition 4.8.ii

Proposition 4.8 states the correspondence between primary ideals of A and S−1A. We try to describe
below this correspondence as precisely as possible.

Using the notation of Section 4.1.7 p. 59 and taking Section 5.1.2 p. 77 into account, we set

X ′ := {q | q primary ideal of A}, Y ′ := {q | q primary ideal of S−1A}.

We then have a contraction map c : Y ′ → X ′ compatible with radicals. We check that

c(Y ′) = {q ∈ X ′ | r(q) ∈ c(Y )}

and that q ∈ c(Y ′) =⇒ S−1q ∈ X ′, and we observe the following facts:

The contraction and extension maps are inverse bijections between Y ′ and c(Y ′). Moreover they
preserve inclusions and are compatible with radicals.

Moreover, a primary ideal of A is contracted if and only if its radical is disjoint from S.

In particular, if p is a minimal prime ideal, then the kernel of the natural morphism A→ Ap is
a minimal primary ideal.

5.1.8 Page 54, Proposition 4.9

Recall the statement:
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Proposition 43 (Proposition 4.9 p. 54 of the book). Let S be a multiplicatively closed subset of A
and let a be a decomposable ideal. Let a =

⋂n
i=1 qi be a minimal primary decomposition of a. Let

pi = r(qi) and suppose the qi numbered so that S meets pm+1, . . . , pn but not p1, . . . , pm. Then

S−1a =
m⋂
i=1

S−1qi, S(a) =
m⋂
i=1

qi.

5.1.9 Page 54, Theorem 4.10

Recall the statement:

Theorem 44 (Theorem 4.10 p. 54 of the book, Second Uniqueness Theorem). Let a be a decomposable
ideal, let a =

⋂n
i=1 qi be a minimal primary decomposition of a, and let {pi1 , . . . , pim} be an isolated

set of prime ideals of a. Then qi1 ∩ · · · ∩ qim is independent of the decomposition.

Recall also Corollary 4.11:

Corollary 45 (Corollary 4.11 p. 54 of the book). The isolated primary components (i.e., the primary
components qi corresponding to minimal prime ideals pi) are uniquely determined by a.

Here is a corollary to the corollary [see also Proposition 4 p. 14]:

Corollary 46. Let a = q1 ∩ · · · ∩ qn be a reduced primary decomposition.

(a) If pi := r(qi) is isolated, then qi is the smallest pi-primary ideal containing a.

(b) If r(a) = p for some prime ideal p, then p is the only isolated prime ideal of a, and the
corresponding primary component is the smallest p-primary ideal containing a.

Proof. (a) Assume i = 1 without lost of generality. Step 1: if q ⊂ q1 is a p1-primary ideal containing
a, then a = q ∩ q2 ∩ · · · ∩ qn is a reduced primary decomposition; by Corollary 45 we have q = q1.
Step 2: if q is an arbitrary p1-primary ideal containing a, then q ∩ q1 is again p1-primary by
Lemma 4.3 p. 51 of the book, and we get q ∩ q1 = q1 by Step 1, hence q1 ⊂ q.

(b) We have p = p1 ∩ · · · ∩ pn and Proposition 4 p. 14 implies p = pi for some i, hence pi ⊂ pj for all
j. So pi is isolated and the claim follows from (a).

5.2 Exercises

5.2.1 Page 55, Exercise 4.1

Statement. If an ideal a has a primary decomposition, then Spec(A/a) has only finitely many
irreducible components.

Hint. Use Exercise 1.20iv p. 13 of the book [see Section 2.2.21 p. 27 above] and Proposition 4.6
p. 52 of the book.
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5.2.2 Page 55, Exercise 4.2

Statement. If a = r(a), then a has no embedded prime ideals.

Solution. It is implicitly assumed that a is decomposable. In general, if a = q1 ∩ · · · ∩ qn is a
reduced primary decomposition of a such that the minimal prime ideals of a are p1, . . . , pm [with
pi = r(qi)], then r(a) = p1 ∩ · · · ∩ pm is the unique reduced primary decomposition of r(a). In
particular r(a) has no embedded prime ideals.

Summary: If a is decomposable, then so is r(a), and r(a) has no embedded prime ideals.

5.2.3 Page 55, Exercise 4.3

Statement. If A is absolutely flat, every primary ideal is maximal.

Solution. Assume A is absolutely flat and (0) is primary in A. It suffices to show that A is a
field. Let 0 6= a ∈ A. There is an x ∈ A such that a = a2x, that is a(ax − 1) = 0. If ax = 1,
then a is a unit and we are done. Otherwise a is a zero-divisor, hence a is nilpotent, and we get
(a) = (a)2 = (a)3 = · · · = (0), contradiction.

5.3 Page 55, About Exercise 4.3

The only reference I know for the proposition below, which is the converse of Exercise 4.3, is the
Mathematics Stackexchange post https://math.stackexchange.com/a/569442/660 by user wxu.

Proposition 47. Let A be a ring. If all the primary ideals of A are prime, then A is absolutely flat.

Proof. Following wxu, say that a ring is PP if all its primary ideals of A are prime.

By the results of Section 4.2.10 p. 65 it suffices to show that each local PP ring is a field. Also
note that the property of being PP is inherited by quotients and rings of fractions.

Throughout this proof we assume that A is a local PP ring with maximal ideal m, and that
m 6= (0). In view of the previous paragraph, it is enough to derive a contradiction.

Case 1: m is the only prime ideal of A. We have r(0) = m, hence (0) is primary, hence prime, hence
equal to m, contradiction.

Case 2: A is a domain and m is minimal over (a) for some nonzero a in m. We get r(a) = m, hence,
as before, (a) = m; in particular m is finitely generated. Since m2 is m-primary, we have also m2 = m,
and Nakayama’s Lemma [Proposition 14 p. 34] implies m = (0), contradiction.

Case 3: A is a domain. Let a be a nonzero element of m and p a prime which is minimal over (a).
Then pp is minimal over (a

1
), and Case 2 implies pp = (0), hence p = (0), contradiction.

Case 4: this is the general case. In view of Case 1 we can assume that we have p < m for some
prime ideal p. Then the ideal (0) ⊂ A/p is a proper prime sub-ideal of m/p, and Case 3 implies
p = m, contradiction.
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5.3.1 Page 55, Exercise 4.4

Statement. In the polynomial ring Z[t], the ideal m = (2, t) is maximal and the ideal q = (4, t) is
m-primary, but is not a power of m.

Hints. We have Z[t]/q ' Z/(4) and m2 < q < m.

5.3.2 Page 55, Exercise 4.5

Statement. In the polynomial ring K[x, y, z] where K is a field and x, y, z are independent
indeterminates, let p1 = (x, y), p2 = (x, z), m = (x, y, z); p1 and p2 are prime, and m is maximal. Let
a = p1p2. Show that a = p1 ∩ p2 ∩m2 is a reduced primary decomposition of a. Which components
are isolated and which are embedded?

Hints. Let a be an ideal of A := K[x, y, z]. Then a is generated by monomials if and only if it has
the following property:

A polynomial f ∈ A is in a if and only if all the monomials occurring in f are in a.

In particular, if two ideals are generated by monomials, so is their intersection.

Here is a variant of the exercise: Let A be the K-algebra [K a field] generated by x, y, z with
the relations 0 = x2 = xy = xz = yz, and set p1 := (x, y), p2 := (x, z),m := (x, y, z). Show that
p1 ∩ p2 ∩m2 is a primary decomposition of (0) in A.

We have:

A = K ⊕Kx⊕ yK[y]⊕ zK[z], p1 = Kx⊕ yK[y], p2 = Kx⊕ zK[z],

m2 = y2K[y]⊕ z2K[z], p1 ∩ p2 = Kx, p1 ∩m2 = y2K[y] p2 ∩m2 = z2K[z].

5.3.3 Page 55, Exercise 4.6

Statement. Let X be an infinite compact Hausdorff space, C(X) the ring of real-valued continuous
functions on X (Chapter 1, Exercise 26). Is the zero ideal de- composable in this ring?

Hints. Claim: any prime ideal is contained in a unique maximal ideal.

Proof: Using Urysohn’s Lemma it is easy to see that, given distinct points x and y in X and
denoting by mx and my the corresponding maximal ideals, there are f, g ∈ C(X) such that fg = 0,
f ∈ mx \my, g ∈ my \mx.

The claim implies that there are infinitely many minimal prime ideals.

5.3.4 Page 55, Exercise 4.7

Statement. Let A be a ring and let A[x] denote the ring of polynomials in one indeterminate over
A. For each ideal a of A, let a[x] denote the set of all polynomials in A[x] with coefficients in a.

(i) a[x] is the extension of a to A[x].

82 Thursday 5th August, 2021 08:42



(ii) If p is a prime ideal in A, then p[x] is a prime ideal in A[x].

(iii) If q is a p-primary ideal in A, then q[x] is a p[x]-primary ideal in A[x]. [Use Chapter 1,
Exercise 2.]

(iv) If a =
⋃n
i=1 qi, is a minimal primary decomposition in A, then a[x] =

⋃n
i=1 qi[x] is a minimal

primary decomposition in A[x].

(v) If p is a minimal prime ideal of a, then p[x] is a minimal prime ideal of a[x].

Hints. Observe that A[x] is faithfully flat over A: see Exercise 3.16 p. 45 of the book and
Section 4.2.16 p. 69 above.

Note that we have M [x] ' A[x]⊗AM for any A-module M . In particular M 7→M [x] is exact.
[See Exercise 2.6 p. 32 of the book.]

• Part (i) is clear.
• Part (ii): In fact we have

Lemma 48. If f : A→ A[x] is the natural embedding, then the fiber f ∗−1(p) of

f ∗ : Spec(A[x])→ Spec(A)

above a prime ideal p of A is order isomorphic to the spectrum of k ⊗A A[x] ' k[x], where k is
the residue field at p. Moreover, the least element of f ∗−1(p) is p[x], and p[x] + (x) is a maximal
element of f ∗−1(p).

See Exercise 3.21iv p. 47 of the book and Section 4.2.21 p. 72 above. Also note that, if A→ B
is a ring morphism and a a contracted ideal of A, then ae is the least element of the set of ideals of
B contracting to a.

• Part (iii): Use Exercises 1.2ii and 1.2iii p. 11.

• Part (iv) is clear.
• Part (v): We have

a ⊂ b ⇐⇒ a[x] ⊂ b[x] (25)

[obvious notation], and Part (v) follows from Lemma 48.

5.3.5 Page 55, Exercise 4.8

Statement. Let k be a field. Show that in the polynomial ring k[x1, . . . , xn] the ideals pi =
(x1, . . . , xi) (1 ≤ i ≤ n) are prime and all their powers are primary. [Use Exercise 7.]

Hints. Setting

B := k[x1, . . . , xr], A := B[y1, . . . , ys], m := (x1, . . . , xr) ⊂ B, p := (x1, . . . , xr) ⊂ A,

we get pn = mn[y1, . . . , ys], and we can use Exercise 4.7iii.
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5.3.6 Page 55, Exercise 4.9

Statement. [I found it convenient to make some minor changes to the wording of the book.] In a
ring A, let D(A) denote the set of prime ideals p which satisfy the following condition: there exists
a ∈ A such that p is minimal in the set of prime ideals containing (0 : a).

(a) Show that b ∈ A is a zero-divisor if and only if b ∈ p for some p ∈ D(A).

(b) Let S be a multiplicatively closed subset of A, and write S−1D(A) for the set of all prime ideals
of the form S−1p with p ∈ D(A) [in particular such a p is disjoint from S]. Show that

D(S−1A) = S−1D(A).

(c) If the zero ideal has a primary decomposition, show that D(A) is the set of associated prime
ideals of (0).

Hints.

(a) Let a, b ∈ A and p ∈ Spec(A) be such that b ∈ p and p is minimal over (0 : a).

Claim 1: b is zero-divisor.

Proof of Claim 1. Assume by contradiction that b is not a zero-divisor. Obviously a 6= 0 and
b /∈ (0 : a). Let s be in A \ p and n be in N. To prove Claim 1, we first prove:

Claim 2: bns /∈ (0 : a).

Proof of Claim 2. Assume by contradiction that bns ∈ (0 : a). We can suppose that n is minimum
for this condition. We have n ≥ 1 [because otherwise we would get s ∈ (0 : a) ⊂ p] and
b(bn−1sa) = bnsa = 0. Since b is not a zero-divisor, this implies bn−1sa = 0, that is bn−1s ∈ (0 : a),
in contradiction with the minimality of n. �

To complete the proof of Claim 1 set T := { bns | n ∈ N, s ∈ A \ p}. This is a multiplicative set.
Claim 2 implies that T is disjoint from (0 : a). Thus there is a prime ideal p′ which contains (0 : a)
and is disjoint from T , and we have A \ p ⊂ T ⊂ A \ p′, hence (0 : a) ⊂ p′ ⊂ p. By minimality of p
over (0 : a) this forces p′ = p, and thus b ∈ p ∩ T = p′ ∩ T = ∅, contradiction. This completes the
proof of Claim 1. �

It remains to show that if b is a zero-divisor there is an element a of A and a prime ideal p of
A such that b ∈ p and p is minimal over (0 : a). By Proposition 1.15 p. 9 of the book, there is an
a ∈ A such that b ∈ r(0 : a), and it suffices to let p be any prime ideal which is minimal over (0 : a).

(b) It is enough to prove any of the following two equivalent statements:

(b1) Let a be an element of A and p a prime ideal of A disjoint from S. Then S−1p is minimal over
(0 : a

1
) if and only if p is minimal over (0 : a).

(b2) If a is an element of A and p a prime ideal of A disjoint from S, then

S−1p ⊃
(

0 :
a

1

)
⇐⇒ p ⊃ (0 : a).

The proof is left to the reader.

(c) Let (0) = q1 ∩ · · · ∩ qn be a reduced decomposition of (0) in A and set pi := r(qi). Each pi is of
the form r(0 : a) by Theorem 4.5 p. 52 of the book [the First Uniqueness Theorem]. In particular pi
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is minimal over r(0 : a), and thus pi ∈ D(A). Conversely, if p ∈ D(A), then p is minimal over (0 : a)
for some a ∈ A. By (24) p. 78 we have⋂

qi 63a

pi = r(0 : a) ⊂ p.

By Proposition 4 p. 14] this implies p ⊃ pj for some j. As pj ⊃ (0 : a), we get p = pj by minimality
of p.

5.3.7 Page 55, Exercise 4.10

Statement. For any prime ideal p in a ring A, let Sp(0) denote the kernel of the homomorphism
A→ Ap. Prove that

(i) Sp(0) ⊂ p,

(ii) p is a minimal prime ideal of A ⇐⇒ rA(Sp(0)) = p,

(iii) if p ⊃ p′, then Sp(0) ⊂ Sp′(0),

(iv)
⋂

p∈D(A) Sp(0) = (0), where D(A) is defined in Exercise 9 [Section 5.3.6 p. 84].

Solution. Note that Sp(0) = (0)c, where the contraction is taken with respect to A→ Ap. We also
have

Sp(0) =
⋃
s∈A\p

(0 : s) (26)

and rA(Sp(0)) = rA((0)c) = (rAp(0))c [Exercise 1.18 p. 10 and Proposition 3.11ii p. 41; see Sec-
tion 2.1.7 p. 16 and Proposition 33 p. 58].

(i) Follows from (26) above.

(ii) If p is a minimal prime ideal of A we have rAp(0) = pp [because pp is the unique prime ideal of
Ap] and thus rA(Sp(0)) = (rAp(0))c = (pp)

c = p.

If p is not minimal, there is a prime ideal p′ such that p′ < p, and we get rAp(0) ⊂ p′p < pp,
hence rA((0)c) ⊂ p′ < p and thus (rAp(0))c 6= p.

(iii) We have
Sp(0) =

⋃
s∈A\p

(0 : s) ⊂
⋃

s′∈A\p′
(0 : s′) = Sp′(0).

(iv) Let 0 6= a ∈ A. There is a prime ideal p which is minimal over (0 : a). In particular p ∈ D(A).
Then a ∈ Sp(0) =

⋃
s∈A\p(0 : s) would imply as = 0 for some s ∈ A \ p, and thus s ∈ (0 : a) ⊂ p,

contradiction.

5.3.8 Page 56, Exercise 4.11

Statement.

(a) If p is a minimal prime ideal of a ring A, show that Sp(0) [Exercise 10] is the smallest p-primary
ideal.
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(b) Let a be the intersection of the ideals Sp(0) as p runs through the minimal prime ideals of A.
Show that a is contained in the nilradical of A.

(c) Suppose that the zero ideal is decomposable. Prove that a = (0) if and only if every prime ideal
of (0) is isolated.

Solution.
(a) The ideal pp, being the unique prime ideal of Ap, coincides with the nilradical: pp = rAp(0).
Proposition 4.2 p. 51 of the book [see reminder below] implies that (0) is pp-primary, and is thus
the smallest pp-primary ideal of Ap. As pp contracts to p, Section 5.1.7 p. 79 above entails that
Sp(0) = (0)c is the smallest p-primary ideal of A.

Recall Proposition 4.2:

Proposition 49 (Proposition 4.2 p. 51 of the book). If r(a) is maximal, then a is primary. In
particular, the powers of a maximal ideal m are m-primary.

(b) This follows from Exercise 4.10i p. 55, see Section 5.3.7 p. 85 above.

(c) Let (0) = q1 ∩ · · · ∩ qn be a reduced decomposition. We can assume that there is an m such
that 1 ≤ m ≤ n and pi := r(qi) is isolated if and only if i ≤ m. The Second Uniqueness Theorem
[Theorem 4.10 p. 54 of the book] and (a) above imply

(0) = Sp1(0) ∩ · · · ∩ Spm(0) ∩ qm+1 ∩ · · · ∩ qn (27)

= a ∩ qm+1 ∩ · · · ∩ qn,

and we must show a = (0) ⇐⇒ m = n. Implication ⇐= is clear. Conversely if a = (0), then
m = n because (27) is a reduced decomposition.

5.3.9 Page 56, Exercise 4.12

Statement. Let A be a ring, S a multiplicatively closed subset of A. For any ideal a, let S(a)
denote the contraction of S−1a in A. The ideal S(a) is called the saturation of a with respect to
S. Prove that

(i) S(a) ∩ S(b) = S(a ∩ b),

(ii) S(r(a)) = r(S(a)),

(iii) S(a) = (1) ⇐⇒ a meets S,

(iv) S1(S2(a)) = (S1S2)(a).

If a has a primary decomposition, prove that the set of ideals S(a) (where S runs through all
multiplicatively closed subsets of A) is finite.

Solution. Follows from statements 1.18, 3.11ii and 3.11v and 4.9 in the book [see Section 2.1.7
p. 16, Proposition 33 p. 58 and Proposition 43 p. 80.
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5.3.10 Page 56, Exercise 4.13

Statement. Let A be a ring and p a prime ideal of A. The n-th symbolic power of p is defined
to be the ideal (in the notation of Exercise 12)

p(n) = Sp(p
n)

where Sp = A \ p. Show that

(i) p(n) is a p-primary ideal;

(ii) if pn has a primary decomposition, then p(n) is its p-primary component;

(iii) if p(m)p(n) has a primary decomposition, then p(m+n) is its p-primary component;

(iv) p(n) = pn ⇐⇒ pn is p-primary.

Note. p(n) is the contraction in A of pnp ⊂ Ap.

Solution. (i) We must show that (pnp )c is p-primary. This results from the following facts: pp is a
maximal ideal of Ap, a power of a maximal ideal is primary [Proposition 49 p. 86], the contraction
of a p′-primary ideal is p′ c-primary, the contraction of pp is p [Proposition 33iv p 58].

We shall use Claims (a) and (b) below.

(a) If a ⊂ p is an ideal such that ap = pkp , then p(k) is the smallest p-primary ideal containing a.

Proof. Assuming a ⊂ q ⊂ p with q a p-primary ideal, we get pkp = ap ⊂ qp ⊂ pp, and thus
p(k) ⊂ q ⊂ p.

(b) If a and k are as above and if in addition r(a) = p and a has a primary decomposition, then p(k)

is its p-primary component.

Proof. Let a = q1∩· · ·∩qs be a reduced primary decomposition. Taking radical we get p = p1∩· · ·∩ps
with pi = r(qi). By Corollary 46b p. 80 this implies p = pi for some i, and p is isolated. The
statement now follows from (a) and Corollary 46a p. 80.

(ii) Follows from (b) with a = pn and k = n.

(iii) Since we have r(p(m)p(n)) = r(p(m)) ∩ r(p(n)) = p by (i), the statement follows from (b) with
a = p(m)p(n) and k = m+ n.

(iv) We must show p(n) = pn ⇐⇒ pn is p-primary. Implication =⇒ follows from (i). If pn is
p-primary, then pn = pn is a reduced primary decomposition, and (ii) implies p(n) = pn.

5.3.11 Page 56, Exercise 4.14

Statement. Let a be a decomposable ideal in a ring A and let p be a maximal element of the set
of ideals (a : x), where x ∈ A and x /∈ a. Show that p is a prime ideal belonging to a.

Solution. By Corollary 40 p. 77 above [which is a corollary to the First Uniqueness Theorem, that
is to Theorem 4.5 p. 52 of the book], it suffices to show that (a : x) is prime. If not there would be
y, z ∈ A such that

y /∈ (a : x), z /∈ (a : x), yz ∈ (a : x),
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that is
xy /∈ a, xz /∈ a, xyz ∈ a.

This implies
y ∈ (a : xz) ⊃ (a : x) 63 y,

contradicting the maximality of (a : x).

5.3.12 Page 56, Exercise 4.15

Statement. Let a be a decomposable ideal in a ring A, let Σ be an isolated set of prime ideals
belonging to a, and let qΣ be the intersection of the corresponding primary components. Let f be
an element of A such that, for each prime ideal p belonging to a, we have f ∈ p ⇐⇒ p /∈ Σ, and
let Sf be the set of all powers of f . Show that qΣ = Sf (a) = (a : fn) for all large n.

Solution. We can assume that a = q1 ∩ · · · ∩ qn is a minimal primary decomposition, and that,
setting pi := r(qi), we have Σ = {p1, . . . pm}. The equality qΣ = Sf (a) follows from Proposition 4.9
p. 54 of the book [Proposition 43 p. 80]. Proposition 3.11ii p. 41 of the book [Proposition 33 p. 58]
implies Sf (a) =

⋃
k≥0(a : fk). We have

(a : fk) = (q1 : fk) ∩ · · · ∩ (qn : fk). (28)

Using Lemma 4.4 p. 51 of the book we see that

• if 1 ≤ i ≤ m, then (qi : fk) = qi,

• if m+ 1 ≤ i ≤ n and k is large enough, then fk ∈ qi, and thus (qi : fk) = (1).

In view of (28) this entails (a : fk) = qΣ for k large enough.

5.3.13 Page 56, Exercise 4.16

Statement. If A is a ring in which every ideal has a primary decomposition, show that every ring
of fractions S−1A has the same property.

Solution. This follows from Proposition 3.11i p. 41 [Proposition 33 p. 58] and Proposition 4.9 p. 54
of the book [Proposition 43 p. 80].

5.3.14 Page 56, Exercise 4.17

Statement. Let A be a ring with the following property.

(L1) For every ideal a 6= (1) in A and every prime ideal p, there exists x /∈ p such that Sp(a) = (a : x),
where Sp = A \ p.

Then every ideal in A is an intersection of (possibly infinitely many) primary ideals.
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First solution. Let a′ be the intersection of all the primary ideals containing a given ideal a, and
let us assume

a < a′. (29)

It suffices to reach a contradiction.

Definition 50. An admissible quadruple is a quadruple (b, p, q, x) such that

• b is an ideal 6= (1) in A,

• p is a minimal element of the set of prime ideals containing b,

• q = Sp(b),

• x ∈ A \ p satisfies q = (b : x).

Lemma 51. (a) For all b 6= (1) there is an admissible quadruple (b, p, q, x).

(b) If (b, p, q, x) is an admissible quadruple, then

(b1) q is p-primary,

(b2) b = q ∩ (b + (x)).

Proof. Part (a) follows from Assumption (L1). Part (b1) follows from Exercise 4.11 p. 56 of the
book [see Section 5.3.8 p. 85 above]. Let us prove (b2). Set b′ := q∩ (b + (x)). The inclusion b ⊂ b′

is obvious. To prove the other inclusion, let β + ax ∈ q with β ∈ b, a ∈ A. It suffices to show ax ∈ b.
Recall that q = Sp(b) = (b : x). As ax ∈ q, we have ax2 ∈ b, hence

a ∈ (b : x2) ⊂
⋃
s/∈p

(b : s) = Sp(b) = (b : x)

by Proposition 3.11ii p. 41 of the book [Proposition 33 p. 58], and thus ax ∈ b, as desired.

Note that we have b ⊂ q ⊂ p 63 x. Let κ be a cardinal larger than the cardinality of the power
set of A, and let W be the set of all ordinals ≤ κ. We will define, by induction on α ∈ W , a map

α 7→ (aα, pα, qα, xα) (30)

from W to the set of admissible quadruples, such that

(a) a0 = a,

(b) the map
α 7→ aα is increasing, (31)

(c) each ordinal α ∈ W satisfies
a = aα ∩

⋂
β<α

qβ. (32)

Definition 52. We call (32) Condition C(α).
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Lemma 51b1 will imply that qα is primary for all α ∈ W .

The existence of (30) satisfying (31) will give the desired contradiction.

Here is the key point:

Assume that (aβ, pβ, qβ, xβ) has been constructed for β < α, and that aα has been defined and satisfies
Condition C(α). Then Assumption (29) and Lemma 51b1 imply aα 6= (1). In particular there is, by
Lemma 51a, an admissible quadruple (aα, pα, qα, xα).

We embark on the construction of (30).

• The case of the zero ordinal. The ideal a0 is the ideal a given in the statement of the exercise, and
we choose p0, q0, x0 in such a way that (a0, p0, q0, x0) is admissible. Condition C(0) holds trivially.

• From α to α+ 1. Let α ∈ W be such that α+ 1 ∈ W , and assume that (aβ, pβ, qβ, xβ) has already
been constructed for β ≤ α and that Condition C(α) holds. Let α ∈ W . We have

a ⊂
(
aα + (xα)

)
∩
⋂
β≤α

qβ (33)

because a ⊂ aβ ⊂ (aβ : xβ) = qβ for all β ∈ W , and Lemma 51b2 implies(
aα + (xα)

)
∩
⋂
β≤α

qβ ⊂
(
aα + (xα)

)
∩ qα = aα. (34)

We also have (
aα + (xα)

)
∩
⋂
β≤α

qβ ⊂ aα ∩

(⋂
β<α

qβ

)
∩ qα = a ∩ qα ⊂ a (35)

by (34) and C(α). Now (33) and (35) imply(
aα + (xα)

)
∩
⋂
β≤α

qβ = a. (36)

By (36), the ideal aα+1 := aα+(xα) satisfies C(α+1). In particular aα+1 6= (1) by Assumption (29)
and Lemma 51b1. We define pα+1, qα+1, xα+1 in such a way that (aα+1, pα+1, qα+1, xα+1) is admissible
[see Lemma 51a].

• The case of a limit ordinal. Assume now that γ ∈ W is a limit ordinal, and set

aγ :=
∑
α<γ

aα =
⋃
α<γ

aα.

We claim that Condition C(γ) holds.

Proof of the claim: We must show (⋃
α<γ

aα

)
∩

(⋂
β<γ

qβ

)
= a.
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Inclusion ⊃ being clear, it suffices to prove ⊂. Let x be in the left side. There is an α < γ such that

x ∈ aα ∩
⋂
β<γ

qβ ⊂ aα ∩
⋂
β<α

qβ = a,

the equality following from C(α). This proves Condition C(γ).

In particular aγ 6= (1). We define pγ, qγ, xγ in such a way that (aγ, pγ, qγ, xγ) is admissible
[Lemma 51a].

Now the map (30) is defined. The map α 7→ aα is clearly increasing. As already indicated, this
is a contradiction.

This completes the solution to Exercise 4.17.

Second solution. The following variant of the above proof will be used to solve Exercise 4.18.

We stop assuming (29).

Let Q be the set of admissible quadruples. We define a map f : W → Q ∪ {∅} [note that the
union is disjoint] as follows:

• We assume a 6= (1) and define (a0, p0, q0, x0) as before, and we set f(0) := (a0, p0, q0, x0).

• In the passage from α to α + 1, we define f(α + 1) as follows [assuming that f(α) has already
been defined]:

If f(α) = ∅ we set f(α + 1) := ∅.

Otherwise there is an ideal aα+1 containing aα + (xα) which is maximal subject to the constraint
C(α + 1) [see Definition 52 p. 89].

If aα+1 6= (1) we define pα+1, qα+1, xα+1 in such a way that (aα+1, pα+1, qα+1, xα+1) is admissible,
as before, and we set f(α + 1) := (aα+1, pα+1, qα+1, xα+1).

If aα+1 = (1) we set f(α + 1) := ∅.

• In the case of a limit ordinal γ, we define f(γ) as follows (assuming that f(α) has already been
defined for α < γ):

If f(α) = ∅ for some α < γ we set f(γ) = ∅.

Otherwise we define aγ as before.

If aγ 6= (1) we define pγ, qγ, xγ in such a way that (aγ, pγ, qγ, xγ) is admissible, as before, and we
set f(γ) := (aγ, pγ, qγ, xγ).

If aγ = (1) we set f(γ) = ∅.

This ends the definition of f .

The subset {α ∈ W | f(α) = ∅} of W being nonempty, it has a least element, which we denote
by ζ:

ζ := min {α ∈ W | f(α) = ∅}, (37)
and we get

a =
⋂
α<ζ

qα. (38)
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Note 53. The map α 7→ aα from the set {α ∈ W | α ≤ ζ} to the set of ideals of A is increasing.

The following lemma will be used to solve Exercise 4.18.

Lemma 54. The map n 7→ q0 ∩ · · · ∩ qn from the set {n ∈ N | n < ζ} to the set of ideals of A is
decreasing.

Proof. Suppose by contradiction that we have q0∩· · ·∩qn−1 = q0∩· · ·∩qn−1∩qn for some 0 < n < ζ.
Recall that an is maximal for

an ⊃ an−1 + (xn−1) and a = an ∩ q0 ∩ · · · ∩ qn−1. (39)

Similarly an+1 is maximal for

an+1 ⊃ an + (xn) and a = an+1 ∩ q0 ∩ · · · ∩ qn−1.

As an+1 satisfies (39) and contains an, these two ideals coincide, in contradiction with Note 53.

5.3.15 Page 57, Exercise 4.18

Statement. Consider the following condition on a ring A:

(L2) Given an ideal a and a descending chain S1 ⊃ S2 ⊃ · · · ⊃ Sn ⊃ · · · of multiplicatively closed
subsets of A, there exists an integer n such that Sn(a) = Sn+1(a) = · · ·

Prove that the following are equivalent:

(i) Every ideal in A has a primary decomposition;

(ii) A satisfies (L1) and (L2).

[See Section 5.3.14 p. 88 for the definition of (L1).]

Solution.

(i) =⇒ (L1): Let a = q1 ∩ · · · ∩ qn be a minimal primary decomposition. Set pi := r(qi) and let p be
a prime ideal. We can assume that pi ⊂ p if and only if i ≤ m. Proposition 4.9 p. 54 of the book
[Proposition 43 p. 80] entails Sp(a) = q1 ∩ · · · ∩ qm. For m+ 1 ≤ i ≤ n there is an element xi which
is in qi but not in p. Then x := xm+1 · · ·xn is in qm+1 ∩ · · · ∩ qn but not in p, and we get

(a : x)

= (q1 : x) ∩ · · · ∩ (qm : x) ∩ (qm+1 : x) ∩ · · · ∩ (qn : x)

= q1 ∩ · · · ∩ qm ∩ (1) ∩ · · · ∩ (1)

= q1 ∩ · · · ∩ qm = Sp(a),

the second equality following from Lemma 4.4 p. 51 of the book.

(i) =⇒ (L2): Follows from Proposition 4.9 p. 54 of the book [Proposition 43 p. 80].
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(ii) =⇒ (i): Consider the map α 7→ (aα, pα, qα, xα) from W to the set of admissible quadruples
defined in Section 5.3.14 above, and let ζ be defined as in (37).

In view of (38) it suffices to show that ζ is finite.

Assume by contradiction that ζ is infinite.

Recall that (32) p. 89 is called Condition C(α), and that qα is primary for all α < ζ. For the
reader’s convenience let us rewrite C(α):

a = aα ∩
⋂
β<α

qβ.

This holds for all α < ζ.

Setting pn := r(qn) and Sn := Sp0 ∩ · · · ∩ Spn for n ∈ N, we get, in view of C(n + 1) and
Exercise 4.12i p. 56 of the book,

Sn(a) = Sn(an+1) ∩ Sn(q0 ∩ · · · ∩ qn).

We claim Sn(an+1) = (1), and thus Sn(a) = Sn(q0 ∩ · · · ∩ qn).

To prove this it suffices to show Sn ∩ an+1 6= ∅. Assume by contradiction Sn ∩ an+1 = ∅, that is
an+1 ⊂ p0 ∪ · · · ∪ pn. Then Proposition 1.11i p. 8 of the book implies an+1 ⊂ pi for some 0 ≤ i ≤ n.
This yields xi ∈ ai+1 ⊂ an+1 ⊂ pi, which contradicts Definition 50 p. 89. This proves the equality
Sn(an+1) = (1).

Proposition 4.9 p. 54 of the book [Proposition 43 p. 80] implies

Sn(q0 ∩ · · · ∩ qn) =
⋂

Sn∩pi=∅

qi = q0 ∩ · · · ∩ qn,

and we get
Sn(a) = q0 ∩ · · · ∩ qn. (40)

Recall that we are assuming that ζ is infinite and that we only need to derive a contradiction.
Since (40) holds for all n ∈ N, this contradiction is furnished by Condition (L2) and Lemma 54
p. 92.

5.3.16 Page 57, Exercise 4.19

Statement.

(a) Let A be a ring and p a prime ideal of A. Show that every p-primary ideal contains Sp(0), the
kernel of the canonical homomorphism A→ Ap.

(b) Suppose that A satisfies the following condition: for every prime ideal p, the intersection of all
p-primary ideals of A is equal to Sp(0). (Noetherian rings satisfy this condition: see Chapter 103.)
Let p1, . . . , pn be distinct prime ideals, none of which is a minimal prime ideal of A. Then there
exists an ideal a in A whose associated prime ideals are p1, . . . , pn.

3See Corollary 10.21 p. 111 of the book.

93 Thursday 5th August, 2021 08:42



[Proof of (b) by induction on n. The case n = 1 is trivial (take a = p1). Suppose n > 1 and let pn be
maximal in the set {p1, . . . , pn}. By the inductive hypothesis there exists an ideal b and a minimal
primary decomposition b = q1 ∩ · · · ∩ qn−1, where each qi is pi-primary. If b ⊂ Spn(0) let p be a
minimal prime ideal of A contained in pn. Then Spn(0) ⊂ Sp(0), hence b ⊂ Sp(0). Taking radicals
and using Exercise 10, we have p1 ∩ · · · ∩ pn−1 ⊂ p, hence some pi ⊂ p, hence pi = p since p is
minimal. This is a contradiction since no pi is minimal. Hence b 6⊂ Spn(0) and therefore4 there exists
a pn-primary ideal qn such that b 6⊂ qn. Show that a = q1 ∩ · · · ∩ qn has the required properties.]

End of the statement.

Solution.

Proof of (a): If q is p-primary, then we have (0) ⊂ qp ⊂ Ap, and thus Sp(0) = (0)c ⊂ (qp)
c = q ⊂ A

[see Section 5.1.7 p. 79 above].

Proof of (b): The following argument was explained to me by user withoutfeather over on Mathematics
Stackexchange: https://math.stackexchange.com/a/3338211/660.

Assume that a = q1 ∩ · · · ∩ qn is not reduced.

Since qn 6⊃ q1 ∩ · · · ∩ qn−1, there is an index i with 1 ≤ i ≤ n − 1 such that qi contains the
intersection of the other qj. We can assume that i = 1, i.e. q1 ⊃ q2 ∩ · · · ∩ qn. By induction
hypothesis, q1 6⊃ q2 ∩ · · · ∩ qn−1, so there exists

x ∈ (q2 ∩ · · · ∩ qn−1) \ q1.

On the other hand, we have p1 = r(q1) 6⊃ qn. Indeed, p1 ⊃ qn would imply p1 ⊃ pn and, since pn is
maximal in {p1, . . . , pn}, we would have p1 = pn, contradiction. Hence there exists

y ∈ qn \ p1.

Then the product xy is in q2 ∩ · · · ∩ qn ⊂ q1. But this is impossible since x is not in q1 and y is not
in p1.

5.3.17 Page 57, Exercise 4.20

Statement. Let M be a fixed A-module, N a submodule of M . The radical of N in M is defined
to be

rM(N) = {x ∈ A | xqM ⊂ N for some q > 0}.

Show that rM(N) = r(N : M) = r(Ann(M/N)). In particular, rM(N) is an ideal.

State and prove the formulas for rM analogous to (1.13).

Solution. Analogue of (ii): rA(rM(N)) = rM(N).

Analogue of (iii): rM(N ∩ P ) = rM(N) ∩ rM(P ).

Analogue of (iv): rM(N) = (1) ⇐⇒ N = M .
4By the condition in the first sentence of (b).
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Analogue of (v): rA(rM (N) + rM (P )) ⊂ rM (N +P ). As pointed out by Jeffrey Daniel Kasik Carlson
in https://spaces.ac.cn/usr/uploads/2017/07/4208763092.pdf p. 70, the converse is false: set

A 6= 0, M = A⊕ A, N = A⊕ (0), P = (0)⊕ A.

This yields M = N + P , so rM(N + P ) = (1), but rM(N) = rM(P ) = 0.

5.3.18 Page 57, Exercise 4.21

Statement. An element x ∈ A defines an endomorphism φx of M , namely m 7→ xm. The element
x is said to be a zero-divisor (resp. nilpotent) in M if φx is not injective (resp. is nilpotent). A
submodule Q of M is primary in M if Q 6= M and every zero-divisor in M/Q is nilpotent.

Show that if Q is primary in M , then (Q : M) is a primary ideal and hence rM(Q) is a prime
ideal p. We say that Q is p-primary (in M).

Prove the analogues of (4.3) and (4.4).

Solution. Analogue of (4.3): In the statement and the proof of (4.3) one can replace each occurrence
of q with Q and each occurrence of r with rM .

Analogue of (4.4): For the analogues of (i) and (ii), replace q with Q and x ∈ A with x ∈M . I
see no analogue of (iii). For the proof of (ii), one can modify the text of the book according to the
following table:

y ∈ (q : x) xy ∈ q x /∈ q q ⊂ (q : x) ⊂ p r(q : x) = p

y ∈ (Q : x) yx ∈ Q x /∈ Q (Q : M) ⊂ (Q : x) ⊂ p r(Q : x) = p

Continuation of the table:

yz ∈ (q : x) xyz ∈ q xz ∈ q z ∈ (q : x)

yz ∈ (Q : x) yzx ∈ Q zx ∈ Q z ∈ (Q : x)

5.3.19 Page 58, Exercise 4.22

Statement. A primary decomposition of N in M is a representation of N as an intersection

N = Q1 ∩ · · · ∩Qn

of primary submodules of M ; it is a minimal primary decomposition if the ideals pi = rM (Qi) are all
distinct and if none of the components Qi can be omitted from the intersection, that is if Qi 6⊃j 6=i Qi

(1 ≤ i ≤ n).

Prove the analogue of (4.5), that the prime ideals pi depend only on N (and M). They are called
the prime ideals belonging to N in M . Show that they are also the prime ideals belonging to 0
in M/N .

Solution. Analogue of (4.5):

a qi r(qi) x ∈ A xi /∈ qi

N Qi rM(Qi) x ∈M xi /∈ Qi
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5.3.20 Page 58, Exercise 4.23

Statement. State and prove the analogues of (4.6)-(4.11) inclusive. (There is no loss of generality
in taking N = 0.)

Solution. Analogues of (4.6)-(4.11), assuming N = 0:

• (4.6):
a ⊂ A p ⊃ a p ⊃ a =

⋂
qi r(qi)

0 ⊂M p ⊃ (0 : M) p ⊃ (0 : M) =
⋂

(Qi : M) r(Qi : M)

• (4.7): Replace
“if the zero ideal is decomposable, the set D of zero-divisors of A is the union of the prime ideals

belonging to 0”

with

“if the zero submodule of M is decomposable, the set D of zero-divisors of A in M is the union
of the prime ideals belonging to 0 ⊂M ”

• (4.8): Let S be a multiplicative subset of A, let M be an A-module and Q a p-primary submodule
of M .

(i) If S ∩ p 6= ∅, then S−1Q = S−1M . Proof: Let s ∈ S ∩ p, t ∈ S and x ∈ M . We get
sn ∈ (Q : M), that is snM ⊂ Q, for some n, and thus

x

t
=
snx

snt
∈ S−1Q.

(ii) Assume S ∩ p = ∅. The analogue of (4.8ii) is:

S−1Q is S−1p-primary and its contraction in M is Q. Hence primary submodules correspond to
primary submodules in the correspondence between submodules in S−1M and contracted submodules
in M .

We can adapt the proof in the book by adding the following three observations:

(a) For any submodule N of M we have S−1(N : M) ⊂ (S−1N : S−1M). Proof: straightforward.

(b) We have (S−1Q : S−1M) ⊂ S−1(Q : M). Proof: straightforward.

(c) If N is a contracted submodule N of M such that S−1N is primary, then N is primary.
Proof: Note that sx ∈ N with s ∈ S and x ∈M imply x ∈ N . Indeed, we have

x

1
=

1

s

sx

1
∈ S−1N.

Now if a ∈ A and x ∈M \N satisfy ax ∈ N , we get x
1
/∈ S−1N and a

1
x
1

= ax
1
∈ S−1N , hence

an

1
S−1M =

(a
1

)n
S−1M ⊂ S−1N

for some n, and thus anM ⊂ N .
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• (4.9) [Proposition 43 p. 80], (4.10) and (4.11): We use the table

a ⊂ A qi r(qi)

0 ⊂M Qi r(Qi : M)

5.3.21 Primary decomposition of a submodule after Bourbaki

We follow closely Bourbaki’s Algèbre commutative, Chapter IV. Unless otherwise stated, A is a
commutative ring with one and M is an A-module. For any element a of A and any A-module M
write aM for the map x 7→ ax, M →M

Definition 55. Let M be an A-module. We say that a prime ideal p of A is associated to M if
there is an x ∈M such that p is the annihilator of x. We write Ass(M) for the set of those prime
ideals of A which are associated to M .

The annihilator of the zero module being the unit ideal, an element x ∈M whose annihilator is
prime is nonzero.

Lemma 56. Let p be a prime ideal of A. Then p is associated to M if and only if M contains
a submodule N isomorphic to A/p, in which case we can take N := Ax for any x ∈ M whose
annihilator is p.

Proof. This is clear.

If M is the union of a family (Mi)i∈I of submodules, we clearly have

Ass(M) =
⋃
i∈I

Ass(Mi). (41)

Proposition 57. For all prime ideal p of A and all nonzero submodule M of A/p we have Ass(M) =
{p}.

Proof. As A/p is a domain, the annihilator in A of any of its nonzero element is p.

Proposition 58. Let a be an ideal of A which is maximal among all ideals of the form Ann(x),
x ∈M \ {0}. Then a is prime, and thus a ∈ Ass(M).

Proof. Let x and a be as above. It suffices to check that a is prime. As x 6= 0, we have a 6= (1). Let
b, c be elements of A such that bc ∈ a and c /∈ a. We get cx 6= 0, b ∈ Ann(cx) and a ⊂ Ann(cx). As
a is maximal, this implies Ann(cx) = a, whence b ∈ a. This shows that a is prime.

Corollary 59. If A is a noetherian ring and M an A-module, then the conditions M = 0 and
Ass(M) = ∅ are equivalent.

Proof. If M = 0, then Ass(M) is empty (even if A were not noetherian). If M 6= 0, the set S of all
ideals of the form Ann(x), x ∈M \ {0}, is nonempty and (1) /∈ S; as A is noetherian, this set has a
maximal element; and Proposition 58 gives the desired conclusion.
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Corollary 60. Let A be noetherian, let a be in A and let M be an A-module. Then aM is injective
if and only if a belongs to no prime ideal associated to M .

Proof. If a ∈ p ∈ Ass(M), we have p = Ann(x) for some x ∈ M \ {0}, and the equality ax = 0
shows that aM is not injective. Conversely, if ax = 0 for some x ∈M \ {0}, we get Ax 6= 0, whence
Ass(Ax) 6= ∅ (Corollary 59). Let p ∈ Ass(Ax); we obviously have p ∈ Ass(M) and p = Ann(bx) for
some b ∈ A; whence a ∈ p since abx = 0.

Corollary 61. The set of all zero-divisors in a noetherian ring A is the union of the ideals
p ∈ Ass(A).

Proposition 62. If N is a submodule of M , we have Ass(N) ⊂ Ass(M) ⊂ Ass(N) ∪ Ass(M/N).

Proof. The inclusion Ass(N) ⊂ Ass(M) is obvious. Let p ∈ Ass(M). By Lemma 56 there is a
submodule E of M isomorphic to A/p. Set F := E ∩ N . If F = 0, then E is isomorphic to a
submodule of M/N , and (again by Lemma 56) p ∈ Ass(M/N). If F 6= 0, the annihilator of any
nonzero element of F is p (Proposition 57), hence p ∈ Ass(N).

Lemma 63. If A is a noetherian ring, and if (Ni)i∈I is a family of submodules of an A-module
M such that the intersection of the Ass(Ni) is empty, then the intersection of the Ni is the zero
submodule.

Proof. This follows from Corollary 59 and Proposition 62.

Corollary 64. If M is the direct sum of a family (Mi)i∈I of submodules, then Ass(M) is the union
of the Ass(Mi).

Proof. By (41) we can assume that I is finite. Arguing by induction, we see that it suffices to handle
the case I = {1, 2}. But this case follows from Proposition 62.

Corollary 65. Let M be an A-module and Q1, . . . , Qn submodules of M . If the intersection of the
Qi is 0, then Ass(M) is contained in the union of the Ass(Qi), and thus Ass(M) coincides with the
union of the Ass(Qi)

Proof. The canonical map M →
⊕

(M/Qi) being injective, it suffices to apply Proposition 62 and
Corollary 64.

Proposition 66. Given Ψ ⊂ Ass(M) there is a submodule N of M such that

Ass(N) = Ass(M) \Ψ and Ass(M/N) = Ψ.

Proof. Let Σ be the set of those submodules P of M such that Ass(P ) ⊂ Ass(M) \ Ψ. By (41)
the set Σ, ordered by inclusion, is inductive; moreover the zero submodule belongs to Σ, so Σ is
nonempty. Let N be a maximal element of Σ. We have Ass(N) ⊂ Ass(M) \Ψ. By Proposition 62,
it suffices to prove Ass(M/N) ⊂ Ψ. Let p ∈ Ass(M/N); then, by Lemma 56, M/N contains a
submodule F/N isomorphic to A/p. By Propositions 57 and 62 we have Ass(F ) ⊂ Ass(N) ∪ {p}.
The maximality of N implies F /∈ Σ, and thus p ∈ Ψ.
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Proposition 67. If A is a noetherian ring and if (Ψi)i∈I is a family of subsets of Ass(M) whose
union is Ass(M), then there is a family (Ni)i∈I of submodules of M such that Ass(M/Ni) = Ψi for
all i, and the intersection of the Ni is the zero submodule.

Proof. Write M(Ψ) for the submodule denoted by N in the proof of Proposition 66 and apply
Lemma 63 to the M(Ψi).

Definition 68. Let A be a noetherian ring. A submodule N of an A-module M is primary if
Ass(M/N) = {p} for some prime ideal p of A, in which case one also says that N is p-primary.

Note that Bourbaki’s definition given above is not equivalent to Atiyah and MacDonald’s, as
shown by the following example.

Let K be a field, and x and y indeterminates. Set A := K[[x]], M := K[y], and define an
A-module structure on M by (

∑
anx

n)f :=
∑
anf

(n), where f (n) is the n-th derivative of f . Then
the zero submodule of M is primary in Bourbaki’s sense but is not an intersection of primary
submodules in the sense of Atiyah and MacDonald.

The following consequence of Proposition 67 is stated as Theorem 2.2.1 in Somaya Muiny’s
thesis https://scholarworks.gsu.edu/math_theses/70/

Theorem 69 (Somaya Muiny). If M is a module over a noetherian ring A, then the intersection
of its primary submodules is zero. More generally, if N is submodule of an A-module M , then N is
the intersection of the primary submodules of M which contain N . In fact, N is the intersection of
a family (M(p))p∈Ass(M/N) of submodules containing N such that each M(p)/N is p-primary.

Proof. Assuming N = 0 without lost of generality, we apply Proposition 67 to the family

({p})p∈Ass(M).

Proposition 70. Let A be a noetherian ring and M an A-module. Then the zero submodule of M
is the intersection of a finite family (Q1, . . . , Qn) of primary submodules of M if and only if Ass(M)
is finite, in which case Ass(M) is the disjoint union of the Ass(Qi). There is a similar statement
for an arbitrary submodule of M [instead of the zero submodule].

Proof. This follows from Corollary 65 and Theorem 69.
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6 About Chapter 5

6.1 Comments

6.1.1 Page 61, Corollary 5.9

Here is a slightly stronger statement:

Let A be a subring of a ring B such that B is integral over A; let q, b be ideals of B such that q is
prime, q ⊂ b and qc = bc = p say. Then q = b.

Proof. Arguing as in the book, we see that pp ⊂ Ap and qp ⊂ Bp are maximal, and that we have
qp ⊂ bp ⊂ Bp. Proposition 3.11ii p. 41 of the book [Proposition 33 p. 58] implies bp 6= Bp, and thus
qp = bp. If b is in b, we get b/1 = q/s for some q in q and some s in A \ p, then tb ∈ q for some t in
A \ p, and thus b ∈ q. �

6.1.2 Page 62, proof of Corollary 5.9

Let A ⊂ B be rings, let q be a prime ideal of B and set p := A ∩ q:

A B

Ap Bp.

α β

Then Corollary 3.4ii p. 39 of the book implies Ap ∩ qp = pp.

6.1.3 Page 62, Theorem 5.10

Let b be an ideal of B, let a be its contraction in A, and assume a ⊂ p. Then it is easy to see that
q can be chosen among the prime ideals of B containing b.

Also note that Corollary 5.8 and Theorem 5.10 imply that an ideal of A is maximal if and only
if it is the contraction of a maximal ideal of B.

6.1.4 Page 62, dim A = dim B

If A ⊂ B is an integral extension, then we have dimA = dimB.

More precisely, we have dimA ≥ dimB by Corollary 5.9 p. 61 and dimA ≤ dimB by Theorem
5.11 p. 62.

6.1.5 Page 62, integrally closed domain

Here is an example of a domain which is not integrally closed. Let k be a field, let x be an
indeterminate and set A := k[x2, x3] ⊂ k[x]. Then x is in the field of fractions of A, and is integral
over A, but is not in A.
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6.1.6 Page 62, Proposition 5.12

Here is a corollary to Proposition 5.12 p. 62:

Let A be a domain and S a multiplicative subset with 0 /∈ S. If A is integrally closed, so is
S−1A.

6.1.7 Page 63

If A ⊂ D are domains, and if a is an ideal of A, then we denote the extension of a in D by D a, and
the integral closure of a in D by D ∗ a.

Lemma 5.14 says
D ∗ a = r

(
(D ∗ A) a

)
. (42)

In particular D ∗ a is an ideal of D ∗ A.
In the proof of Proposition 5.15, we have the inclusions a ⊂ A ⊂ L. Let

xm + a1x
m−1 + · · ·+ am

be the minimal polynomial of x over K. Each aj being in the ideal (x1, . . . , xn) of L ∗ A generated
by the xi, and each xi being in the set L ∗ a, which is an ideal of L ∗ A by (42), we get

aj ∈ (L ∗ a) ∩K = K ∗ a = r
(

(K ∗ A) a
)

= r(A a) = r(a)

for all j [the second equality following from (42)].

6.1.8 Page 64, proof of Theorem 5.16

Last line of the first paragraph of the proof: It suffices to show Bq1p2 ∩ A ⊂ p2.

6.1.9 Page 65

I would change the sentence

“The conditions of Zorn’s lemma are clearly satisfied and therefore the set Σ has at least one
maximal element”

to

“Assuming (A, f) ∈ Σ, the conditions of Zorn’s lemma are clearly satisfied and therefore Σ has
at least one maximal element (B, g) ≥ (A, f)”.

6.1.10 Page 65, Lemma 5.20

The proof of Lemma 5.20 shows:
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Let K be a field, let B be a local subring of K with maximal ideal m, let x be a non-zero element of
K, let B[x] be the subring of K generated by x over B, and let m[x] be the extension of m in B[x].
Then either m[x] 6= B[x] or m[x−1] 6= B[x].

6.1.11 Page 66, Theorem 5.21

The statement of the Theorem is:

Theorem 71 (Theorem 5.21 p. 66). Let (B, g) be a maximal element of Σ. Then B is a valuation
ring of the field K.

Here is a partial converse:

Proposition 72. Let (B, g) be an element of Σ such that B is a valuation ring of K and Ker g is
the maximal ideal of B. Then (B, g) is maximal.

The following Lemma will be handy:

Lemma 73. Let A be a valuation ring of a field K with maximal ideal m, and let B be a ring
satisfying A < B ⊂ K. Then mB = B.

Proof. If b is in B \ A, then b−1, being a non-unit of A, is in m, and we get mB 3 b−1b = 1.

Proof of Proposition 72. If we had (B, g) < (C, h) for some (C, h) ∈ Σ, we would get C = (Ker g)C
by Lemma 73, and (Ker g)C ⊂ Kerh by assumption.

6.1.12 Page 66, proof of Theorem 5.21

The proof shows:

In the setting of Section 6.1.10 above, let x be a non-zero element of K. If m[x] 6= B[x], then
there is a maximal ideal m′ of B[x] such that B ∩ m′ = m and B[x]/m′ is algebraic over B/m. If
m[x−1] 6= B[x−1], then there is a maximal ideal m′ of B[x−1] such that B ∩m′ = m and B[x]/m′ is
algebraic over B/m.

6.1.13 Page 66, proof of Corollary 5.22

Here is the statement of Corollary 5.22:

Corollary 74 (Corollary 5.22). Let A be a subring of a field K. Then the integral closure A of A
in K is the intersection of all the valuation rings of K which contain A.

In the proof given in the book I would change the sentences

“Then the restriction to A of the natural homomorphism A′ → k′ defines a homomorphism of A
into Ω. By (5.21) this can be extended to some valuation ring B ⊇ A.”
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to

“By (5.21) the natural homomorphism A′ → Ω can be extended to some valuation ring B ⊇ A′.”

Also, it would be slightly better to change “let x /∈ A” to “let x ∈ K \A” on the third line of the
proof.

6.2 Exercises

6.2.1 Page 67, Exercise 5.1

Statement. Let f : A → B be an integral homomorphism of rings. Show that f ∗ : Spec(B) →
Spec(A) is a closed mapping, i.e. that it maps closed sets to closed sets. (This is a geometrical
equivalent of (5.10).)

Solution. Use Exercise 3.21iii p. 47, Proposition 5.6i p. 61 and Theorem 5.10 p. 62 of the book.

6.2.2 Page 67, Exercise 5.2

Statement. Let A be a subring of a ring B such that B is integral over A, and let f : A → Ω
be a homomorphism of A into an algebraically closed field Ω. Show that f can be extended to a
homomorphism of B into Ω. [Use (5.10).]

Solution. Set p := Ker f and let q ⊂ B be given by Theorem 5.10 p. 62. Our problem can be
summarized as follows:

A/p B/q

Ω.

Writing K and L for the respective fields of fractions of A/p and B/q, our problem becomes

K L

Ω.

As L/K is algebraic and Ω algebraically closed, this problem has a solution.

6.2.3 Page 67, Exercise 5.3

Statement. Let f : B → B′ be a homomorphism of A-algebras, and let C be an A-algebra. If f is
integral, prove that f ⊗ 1 : B ⊗A C → B′ ⊗A C is integral. [This includes (5.6ii) as a special case.]

Solution. Set D := (f ⊗ 1)(B ⊗A C) and let E be the integral closure of D in B′ ⊗A C. We have
1⊗ c ∈ D ⊂ E for c ∈ C and it is easy to see that b′ ⊗ 1 ∈ E for b′ ∈ B′. Then E contains b′ ⊗ c for
b′ ∈ B′, c ∈ C, hence E contains B′ ⊗A C.
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A more general question. Let C ← A→ B → B′ be morphisms of rings. In this section tensor
products are taken over A, and, for any morphism of rings f : X → Y , the notation X Y means
“integral closure of f(X) in Y ”.

The purpose of this section is to show that the morphism B
B′ ⊗ C → B ⊗ C B′⊗C induced by

the natural morphism B
B′ ⊗ C → B′ ⊗ C is not always surjective.

Let K be a field of characteristic 6= 2 and x an indeterminate, and set

A := K[x2], B := K
[
x2, x
√
x2 − 1

]
,

B′ := K
(
x2, x
√
x2 − 1

)
, C := K[x].

We claim

B′′ := K
[
x2, x
√
x2 − 1

] K(x2,x
√
x2−1)

= K
[
x2, x
√
x2 − 1

]
.

Note that the two-element set
{1, x
√
x2 − 1}

is a K[x2]-basis of K[x
√
x2 − 1], as well as a K(x2)-basis of K(x

√
x2 − 1). Using this fact it is easy

to see that B′′ ∩K(x2) = K[x2]. To prove the claim, let u be in B′′. We can write

u = f(x2) + x
√
x2 − 1 g(x2)

with f(x2), g(x2) ∈ K(x2). It suffices to check that f(x2) and g(x2) are in K[x2], or equivalently,
that they are in B′′. We have v := f(x2)− x

√
x2 − 1 g(x2) ∈ B′′, and we successively see that the

following elements of K(x2) are in K[x2]:
u+ v

2
= f(x2),

uv = f(x2)2 − x2(x2 − 1) g(x2)2,

x2(x2 − 1) g(x2)2.

As x2(x2 − 1) is square-free in K[x2], we conclude that g(x2) is also in K[x2]. This completes the
proof of the claim.

Using the claim we get firstly

B
B′ ⊗ C = K

[
x2, x
√
x2 − 1

] K(x2,x
√
x2−1)

⊗K[x]

= K
[
x2, x
√
x2 − 1

]
⊗K[x] ' K

[
x, x
√
x2 − 1

]
,

and secondly

B ⊗ C B′⊗C
= K

[
x2, x
√
x2 − 1

]
⊗K[x]

K(x2,x
√
x2−1)⊗K[x]

' K
[
x, x
√
x2 − 1

] K(x,
√
x2−1)

⊂ K
(
x,
√
x2 − 1

)
.

The element
√
x2 − 1 ∈ K

(
x,
√
x2 − 1

)
is integral over K

[
x, x
√
x2 − 1

]
, but does not belong to

this ring.

In fact K
[
x,
√
x2 − 1

]
is integrally closed, and thus Dedekind.
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6.2.4 Page 67, Exercise 5.4

Statement. Let A be a subring of a ring B such that B is integral over A. Let n be a maximal
ideal of B and let m = n ∩ A be the corresponding maximal ideal of A. Is Bn necessarily integral
over Am?

[Consider the subring k[x2 − 1] of k[x], where k is a field, and let n = (x − 1). Can the element
1/(x+ 1) be integral?]

Solution. The last sentence of the hint should be “Can the element 1/(x + 1) be integral over
k[x2 − 1](x2−1)?”

Note that
k[x2 − 1](x2−1) =

{
f(x2 − 1)

g(x2 − 1)

∣∣∣∣ f, g ∈ k[t], g(0) 6= 0

}
,

and, if 1/(x+ 1) was integral over k[x2 − 1](x2−1), we would get

1

(x+ 1)n
+
f1(x2 − 1)

g1(x2 − 1)

1

(x+ 1)n−1
+ · · ·+ fn(x2 − 1)

gn(x2 − 1)
= 0

[obvious notation]. Multiplying through by (x+ 1)n and setting x = −1 yields 1 = 0.

6.2.5 Page 67, Exercise 5.5

Statement. Let A ⊂ B be rings, B integral over A.

(i) If a ∈ A is a unit in B then it is a unit in A.

(ii) The Jacobson radical of A is the contraction of the Jacobson radical of B.

Solution.

(i) Let a be an element of A which has an inverse in B. If a was not a unit of A, there would be
a prime ideal p of A containing a, and, by Theorem 5.10 p. 62 of the book, a prime ideal q of B
containing a, contradicting the invertibility of a in B.

(ii) In the lines below m and n run respectively over the maximal ideals of A and B. It suffices
to show A ∩ (

⋂
n) =

⋂
m, that is

⋂
(A ∩ n) =

⋂
m. But this follows immediately from the second

paragraph of Section 6.1.3 p. 100.

6.2.6 Page 67, Exercise 5.6

Statement. Let B1, . . . , Bn be integral A-algebras. Show that
∏
Bi is an integral A-algebra.

Solution. It suffices to show that (0, . . . , 0, bi, 0, . . . , 0) is integral over A, which is easy.

6.2.7 Page 67, Exercise 5.7

Statement. Let A be a subring of a ring B, such that the set B \A is closed under multiplication.
Show that A is integrally closed in B.
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Solution. Assume by contradiction that b ∈ B \ A is integral over A. We have

bn + a1b
n−1 + · · ·+ an = 0

with ai ∈ A, n ≥ 1, and we can suppose that n is minimum. Setting

a′ := bn−1 + a1b
n−2 + · · ·+ an−1

we get a′b = −an ∈ A, hence a′ ∈ A, and the equality

bn−1 + a1b
n−2 + · · ·+ an−2b+ (an−1 − a′) = 0

contradicts the minimality of n.

6.2.8 Page 67, Exercise 5.8

Statement. (i) Let A be a subring of an integral domain B, and let C be the integral closure of
A in B. Let f, g be monic polynomials in B[x] such that fg ∈ C[x]. Then f, g are in C[x]. [Take
a field containing B in which the polynomials f, g split into linear factors: say f =

∏
(x − ξi),

g =
∏

(x− ηj). Each ξi, and each ηj is a root of fg, hence is integral over C. Hence the coefficients
of f and g are integral over C.]

(ii) Prove the same result without assuming that B (or A) is an integral domain.

Solution. It suffices to prove (ii). To do this we use the argument in the hint: Take a ring D
containing B in which the polynomials f, g split into linear factors: say f =

∏
(x−ξi), g =

∏
(x−ηj).

Each ξi, and each ηj is a root of fg, hence is integral over C. Hence the coefficients of f and g are
integral over C. [As suggested in the book, an obvious argument proves the existence of such a ring
D if B is a domain, but this argument does not really use the assumption that B is a domain.]

6.2.9 Page 68, Exercise 5.9

Statement. Let A be a subring of a ring B and let C be the integral closure of A in B. Prove that
C[x] is the integral closure of A[x] in B[x]. [If f ∈ B[x] is integral over A[x], then

fm + g1f
m−1 + · · ·+ gm = 0 (gi ∈ A[x]).

Let r be an integer larger than the degrees of f, g1, . . . , gm, and let f1 = f − xr, so that

(f1 + xr)m + g1 · (f1 + xr)m−1 + · · ·+ gm = 0

or say
fm1 + h1f

m−1
1 + · · ·+ hm = 0

with hi ∈ A[x] and
hm = (xr)m + (xr)m−1g1 + · · ·+ gm ∈ A[x].

Now apply Exercise 8 to the polynomials −f1 and f2 := fm−1
1 + h1f

m−2
1 + · · ·+ hm−1.] [I have made

minor changes to the statement in the book.]

Solution. The hint given in the book is complete. Note that, in view of the definition of r, the
polynomials −f1 and hm are monic. Since −f1f2 = hm, the polynomial f2 is also monic.
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6.2.10 Page 68, Exercise 5.10

Statement. A ring homomorphism f : A→ B is said to have the going-up property (resp. the
going-down property) if the conclusion of the going-up theorem (5.11) (resp. the going-down
theorem (5.16)) holds for B and its subring f(A).

Let f ∗ : Spec(B)→ Spec(A) be the mapping associated with f .

(i) Consider the following three statements:

(a) f ∗ is a closed mapping.

(b) f has the going-up property.

(c) Let q be any prime ideal of B and let p = qc. Then f ∗ : Spec(B/q)→ Spec(A/p) is surjective.

Prove that (a)⇐⇒ (b) =⇒ (c). (See also Chapter 6, Exercise 11.)

(ii) Consider the following three statements:

(a′) f ∗ is an open mapping.

(b′) f has the going-down property.

(c′) For any prime ideal q of B, if p = qc, then f ∗ : Spec(Bq)→ Spec(Ap) is surjective.

Prove that (a′)⇐⇒ (b′) =⇒ (c′). (See also Chapter 7, Exercise 23.)

[To prove that (a′) ⇐⇒ (c′), observe that Bq is the direct limit of the rings Bt where t ∈ B \ q;
hence, by Chapter 3, Exercise 26, we have

f ∗(Spec(Bq)) =
⋂
t

f ∗(Spec(Bt)) =
⋂
t

f ∗(Yt).

Since Yt is an open neighborhood of q in Y , and since f ∗ is open, it follows that f ∗(Yt) is an open
neighborhood of p in X and therefore contains Spec(Ap).]

Solution. Let us just note that, firstly, it is easy to show that (a) implies (c), and that (b) and (c)
are equivalent, and, secondly, for the phrase “and therefore contains Spec(Ap)” at the end of the
hint, see Section 4.2.22 p. 73 above.

6.2.11 Page 68, Exercise 5.11

Statement. Let f : A→ B be a flat homomorphism of rings. Then f has the going-down property.
[Chapter 3, Exercise 18.]

Hint. The proof of Theorem 5.16 p. 64 of the book shows that the going-down property for f : A→ B
is equivalent to the condition that, for all q ∈ Spec(B), the natural map Spec(Bq)→ Spec(Aqc) is
surjective.

6.2.12 Page 68, Exercise 5.12

Statement. Let G be a finite group of automorphisms of a ring A, and let AG denote the subring
of G-invariants, that is of all x ∈ A such that σ(x) = x for all σ ∈ G. Prove that A is integral over
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AG. [If x ∈ A, observe that x is a root of the polynomial
∏

σ∈G(t− σ(x)).]

Let S be a multiplicatively closed subset of A such that σ(S) ⊂ S for all σ ∈ G, and let
SG = S ∩AG. Show that the action of G on A extends to an action on S−1A, and that (SG)−1AG '
(S−1A)G.

Hints. The main point is to show that an invariant fraction is equal to a fraction with invariant
numerator and denominator. Let x = a

s
be our fraction [obvious notation].

Step 1. Set t :=
∏

σ 6=1 σ(s). The product st is invariant, and we have

x =
a

s
=
at

st
.

In other words we can assume that the denominator s of our fraction x = a
s
is invariant.

Step 2. For σ ∈ G we have σ(a)
s

= a
s
, that is σ(a)stσ = astσ for some tσ ∈ S. Arguing as in Step 1

we can assume that the tσ are invariant.

Details. Set uσ :=
∏

τ 6=1 τ(tσ). Then tσuσ is invariant, and we get σ(a)stσuσ = astσuσ, and we can
indeed assume that the tσ are invariant.

Step 3. By a similar trick we can assume that the tσ are all equal to some t ∈ SG, and we get
ast = σ(a)st = σ(ast), and thus

a

s
=
ast

s2t
.

Details. Setting t :=
∏

σ tσ and vσ :=
∏

τ 6=σ tτ , we get t = tσvσ and

σ(a)st = σ(a)stσvσ = astσvσ = ast.

6.2.13 Page 68, Exercise 5.13

Statement. In the situation of Exercise 12, let p be a prime ideal of AG, and let P be the set of
prime ideals of A whose contraction is p. Show that G acts transitively on P . In particular, P is
finite.

[Let p1, p2 ∈ P and let x ∈ p1. Then
∏

σ σ(x) ∈ p1 ∩ AG = p ⊂ p2, hence σ(x) ∈ p2 for some σ ∈ G.
Deduce that p1 is contained in

⋃
σ σ(p2), and then apply (1.11) and (5.9).]

Solution. We follow the hint given in the book.

Let q, q′ ∈ P and a ∈ q′. We have∏
σ

σ(a) ∈ q′ ∩ AG = p = q ∩ AG ⊂ q.

Hence there is a σa ∈ G such that σa(a) ∈ q, and thus a ∈ σ−1
a (q). This implies q′ ⊂

⋃
σ σ(q), and

thus, by Proposition 3 p. 14, q′ ⊂ σ(q) for some σ ∈ G.

It suffices to prove q′ = σ(q).

As
σ(q) ∩ AG = σ

(
q ∩ σ−1(AG)

)
= σ

(
q ∩ AG

)
= σ(p) = p = q′ ∩ AG,

Corollary 5.9 p. 61 of the book [see Section 6.1.1 p. 100] implies q′ = σ(q), as was to be shown.
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6.2.14 Page 69, Exercise 5.14

Statement. Let A be an integrally closed domain, K its field of fractions and L a finite normal
separable extension of K. Let G be the Galois group of L over K and let B be the integral closure
of A in L. Show that σ(B) = B for all σ ∈ G, and that A = BG.

Hints. We clearly have σ(B) ⊂ B for all σ ∈ G, hence B ⊂ σ−1(B) for all σ ∈ G, hence B ⊂ σ(B)
for all σ ∈ G, hence σ(B) = B for all σ ∈ G. The inclusions A ⊂ BG and BG ⊂ LG ∩B = K ∩B
are obvious. If x is in K ∩B, then x is K and is integral over A, hence x is in A.

6.2.15 Page 69, Exercise 5.15

Statement. Let A be an integrally closed domain, K its field of fractions and L any finite extension
field of K, and let B be the integral closure of A in L. Show that, if p is any prime ideal of A, then
the set of prime ideals q of B which contract to p is finite [in other words, that Spec(B)→ Spec(A)
has finite fibers].

[Reduce to the two cases (a) L separable over K and (b) L purely inseparable over K. In case (a),
embed L in a finite normal separable extension of K, and use Exercises 13 and 14. In case (b), if q
is a prime ideal of B such that q ∩ A = p, show that q is the set of all x ∈ B such that xpm ∈ p for
some m ≥ 0, where p is the characteristic of K, and hence that Spec(B)→ Spec(A) is bijective in
this case.]

Hints. (a) Spec(B)→ Spec(A) has finite nonempty fibers.

(b) Let L/K be purely inseparable of characteristic p > 0, and let p be a prime ideal of A. By
Theorem 5.10 p. 62 of the book, there is a prime ideal q of B lying above p. If b ∈ B, n ∈ N and
bp

n ∈ p, then b ∈ q. If x ∈ q, then xpn ∈ K for some n ∈ N, and thus xpn ∈ K ∩ q = p. We conclude
that q is the set of those b ∈ B such that bpn ∈ p for some n ∈ N [even if the extension is of infinite
degree]. In particular the map Spec(B)→ Spec(A) is bijective.

6.2.16 Page 69, Exercise 5.16, NNT

NNT stands for Noether’s Normalization Theorem.

The purpose of this section is to review the following closely related statements: Noether’s
Normalization Theorem, Zariski’s Lemma, and the Nullstellensatz.

Recall the general notation As := A[s−1].

Noether’s Normalization Theorem.

Theorem 75 (Noether’s Normalization Theorem). Let A ⊂ B be an inclusion of nonzero rings
such that B a finitely generated A-algebra. Then there exist a nonzero element s in A, a nonnegative
integer n, and elements x1, . . . , xn in Bs which are algebraically independent over As, such that Bs

is a finitely generated module over As[x1, . . . , xn].
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Proof. Let y1, . . . , ym ∈ B generate B as an A-algebra: B = A[y1, . . . , ym]. We argue by induction
on m. If m = 0 or if the yi are algebraically independent over A, there is nothing to prove.

Thus we can assume that m ≥ 1; that the statement holds with m replaced by m− 1; and that
there is a non-constant polynomial f ∈ A[Y1, . . . , Ym], where the Yi are indeterminates, such that
f(y1, . . . , ym) = 0.

We claim

(?) There exist a nonzero t in A and elements z1, . . . , zm−1 in B such that Bt is a finitely generated
At[z1, . . . , zm−1]-module.

We start the proof of (?).

Let r be an integer larger than the degree of f , and, for any monomial u ∈ A[Y1, . . . , Ym]
occurring in f (with a nonzero coefficient), write u′ for the monomial u viewed as a polynomial in
the ring (

A
[
Y2 − Y r

1 , . . . , Ym − Y rm−1

1

])
[Y1].

If u = Y α1
1 · · ·Y αm

m , then u′ is monic of degree α1 + α2r + · · · + αmr
m−1. This implies that u′ is

monic, and that we have deg(u′) 6= deg(v′) for any two distinct such monomials u and v.

As a result, there is a nonzero t in A, an integer d ≥ 1, and a polynomial

g ∈
(
A
[
Y2 − Y r

1 , . . . , Ym − Y rm−1

1

])
[Y1]

of degree less than d, such that f = tY d
1 + g.

In particular, y1 is integral over the ring C := At[z1, . . . , zm−1] with zi := yi+1 − yr
i

1 , and
Bt = C[y1] is a finitely generated C-module. This proves (?).

Let us prove the Theorem.

We can assume that At is nonzero. By the inductive hypothesis applied to the inclusion

At ⊂ At[z1, . . . , zm−1],

there exist a nonzero element u in At, a nonnegative integer n, and elements x1, . . . , xn in

At[z1, . . . , zm−1]u = (At)u[z1, . . . , zm−1]

which are algebraically independent over (At)u, such that (At)u[z1, . . . , zm−1] is a finitely generated
(At)u[x1, . . . , xn]-module.

Now u = v/ti for some nonzero v in A and some integer i ≥ 0, and we have (At)u = Atv.

Setting s := tv, we see that s 6= 0, that the elements x1, . . . , xn ∈ As[z1, . . . , zm−1] are algebraically
independent over As, and that As[z1, . . . , zm−1] is a finitely generated As[x1, . . . , xn]-module.

Recall that Bt is a finitely generated At[z1, . . . , zm−1]-module [see (?)].

In particular Bs is a finitely generated module over the ring As[z1, . . . , zm−1], ring which is itself,
as we have just seen, a finitely generated module over the ring As[x1, . . . , xn].

This implies that Bs is a finitely generated As[x1, . . . , xn]-module, as desired.
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Zariski’s Lemma. Here is a statement of Zariski’s Lemma:

(ZL) Let k be a field, A a finitely generated k-algebra. Let m be a maximal ideal of A. Then the field
A/m is a finite algebraic extension of k. In particular, if k is algebraically closed then A/m ' k,
that is, the natural morphism k → A/m is an isomorphism.

In view of Proposition 5.7 p. 61 of the book, Zariski’s Lemma follows immediately from Noether’s
Normalization Theorem.

Here is an easy consequence of (ZL):

(ZL2) Set A := k[t1, . . . , tn] where k is an algebraically closed field and the ti are indeterminates,
let m be a maximal ideal of A, regard k as a subring of A, identify k to A/m via the isomorphism
in (ZL), let π : A→ k be the canonical projection, and set xi := π(ti) ∈ k ⊂ A, that is xi ∈ k and
π(xi) = π(ti). Also write x := (x1, . . . , xn) ∈ kn. Then we have:

(a) π(f) = f(x) for all f in A,

(b) A = k[t1 − x1, . . . , tn − xn],

(c) m = (t1 − x1, . . . , tn − xn).

Proof. Since Statement (a) holds for f = ti and the ti generate A as a k-algebra, it holds in general.
Statement (b) is clear. To prove (c) note that we have m = {f ∈ A | f(x) = 0} = (t1−x1, . . . , tn−xn),
the two equalities following respectively from (a) and (b).

Nullstellensatz. Here is a statement of the Nullstellensatz [see Exercise 14 of Chapter 7,
Section 8.2.12 p. 133]:

(N) Let k be an algebraically closed field, let A denote the polynomial ring k[t1, . . . , tn] and let a
be an ideal in A. Let X be the variety in kn defined by the ideal a, so that X is the set of all
x = (x1, . . . , xn) ∈ kn such that f(x) = 0 for all f ∈ a. Let I(X) be the ideal of X, i.e. the ideal of
all polynomials g ∈ A such that g(x) = 0 for all x ∈ X. Then I(X) = r(a).

Proof. The inclusion r(a) ⊂ I(X) is clear. Let us prove I(X) ⊂ r(a).

(ZL2) implies that I(X) is the intersection of all the maximal ideals of A containing a. As r(a)
is the intersection of all the prime ideals of A containing a, we can assume that a is a prime ideal p.
Then the statement follows immediately from Exercises 5.23 and 5.24 p. 71 of the book. Here is a
slightly different argument:

Let f be in A \ p and set Af := A[1/f ].

It suffices to prove the claim below.

Claim: There is a maximal ideal of A which does not contain f .

We give two proofs of the claim.

Proof 1. The extension pe of p in Af being clearly a proper ideal, there is a maximal ideal m ⊂ Af
containing pe.

Note successively that f /∈ m; that q := m∩A is a prime ideal of A which does not contain f ; that
Af/m is isomorphic to k by (ZL); and that the monomorphism of k-algebras 0 6= A/q � Af/m ' k
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implies that q is a maximal ideal of A.

Proof 2. By Noether’s Normalization Theorem applied to the k-algebra Af , there are elements
u1, . . . , um of Af which are algebraically independent over k, such that Af is integral over

k[u1, . . . , um].

By Exercise 5.2 p. 67 of the book [see Section 6.2.2 p. 103 above] the k-algebra morphism

ϕ : k[u1, . . . , um]→ k

which maps ui to 0 extends to a k-algebra morphism Φ : Af → k. As Φ(f) 6= 0, we see that
A ∩Ker Φ is a maximal ideal of A which does not contain f .

6.2.17 Page 69, Exercise 5.17

The Weak Nullstellensatz is the statement that the affine algebraic variety attached to a proper
ideal of k[t1, . . . , tn] is nonempty. It is not the trivial statement I(X) 6= (1) =⇒ X 6= ∅. The
Weak Nullstellensatz follows immediately from (ZL2) above [Section 6.2.16].

6.2.18 Page 70, Exercise 5.18

The purpose of this Exercise is to give an alternate proof of Zariski’s Lemma [Section 6.2.16]. The
hint given in the book is fairly complete.

6.2.19 Page 70, Exercise 5.19

The purpose of this exercise is to deduce the result of Exercise 17 from Exercise 18, that is to deduce
the Weak Nullstellensatz from Zariski’s Lemma. As indicated in Section 6.2.17 above, the Weak
Nullstellensatz follows immediately from (ZL2) [see Section 6.2.16].

6.2.20 Page 70, Exercise 5.20

Statement. Let A be a subring of an integral domain B such that B is finitely generated over A.
Show that there exists t 6= 0 in A and elements y1, . . . , yn in B, algebraically independent over A
and such that Bt is integral over A[y1, . . . , yn]t.

Solution. By Noether’s Normalization Theorem [Theorem 75 p. 109] above there exist a nonzero
element s in A and elements x1, . . . , xn in Bs which are algebraically independent over As, such
that Bs is a finitely generated module over As[x1, . . . , xn]. There is a power t of s and elements
y1, . . . , yn in B such that xi = yi/t. Then the yi are algebraically independent over A and we have
Bt = Bs and A[y1, . . . , yn]t = As[x1, . . . , xn].
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6.2.21 Page 70, Exercise 5.21

Statement. Let A be a subring of an integral domain B such that B is finitely generated over A.
Show that there exists t 6= 0 in A such that, if Ω is an algebraically closed field and f : A→ Ω is a
homomorphism for which f(t) 6= 0, then f can be extended to a homomorphism B → Ω. [With the
notation of Exercise 20, f can be extended first of all to A[y1, . . . , yn], for example by mapping each
yi to 0; then to Bt (because f(t) 6= 0), and finally to Bt (by Exercise 2, because Bt is integral over
A[y1, . . . , yn]t).]

Solution. Omitted. [The hint is fairly complete.]

Here is a corollary:

In the setting of the exercise, if i : A→ B denotes the inclusion, then we have Xt ⊂ i∗(Spec(B)).
In particular the interior of i∗(Spec(B)) is nonempty.

Proof: given p ∈ Xt pick an algebraically closed field Ω containing A/p.

6.2.22 Page 70, Exercise 5.22

Statement. Let A,B be as in Exercise 20. If the Jacobson radical of A is zero, then so is the
Jacobson radical of B.
[Let v 6= 0 be an element of B. We have to show that there is a maximal ideal of B which does not
contain v. By applying Exercise 21 to the ring Bv and its subring A, we obtain an element t 6= 0 in
A. Let m be a maximal ideal of A such that t /∈ m, and let k = A/m. Then the canonical mapping
A→ k extends to a homomorphism g of Bv into an algebraic closure Ω of k. Show that g(v) 6= 0
and that Ker(g) ∩B is a maximal ideal of B.]

Solution. Note that we have k ⊂ g(B) ⊂ Ω. By Proposition 5.7 p. 61 of the book, g(B) is a field.

6.2.23 Page 71, Exercise 5.23

Statement. Let A be a ring. Show that the following are equivalent:

(i) Every prime ideal in A is an intersection of maximal ideals.

(ii) In every homomorphic image of A the nilradical is equal to the Jacobson radical.

(iii) Every prime ideal in A which is not maximal is equal to the intersection of the prime ideals
which contain it strictly.

[The only hard part is (iii) =⇒ (i). Suppose (i) false, then there is a prime ideal which is not an
intersection of maximal ideals. Passing to the quotient ring, we may assume that A is an integral
domain whose Jacobson radical R is not zero. Let f be a non-zero element of R. Then Af 6= 0,
hence Af has a maximal ideal, whose contraction in A is a prime ideal p such that f /∈ p and which
is maximal with respect to this property. Then p is not maximal and is not equal to the intersection
of the prime ideals strictly containing p.]

A ring A with the three equivalent properties above is called a Jacobson ring.

The hint is fairly complete.
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6.2.24 Page 71, Exercise 5.24

Statement. Let A be a Jacobson ring (Exercise 23) and B an A-algebra. Show that if B is either
(i) integral over A or (ii) finitely generated as an A-algebra, then B is Jacobson. [Use Exercise 22
for (ii).]

In particular, every finitely generated ring, and every finitely generated algebra over a field, is a
Jacobson ring.

Solution. Part (i). Let us prove

If A ⊂ B is an integral extension of rings and if A is Jacobson, then B is Jacobson.

Proof. By Proposition 5.6ii p. 61 of the book we can assume that B is a domain. Let b ⊂ B be the
Jacobson radical of B. It suffices to prove b = (0). We have bc = (0) by Exercise 5.5ii p. 67 of the
book [see Section 6.2.5 p. 105 above], and the version of Corollary 5.9 p. 61 of the book proved in
Section 6.1.1 p. 100, implies b = (0). �

Part (ii) follows from Exercise 5.22 p. 70 of the book [Section 6.2.22 p. 113 above].

6.2.25 Page 71, Exercise 5.25

Statement. Let A be a ring. Show that the following are equivalent:

(i) A is a Jacobson ring;

(ii) Every finitely generated A-algebra B which is a field is finite over A.

[(i) =⇒ (ii). Reduce to the case where A is a subring of B, and use Exercise 21. If s ∈ A is as in
Exercise 21, then there exists a maximal ideal m of A not containing s, and the homomorphism
A→ A/m = k extends to a homomorphism g of B into an algebraic closure of k. Since B is a field,
g is injective, and g(B) is algebraic over k, hence finite algebraic over k.

(ii) =⇒ (i). Use criterion (iii) of Exercise 23. Let p be a prime ideal of A which is not maximal, and
let B = A/p. Let f be a non-zero element of B. Then Bf is a finitely generated A-algebra. If it is a
field it is finite over B, hence integral over B and therefore B is a field by (5.7). Hence Bf is not a
field and therefore has a non-zero prime ideal, whose contraction in B is a non-zero ideal p′ such
that f /∈ p′.]

Solution. The hint is fairly complete. [There is a typo in the book: “the algebraic closure of k”
instead of “an algebraic closure of k”.]

6.2.26 Page 71, Exercise 5.26

The first two sentences are

“Let X be a topological space. A subset of X is locally closed if it is the intersection of an
open set and a closed set, or equivalently if it is open in its closure.”

Let us prove this equivalence.

Let U be open and C closed. It suffices to show (?) U ∩ C = U ∩ U ∩ C.
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Proof of (?). We have:

• U ∩ C ⊂ U ∩ U ∩ C because U ∩ C ⊂ U and U ∩ C ⊂ U ∩ C,

• U ∩ U ∩ C ⊂ U ∩ C because U ∩ C ⊂ C = C. �

Part 1.

Statement. Show that the three conditions below on a subset X0 of a topological space X are
equivalent:

(1) Every non-empty locally closed subset of X meets X0;

(2) For every closed set C in X we have X0 ∩ C = C;

(3) The mapping U 7→ X0 ∩ U of the collection of open sets of X onto the collection of open sets of
X0 is bijective.

A subset X0 satisfying these conditions is said to be very dense in X.

Solution. Condition (3) is clearly equivalent to

(3’) The map C 7→ X0 ∩ C from the set of closed subsets of X to the set of closed subsets of X0 is
bijective.

This is also equivalent to

(3”) The map C 7→ X0 ∩ C from the set of closed subsets of X to the set of closed subsets of X0 is
injective.

(1) =⇒ (2): If there is a closed subset C of X such that X0 ∩ C 6= C, then L := C \X0 ∩ C is a
nonempty locally closed subset satisfying X0 ∩ L = ∅.

(2) =⇒ (3”): (2) means that C ′ 7→ C ′ is a left inverse to the map in (3”).

(3) =⇒ (1): for U, V open and V ⊂ U the equality X0 ∩ (U \ V ) = ∅ implies X0 ∩ U = X0 ∩ V .

Part 2.

Statement. If A is a ring, show that the following are equivalent:

(i) A is a Jacobson ring;

(ii) The set of maximal ideals of A is very dense in Spec(A);

(iii) Every locally closed subset of Spec(A) consisting of a single point is closed.

[(ii) and (iii) are geometrical formulations of conditions (ii) and (iii) of Exercise 23.]

Solution.

• Proof of (i) ⇐⇒ (ii).

Hint: Let M ⊂ Spec(A) be the set of maximal ideals. In view of Condition (2) above, it suffices to
show that (a) and (b) below are equivalent.

(a) For all ideal a of A we have R(A/a) ⊂ N(A/a).

(b) For all ideal a of A we have V (a) ⊂ V (a) ∩M .
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Let b(a) be the intersection of the maximal ideals containing a. In fact we have

(a) ⇐⇒ [b(a) ⊂ r(a)] ∀ a

⇐⇒ [p ⊃ a =⇒ p ⊃ b(a)] ∀ a ∀ p ⇐⇒ (b),

where “∀ a” means “for all ideal a of A” and “∀ p” means “for all prime ideal p of A”.

• Proof of (i) ⇐⇒ (iii).

It suffices to show that (c) and (d) below are equivalent.

(c) Every non-maximal prime ideal p is the intersection of the strictly larger prime ideals.

(d) If p is a prime ideal and if the singleton {p} is locally closed, then p is maximal.

(c) =⇒ (d): Assume by contradiction that the singleton {p} is locally closed and p is not maximal,
and let Q be the set of all those prime ideals of A which are strictly larger than p. We have

p =
⋂
q∈Q

q (43)

and
{p} = V (a) \ V (b) (44)

for some ideals a and b. Let q be in Q. Clearly q contains a. Equality (44) implies that q contains
b. As q is an arbitrary element of Q, (43) entails that p contains b, contradicting (44).

(d) =⇒ (c): Let p be a non-maximal prime ideal, and let b be the intersection of those prime ideals
which are strictly larger than p, and assume by contradiction that b is strictly larger than p. Let L
be the locally closed subset V (p) \ V (b) of Spec(A). Then p is in L, that is {p} ⊂ L. Since {p} is
not locally closed by (d), we have {p} 6= L, that is {p} < L. Thus there is a q in L \ {p}, and we
get q > p and q 6⊃ b, and the definition of b implies q ⊃ b, contradiction.

6.2.27 Page 72, Exercise 5.27

Statement. Let A,B be two local rings. B is said to dominate A if A is a subring of B and the
maximal ideal m of A is contained in the maximal ideal n of B [or, equivalently, if m = n ∩ A].
Let K be a field and let Σ be the set of all local subrings of K. If Σ is ordered by the relation of
domination, show that Σ has maximal elements and that A ∈ Σ is maximal if and only if A is a
valuation ring of K. [Use (5.21).]

Solution. For any algebraically closed field Ω we write Φ(K,Ω) for the poset denoted by Σ on page
65 of the book [see Section 6.1.9 p. 101]. [More precisely, Φ(K,Ω) is the set of of all pairs (A, f),
where A is a subring of K and f is a homomorphism of A into Ω, and we endow Φ(K,Ω) with the
partial order defined in the book.] Let Σ(K) be the set of all local subrings of K. We equip Σ(K)
with the domination partial order. We leave it to the reader to check that Σ(K) does have maximal
elements.

Let (A,m) be in Σ(K). It suffices to show that (A,m) is maximal in Σ(K) if and only if A is a
valuation ring of K.
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Assume that A is a valuation ring of K and that (B, n) is a maximal element of Σ(K) with
(A,m) ≤ (B, n). Then we have mB ⊂ n, and Lemma 73 p. 102 implies B = A.

Assume now that (A,m) is maximal in Σ(K). Let Ω be an algebraic closure of A/m, let f : A→ Ω
the obvious morphism, and let (B, g) be a maximal element of Φ(K,Ω) such that (A, f) ≤ (B, g). As
B is a valuation ring of K by Theorem 5.21 p. 66 of the book, it suffices to show B = A. Lemma 5.19
p. 65 of the book implies that B is local and that Ker g is its maximal ideal. As m = Ker f ⊂ Ker g,
we see that B dominates A, and thus that B = A, as desired.

6.2.28 Page 72, Exercise 5.28

Statement. Let A be an integral domain, K its field of fractions. Show that the following are
equivalent:

(1) A is a valuation ring of K.

(2) If a, b are any two ideals of A, then either a ⊂ b or b ⊂ a.

Deduce that if A is a valuation ring and p is a prime ideal of A, then Ap and A/p are valuation
rings of their fields of fractions.

Hint. It suffices to show that the following statements are equivalent:

(a) A is not a valuation ring of K,

(b) there are incomparable principal ideals of A,

(c) there are incomparable ideals of A.

Clearly (b) implies (c). There are a, b ∈ A \ {0} such that a
b
and b

a
are not in A if and only if

the principal ideals (a) and (b) are incomparable. This implies that (a) and (b) are equivalent, and
it only remains to show that (c) implies (b). If a and b are incomparable ideals, if a is in a \ b and
if b is in b \ a, then the principal ideals (a) and (b) are incomparable.

6.2.29 Page 72, Exercise 5.29

Statement. Let A be a valuation ring of a field K. Show that every subring of K which contains
A is a local ring of A [i.e. is of the form Ap for some prime ideal p ⊂ A].

Solution. Let B be the unnamed ring in the statement. By Proposition 5.18 (i) and (ii) p. 65 of the
book, B is local. Let n ⊂ B be the maximal ideal and set p := A∩n. Then we have Ap = B. Indeed,
the inclusion Ap ⊂ B is clear. Let b ∈ B \ A. It suffices to show b ∈ Ap. We have b−1 ∈ A ⊂ B. As
b−1 is a unit of B, it is not in n, and thus not in p, hence b = 1/b−1 ∈ Ap.

6.2.30 Page 72, Exercise 5.30

Statement. Let A be a valuation ring of a field K. The group U of units of A is a subgroup of the
multiplicative group K∗ of K.

Let Γ = K∗/U . If ξ, η ∈ Γ are represented by x, y ∈ K, define ξ ≥ η to mean xy−1A.

117 Thursday 5th August, 2021 08:42



Show that this defines a total ordering on Γ which is compatible with the group structure (i.e.,
ξ ≥ η =⇒ ξω ≥ ηω for all ω ∈ Γ). In other words, Γ is a totally ordered abelian group. It is called
the value group of A.

Let v : K∗ → Γ be the canonical homomorphism. Show that v(x+ y) ≥ min(v(x), v(y)) for all
x, y ∈ K∗ such that x+ y ∈ K∗.
Hint. We can assume v(x) ≥ v(y), that is xy−1 ∈ A. We get A 3 xy−1 + 1 = (x+ y)y−1, and thus
v(x+ y) ≥ v(y) = min(v(x), v(y)).

6.2.31 Page 72, Exercise 5.31

Statement. Conversely, let Γ be a totally ordered abelian group (written additively), and let K be
a field. A valuation of K with values in Γ is a mapping v : K∗ → Γ such that

(1) v(xy) = v(x) + v(y),

(2) v(x+ y) ≥ min(v(x), v(y)) or x+ y = 0,

for all x, y ∈ K∗. Show that the set of elements x ∈ K such that v(x) ≥ 0 if x 6= 0 is a valuation
ring of K. This ring is called the valuation ring of v, and the subgroup v(K∗) of Γ is the value
group of v.

Thus the concepts of valuation ring and valuation are essentially equivalent.

Comments. There are typos in the statement given in the book. The proof is left to the reader.

6.2.32 Page 72, About Exercise 5.31

Let J be a set; for each j ∈ J let Aj and Bj be two valuation domains with same value group Gj ; let
Gj,∞ be to the totally ordered commutative monoid obtained by adjoining to Gj a largest element,
denoted ∞, such that ∞+ x =∞ for all x ∈ Gj,∞; let vj : Aj → Gj,∞ and wj : Bj → Gj,∞ be the
respective valuations; let aj ⊂ Aj and bj ⊂ Bj be ideals such that vj(aj) = wj(bj) for all j, let A
and B be the respective products of the Aj/aj and the Bj/bj.

Proposition 76. In the above setting, the spectra of A and B are homeomorphic.

Proof. The proof will actually give a description of the spectra.

Let j be in J . Let Gj,∞,≥0 be the totally ordered commutative submonoid of nonnegative
elements in Gj,∞; let Mj be the totally ordered commutative monoid Gj,∞,≥0/∼, where ∼ is the
congruence defined by x ∼ y if and only if x, y ∈ vj(aj); let M be the product of the Mj; and let
v : A→M be the map induced by the vj.

Let I be the set of those subsets I ⊂ M which are upward closed and satisfy x ∧ y ∈ I
whenever x, y ∈ I. Then I has an obvious structure of lattice for which we have I ∧ I ′ = I ∩ I ′ and
I ≤ I ′ ⇐⇒ I ⊂ I ′ for all I, I ′ ∈ I. Let P be the sub-poset of I formed by the sets P ∈ I such
that x, y ∈M \ P implies x+ y /∈ P .

We leave it to the reader to check that v induces a lattice isomorphism from the lattice of ideals
of A to I, and that v(a) ∈ P if and only if a is prime. This implies the proposition.
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6.2.33 Page 72, Exercise 5.32

Statement. (a) Let Γ be a totally ordered abelian group. A subgroup ∆ of Γ is isolated in Γ if,
whenever 0 ≤ β ≤ α and α ∈ ∆, we have β ∈ ∆. Let A be a valuation ring of a field K, with value
group Γ (Exercise 31; Section 6.2.31 p. 118). If p is a prime ideal of A, show that v(A \ p) is the set
of elements ≥ 0 in an isolated subgroup ∆ of Γ, and that the mapping so defined of Spec(A) into
the set of isolated subgroups of Γ is bijective.

(b) If p is a prime ideal of A, what are the value groups of the valuation rings A/p, Ap?

Hints. (a) For any domain A, let A∗, A0, and Q(A) denote respectively the group of units of
A, the monoid of nonzero elements of A, and the field of fractions of A. For any totally ordered
multiplicative abelian group G, let G+ denote the monoid of elements ≥ 1.

Let A be a valuation domain. Recall that the group Γ(A) := Q(A)∗/A∗, written additively, is
the group of values of A, that it is totally ordered, that we have Γ(A)+ = A0/A∗, and that the
canonical projection Q(A)∗ → Γ(A) is designated by v.

Let p be a prime ideal of A, set S := A \ p and let ∆ be the subgroup of Γ := Γ(A) generated by
S/A∗. If 〈S〉 is the subgroup of Q(A)∗ generated by S, then we have ∆ = 〈S〉/A∗.

Let us show that ∆ is isolated. It suffices to prove that 0 < β < α and α ∈ ∆ implies β ∈ ∆.
Say that α is represented by s ∈ S and β by b ∈ A0. By assumption we have sb−1 = a ∈ A, that is
s = ab, which implies b ∈ S, that is β ∈ ∆.

The map p 7→ ∆ is clearly injective. To show that it is surjective let ∆ be an isolated subgroup
of Γ, and set

p :=
(
A \ v−1(∆+)

)
∪ {0} ⊂ A.

It suffices to verify that p is a prime ideal. Let a, b ∈ p and let us check that a + b ∈ p. We can
assume a+ b 6= 0. If a+ b was not in p we would get v(a+ b) ≥ min(v(a), v(b)), and a or b would
not be in p by isolation of ∆. Let p ∈ p and a ∈ A and let us check that ap ∈ p. Again we can
assume ap 6= 0, and we get v(ap) = v(a) + v(p) > v(p), which entails ap ∈ p. Finally, if s, t /∈ p,
then st /∈ p because ∆ is a subgroup of Γ.

(b) We claim

Γ(Ap) '
Γ

∆
(45)

and
Γ(A/p) ' ∆ (46)

[isomorphisms of totally ordered abelian groups].

Proof of (45):

Γ(Ap) = Q(A)∗/(Ap)
∗ = Q(A)∗/〈S〉 ' Q(A)∗/A∗

〈S〉/A∗
=

Γ

∆
.

Proof of (46): Set A := A/p and, for any a ∈ A, write a for the image of a in A. As Γ(A) and ∆
are totally ordered abelian groups, it suffices to show

Γ(A)+ ' ∆+ [isomorphism of totally ordered monoids]. (47)

119 Thursday 5th August, 2021 08:42



Proof of (47): We have Γ(A)+ = (A)0/(A)∗ and ∆+ = S/A∗. Define the monoid morphism
f : S → (A)0 by f(s) := s, and consider the diagram

S (A)0

S/A∗ (A)0/(A)∗,

f

p q

f

where p and q are the canonical projections. We claim that there is an induced morphism f :
S/A∗ → (A)0/(A)∗, and that f is bijective. The existence of f and its surjectivity are easy to prove.
The injectivity of f follows from the fact that, A being local, any unit of A is the image of a unit of
A. This proves (47), and thus (46).

6.2.34 Page 72, Exercise 5.33

Statement. Let Γ be a totally ordered abelian group. We shall show how to construct a field K
and a valuation v of K with Γ as value group. Let k be any field and let A = k[Γ] be the group
algebra of Γ over k. By definition, A is freely generated as a k-vector space by elements xα (α ∈ Γ)
such that xαxβ = xα+β. Show that A is an integral domain.

If u = λ1xα1 + · · · + λnxαn is any non-zero element of A, where the λi, are all 6= 0 and
α1 < · · · < αn, define v0(u) to be α1. Show that the mapping v0 : A− {0} → Γ satisfies conditions
(1) and (2) of Exercise 31 [Section 6.2.31 p. 118].

Let K be the field of fractions of A. Show that v0 can be uniquely extended to a valuation v of
K, and that the value group of v is precisely Γ.

Solution. Left to the reader.

6.2.35 Page 73, Exercise 5.34

Statement. Let A be a valuation ring and K its field of fractions. Let f : A → B be a ring
homomorphism such that f ∗ : Spec(B)→ Spec(A) is a closed mapping. Then if g : B → K is any
A-algebra homomorphism (i.e., if g ◦ f is the embedding of A in K) we have g(B) = A.

[Let C = g(B); obviously C ⊃ A. Let n be a maximal ideal of C. Since f ∗ is closed, m = n ∩ A is
the maximal ideal of A, whence Am = A. Also the local ring Cn dominates Am. Hence by Exercise 27
[Section 6.2.27 p. 116] we have Cn = A and therefore C = A.]

Hint. In the hint of the book we must check that Cn dominates A, that is m ⊂ nn. But we have
m = A ∩ n ⊂ nn.

6.2.36 Page 73, Exercise 5.35

Statement. From Exercises 1 and 3 [Section 6.2.1 p. 103 and Section 6.2.3 p. 103] it follows that, if
f : A→ B is integral and C is any A-algebra, then the mapping (f ⊗1)∗ : Spec(B⊗AC)→ Spec(C)
is a closed map.
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Conversely, suppose that f : A→ B has this property and that B is an integral domain. Then
f is integral. [Replacing A by its image in B, reduce to the case where A ⊂ B and f is the
injection. Let K be the field of fractions of B and let A′ be a valuation ring of K containing
A. By (5.22) [Corollary 74 p. 102] it is enough to show that A′ contains B. By hypothesis
Spec(B ⊗A A′)→ Spec(A′) is a closed map. Apply the result of Exercise 34 [Section 6.2.35] to the
homomorphism B ⊗A A′ → K defined by b⊗ a′ 7→ ba′. It follows that ba′ ∈ A′ for all b ∈ B and all
a′ ∈ A′; taking a′ = 1, we have what we want.]

Show that the result just proved remains valid if B is a ring with only finitely many minimal
prime ideals (e.g., if B is Noetherian). [Let pi be the minimal prime ideals. Then each composite
homomorphism A → B → B/pi is integral, hence A →

∏
(B/pi) is integral, hence A → B/N is

integral (where N is the nilradical of B), hence finally A→ B is integral.]

Hints. Replacing the commutative diagram

A B

K
i

f

g

implicit in Exercise 5.34 [Section 6.2.35 p. 120] with

A′ B ⊗A A′

K,

f

we get BA′ = A′ [as subrings of K], and thus B ⊂ A′.

In the second part of this exercise we can use the fact that the natural morphism B/N→
∏

iB/pi
is injective.
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7 About Chapter 6

7.1 Comments

7.1.1 Jordan-Hölder Theorem

The following proof is taken from Jeffrey Daniel Kasik Carlson’s text cited at the beginning of the
present text.

Consider an A-module M of finite length. Proposition 6.7, stated and proved on p. 77 of the
book, says that all composition series of M have the same length, and the book claims (p. 77) that
the multiset of isomorphism classes of quotients of successive terms is the same for any choice of
composition series. This claim is not proved, but the authors write that the proof is the same as for
finite groups. We recall it here.

Let A be a ring. In this section “module” means “A-module”. For any submodule N of any
module M , we write M Na to indicate that a is the isomorphism class of M/N . Moreover,
if α is the composition series

M = M0 M1 · · · Mn = 0,
a1 a2 an

we denote by χ(α) the element a1 + · · ·+ an of the free abelian group over the set {a1, . . . , an}.
Here is what we want to show:

If
M = N0 N1 · · · Nn = 0

b1 b2 bn

is another composition series, denoted β, for the same module M , then we have χ(α) = χ(β).

The proof proceeds by induction on the length `(M) of M . If `(M) = 0 or 1, we are done.
Assume inductively that the result holds for all modules of length less than n, and let `(M) = n.
As indicated above, we suppose that M has the two composition series:

M

M1 N1

M2 N2

...
...

Mn Nn.

a1 b1

a2 b2

a3 b3

an bn
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Case 1: M1 = N1. We get a1 = b1 and

M

M1

M2 N2

...
...

Mn Nn,

a1

a2 b2

a3 b3

an bn

and we are done because the inductive hypotheses yields a2 + · · ·+ an = b2 + · · ·+ bn.

Case 2: M1 6= N1. Setting P2 := M1 ∩N1, we get

M

M1 N1

M2 P2 N2

M3 P3 N2

...
...

...

Mn Pk Nn.

a1 b1

a2
b1

b2
a1

a3 c3 b3

a4 c4 b4

an cn cn

The inductive hypotheses implying

a2 + · · ·+ an = b1 + c3 + · · ·+ cn

and
a1 + c3 + · · ·+ cn = b2 + · · ·+ bn,

we get

a1 + a2 + · · ·+ an = a1 + b1 + c3 + · · ·+ cn = b1 + a1 + c3 + · · ·+ cn = b1 + b2 + · · ·+ bn.

This completes the proof.
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7.2 Exercises

7.2.1 Page 78, Exercise 6.1

Statement. (i) Let M be a Noetherian A-module and u : M →M a module homomorphism. If u
is surjective, then u is an isomorphism.

(ii) If M is Artinian and u is injective, then again u is an isomorphism. [For (i), consider the
submodules Ker(un); for (ii), the quotient modules Coker(un).]

Solution. (i) Note that M is finitely generated by Proposition 6.2 p. 75 of the book [see statement
below], and that a surjective endomorphism of a finitely generated module is bijective by Corollary 13
p. 34.

(ii) Left to the reader. [I think “for (ii), the quotient modules Coker(un)” should be “for (ii), the
submodules Im(un)”.]

Here is the statement of Proposition 6.2 p. 75 of the book:

Proposition 77 (Proposition 6.2). M is a Noetherian A-module ⇐⇒ every submodule of M is
finitely generated.

7.2.2 Page 78, Exercise 6.2

Statement. Let M be an A-module. If every non-empty set of finitely generated submodules of M
has a maximal element, then M is Noetherian.

Hint. Use Proposition 6.2 of the book stated above.

7.2.3 Page 78, Exercise 6.3

Statement. Let M be an A-module and let N1, N2 be submodules of M . If M/N1 and M/N2 are
Noetherian, so is M/(N1 ∩N2). Similarly with Artinian in place of Noetherian.

Hint. Consider the exact sequences

0→ N1

N1 ∩N2

→ M

N1 ∩N2

→ M

N1

→ 0

and
0→ N1 +N2

N2

→ M

N2

→ M

N1 +N2

→ 0.

Mild generalization: If N1, . . . , Nk are submodules of M such that M/Ni is noetherian for all i,
then M/(N1 ∩ · · · ∩Nk) is noetherian.

7.2.4 Page 78, Exercise 6.4

Statement. (a) Let M be a Noetherian A-module and let a be the annihilator of M in A. Prove
that A/a is a Noetherian ring.
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(b) If we replace “Noetherian” by “Artinian” in this result, is it still true?

Hints. (a) Use the above generalization and Proposition 6.2 p. 75 of the book.

(b) See Example 3 p. 74 of the book.

7.2.5 Page 79, Exercise 6.5

Statement. A topological space X is said to be Noetherian if the open subsets of X satisfy
the ascending chain condition (or, equivalently, the maximal condition). Since closed subsets are
complements of open subsets, it comes to the same thing to say that the closed subsets of X
satisfy the descending chain condition (or, equivalently, the minimal condition). Show that, if X is
Noetherian, then every subspace of X is Noetherian, and that X is quasi-compact.

Hints. To show that every subspace of X is Noetherian one can use the maximal condition for
open subsets. To show that X is quasi-compact one can use the maximal condition for the sets of
finite unions of open sets occurring in a given open cover.

7.2.6 Page 79, Exercise 6.6

Statement. Prove that the following are equivalent:

(i) X is Noetherian.

(ii) Every open subspace of X is quasi-compact.

(iii) Every subspace of X is quasi-compact.

Hint. To show that (ii) implies (i), note that the chain U1 ⊂ U2 ⊂ · · · of open subsets covers the
open subset U1 ∪ U2 ∪ · · ·

7.2.7 Page 79, Exercise 6.7

Statement. A Noetherian space is a finite union of irreducible closed subspaces. [Consider the set
Σ of closed subsets of X which are not finite unions of irreducible closed subspaces.] Hence the set
of irreducible components of a Noetherian space is finite.

See Exercises 1.19 and 1.20 p. 13 of the book.

Solution. This is a copy-and-paste of Jeffrey Daniel Kasik Carlson’s solution in

https://spaces.ac.cn/usr/uploads/2017/07/4208763092.pdf

Suppose, for a contradiction, that the result is false. Then there is a noetherian space X such
that X is an element of the set Σ of closed subsets of X that are not unions of finitely many
irreducible closed subspaces. Since Σ is nonempty and X is noetherian, Σ has a minimal element
M . Since M is not a finite union of irreducible sets, it is not itself an irreducible set. Thus it is
reducible, and so a union of two proper closed subspaces C and D. But C and D are both finite
unions of irreducible closed sets, so M is as well, contradiction.

Recall from Exercise 1.20iii p. 13 of the book that the irreducible components of a space X are
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the maximal irreducible subsets of X, and that they are closed and cover X. Since a noetherian
space X is a union of finitely many irreducible closed subspaces, it is a fortiori a union of finitely
many maximal such, so it is a union of finitely many irreducible components. Let n be the least
possible number needed to cover X, and let C1, . . . , Cn be irreducible components covering X. If C
is any other irreducible closed set, then C =

⋃n
j=1 (C ∩Cj) expresses C as a union of closed subsets;

as C is irreducible, C ⊂ Cj for some j. Thus C1, . . . , Cn are the only irreducible components of X.

7.2.8 Page 79, Exercise 6.8

Statement. If A is a Noetherian ring then Spec(A) is a Noetherian topological space. Is the
converse true?

Hint. If V (a1) ⊃ V (a2) ⊃ · · · , with r(ai) = ai, is a weakly decreasing chain of closed subsets of X,
then a1 ⊂ a2 ⊂ · · · is a weakly increasing chain of ideals of A.

7.2.9 Page 79, Exercise 6.9

Statement. Deduce from Exercise 6.8 that the set of minimal prime ideals in a Noetherian ring is
finite.

Hint. See Exercises 1.20iv p. 13 and 6.7 p. 79 [see Section 7.2.7 p. 125] of the book.

A slightly stronger result holds: If Spec(A) is noetherian, then the set of minimal prime ideals
in A is finite.

7.2.10 Page 79, Exercise 6.10

Statement. If M is a Noetherian module (over an arbitrary ring A) then Supp(M) is a closed
Noetherian subspace of Spec(A).

Solution. It suffices to note that Supp(M) = V (a) with a := Ann(M) by Exercise 3.19v p. 46 of
the book [Section 4.2.19 p. 70]; that V (a) ' Spec(A/a); that A/a is noetherian by Exercise 6.4 p. 78
of the book [cf. Section 7.2.4 p. 124 above]; and that Spec(A/a) is noetherian by Exercise 6.8 p. 79
of the book [cf. Section 7.2.8 p. 126 above].

7.2.11 Page 79, Exercise 6.11

Statement. Let f : A→ B be a ring homomorphism and suppose that Spec(B) is a Noetherian
space (Exercise 5 [Exercise 7.2.5 p. 125]). Prove that f ∗ : Spec(B)→ Spec(A) is a closed mapping
if and only if f has the going-up property (Chapter 5, Exercise 10).

Solution. Since it is stated in Exercise 5.10i p. 68 of the book that f has the going-up property if
f ∗ is closed, it suffices to prove the converse. So, assuming that f has the going-up property, let us
show that f ∗ is closed.

Let b be a radical ideal of B, and let a be its contraction in A. It suffices to prove f ∗(V (b)) = V (a).
By the previous Exercises, there are q1, . . . , qn ∈ V (b) such that the set of minimal elements of V (b)
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is {q1, . . . , qn} and V (b) =
⋃n
i=1 V (qi). Let pi be the contraction of qi in A. It suffices to prove:

V (a) =
n⋃
i=1

V (pi) (48)

and
f ∗(V (qi)) = V (pi) for all i. (49)

Condition (49) follows from the going-up property. To prove (48), let p be in V (a). It is enough to
check that p is in V (pi) for some i. We have

p ⊃ a = bc =
(⋂

qi

)c

=
⋂

pi,

and Proposition 4 p. 14 implies p ⊃ pi for some i, as was to be shown.

7.2.12 Page 79, Exercise 6.12

Statement. Let A be a ring such that Spec(A) is a Noetherian space. Show that the set of prime
ideals of A satisfies the ascending chain condition. Is the converse true?

Hint. To show that the converse is not true, let K be a field and A := KN the ring of K-valued
functions on N. As A is absolutely flat, its prime ideals are maximal. Hence it suffices to show that
there is an ascending chain a1 < a2 < · · · of radical ideals of A. We can set

an := {f ∈ A | f(k) = 0 for all k > n}.
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8 About Chapter 7

8.1 Comments

8.1.1 Page 80, a remark

Here is an example of a descending chain A0 ⊃ A1 ⊃ · · · such that each An is noetherian but the
intersection is not.

Consider the submonoid Mn of N2 defined by

Mn := {a ∈ N2 | a2 ≥ 1 ∨ a1 ≥ n} ⊃Mn+1,

note that we have Mn ⊃Mn+1, and that

M :=
⋂
n

Mn = {a ∈ N2 | a2 ≥ 1}

is not finitely generated. Observe that the finite set

Gn := {(n, 0), (n+ 1, 0), . . . , (2n− 1, 0), (0, 1), (1, 1), (2, 1), . . . , (n− 1, 1)} ⊂Mn

generates Mn.

Here is a picture for n = 3: The black dots are the points of G3, the white dots are the points
on M3 \G3, the crosses are the points in N2 \M3.

2 ◦ ◦ ◦ ◦ ◦ ◦ ◦
1 • • • ◦ ◦ ◦ ◦
0 × × × • • • ◦

0 1 2 3 4 5 6.

Let K be a field and x and y indeterminates, and set An := K[(xiyj)(i,j)∈Gn ], that is, An is the
sub-K-algebra of K[x, y] generated by {xiyj | (i, j) ∈ Gn}. Then the An satisfy the conditions
stated at the beginning of this section.

8.1.2 Page 81, Hilbert Basis Theorem

Theorem 78. If M is a noetherian A-module and t is an indeterminate, then M [t] is a noetherian
A[t]-module. In particular, if A is a noetherian ring, then so is A[t].

Proof. Assume by contradiction some sub-A[t]-module of A[t] is not finitely generated, and let
f1, f2, . . . be a sequence inM [t] such that the sequence Ni := A[t]f1 + · · ·+A[t]fi of sub-A[t]-modules
of A[t] increases, and deg fi is minimum for this condition. Let xi ∈M be the leading coefficient of fi;
let n be such that Ax1 + · · ·+Axn is the sub-A-module of M generated by the xi; let a1, . . . , an ∈ A
satisfy xn+1 = a1 x1 + · · ·+ an xn; set d(i) := deg fn+1 − deg fi,

g :=
n∑
i=1

ai t
d(i)fi ∈ Nn ⊂ A[t];

and observe that deg(fn+1 − g) is less than deg fn+1, which is impossible.
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8.1.3 Page 82, Proof of Proposition 7.8

Kevin Buzzard writes in this MathOverflow answer:
The following slip on p. 82 was found by Kenny Lau when he was formalising Proposition 7.8 in Lean: In the line

"Substituting (1) and making repeated use of (2) shows that each element of C is..."

there’s an implicit induction proof, but the base case where the element is 1 is not dealt with. This can be fixed in a
number of ways, e.g. by adding a new condition

(0) 1 =
∑
i

biyi

and using the bi as further generators of B0.

Another way of fixing this would be to take 1 as one of the yj.

8.1.4 Page 83, Lemma 7.12

The statement of Lemma 7.12, which is is: “In a Noetherian ring every irreducible ideal is primary”,
should be replaced by “In a Noetherian ring every proper irreducible ideal is primary”.

In the proof, the equalities xy = 0 and Ann(xn) = Ann(xn+1) imply (xn) ∩ (y) = (0). Indeed,
if a is in (xn) ∩ (y) we have a = bxn = cy for some b and c in A, and thus bxn+1 = cyx = 0. Now
bxn+1 = 0 implies bxn = 0, that is a = 0.

Note that primary ideals in noetherian rings can be reducible: the ideal (x2, xy, y2) of K[x, y]
[where K is a field, x and y are indeterminates] is (x, y)-primary but reducible because (x, y2) ∩
(y, x2) = (x2, xy, y2).

Here is a related result:

The following conditions on a ring A are equivalent:

(a) the Krull dimension of A is at most zero,

(b) A/N is absolutely flat, where N is the nilradical of A,

(c) for each a in A the descending chain (a) ⊃ (a2) ⊃ · · · stabilizes.
Proof. (a) =⇒ (b): We can assume N = (0). Let a be in A. It suffices to show (a) = (a2). Let p
be a prime ideal of A. Then the nilradical of Ap is (0) and pp is the only prime ideal of Ap. This
implies that Ap is a field, and we get successively the equalities

(a)p = (a2)p, (a)p/(a
2)p = (0), ((a)/(a2))p = (0).

As p is an arbitrary prime ideal of A, this forces (a) = (a2).

(b) =⇒ (c): With obvious notation we have a = a2b for some b in A, that is (a− a2b)n = 0 for some
n ≥ 1. This is easily seen to imply an+1 ∈ (an) and thus (an+1) = (an).

(c) =⇒ (a): Let p be a prime ideal of A and let a be in A \ p. We have an(1− ab) = 0 for some b in
A and some n in N. In particular an(1− ab) ∈ p, and thus 1− ab ∈ p. This implies that A/p is a
field, and therefore that p is maximal. �
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8.1.5 Page 83, Theorem 7.13

Recall the statement:

In a Noetherian ring A every ideal has a primary decomposition.

Let E be a subset of a ring A. Recall that, if A is noetherian, we have, by Section 2.2.9 p. 21
V (E) =

⋃
p∈M V (p), where M is the set of minimal elements of V (E).

Assume now that A is noetherian.

Then the set M is finite. As a result, we have

The topology of Spec(A) depends only on its poset structure.

More precisely:

A subset of Spec(A) is closed if and only if it is a finite union of subsets of the form V (p) with
p ∈ Spec(A).

Equivalently:

The closed subsets of Spec(A) are the closures of the finite subsets.

8.2 Exercises

8.2.1 Page 84, Exercise 7.1

Statement. Let A be a non-Noetherian ring and let Σ be the set of ideals in A which are not
finitely generated. Show that Σ has maximal elements and that the maximal elements of Σ are
prime ideals.

Hence a ring in which every prime ideal is finitely generated is Noetherian (I. S. Cohen).

Solution. Following the hint in the book, let a be a maximal element of Σ. Suppose by contradiction
that there exist x, y ∈ A such that x /∈ a, y /∈ a, xy ∈ a.

There are si ∈ A such that a + (x) = (s1, . . . , sn). We have si = bi + tix with bi ∈ a, ti ∈ A.
Putting b = (b1, . . . , bn) ⊂ a, we get a + (x) = b + (x).

We claim a = b + x (a : x).

The inclusion b + x (a : x) ⊂ a is clear. To prove the other inclusion, let a be in a and let us
show a ∈ b + x (a : x). We have a =

∑
ui (bi + tix) = b+ vx with ui ∈ A, b ∈ b, v ∈ A. This yields

vx = a− b ∈ a, and thus v ∈ (a : x), proving the claim.

Note that y is in (a : x) but not in a. This implies that (a : x) is finitely generated, and thus, in
view of the claim, that a is finitely generated, contradiction.

8.2.2 Page 84, Exercise 7.2

Statement. Let A be a Noetherian ring and let f =
∑∞

n=0 an x
n ∈ A[[x]]. Prove that f is nilpotent

if and only if each an is nilpotent.

130 Thursday 5th August, 2021 08:42



Solution. In view of Exercise 1.5ii [Section 2.2.6 p. 20] it suffices to show: each ai nilpotent =⇒ f
nilpotent. We have ai ∈ N for all i. Recall Corollary 7.15 p. 83 of the book: In a noetherian ring
the nilradical is nilpotent. We have f ∈ N[[x]], hence fn ∈ Nn[[x]] for all n. Since Nn = (0) for n
large enough by Corollary 7.15, we get fn = 0 for n large enough.

8.2.3 Page 84, Exercise 7.3

Statement. Let a be an irreducible ideal in a ring A. Then the following are equivalent:

(i) a is primary,

(ii) for every multiplicatively closed subset S of A we have (S−1a)c = (a : s) for some s ∈ S,
(iii) for every x ∈ A the sequence (a : xn) is stationary.

Hints.

(i) =⇒ (ii): Use Proposition 4.8 p. 53. [This implication holds even if a is reducible.]

(ii) =⇒ (iii): Use Proposition 3.11ii p. 41 [Proposition 33 p. 58]. [This implication also holds even if
a is reducible.] [Hint: set S := xN.]

(iii) =⇒ (i): Use the proof of Lemma 7.12 p. 83.

8.2.4 Page 84, Exercise 7.4

Statement. Which of the following rings are Noetherian?

(i) The ring of rational functions of z having no pole on the circle |z| = 1.

(ii) The ring of power series in z with a positive radius of convergence.

(iii) The ring of power series in z with an infinite radius of convergence.

(iv) The ring of polynomials in z whose first k derivatives vanish at the origin (k being a fixed
integer).

(v) The ring of polynomials in z, w all of whose partial derivatives with respect to w vanish for
z = 0.

In all cases the coefficients are complex numbers.

Solution. Let A be the ring in question.

(i) Hint: we have A = S−1C[z] for some multiplicative subset S, so A is noetherian.

(ii) Hint: A is a principal ideal domain [the only ideals being the (zn)].

(iii) A is not noetherian. Proof: Set f(z) := sin(πz) and

fn(z) :=
f(z)

(z − 1) · · · (z − n)

for n = 1, 2, . . . and note that we have (f1) < (f2) < · · · ⊂ A [details left to the reader].

131 Thursday 5th August, 2021 08:42



(iv) We prove a slightly more general result: If B is a noetherian ring and X is an indeterminate,
then the ring A := B +Xk+1B[X] is noetherian. Indeed, we have

A = B[Xk+1] +Xk+2B[Xk+1] + · · ·+X2k+2B[Xk+1],

so A is a noetherian module over the subring B[Xk+1], a fortiori a noetherian ring.

(v) We prove a slightly more general result. Let B be a ring, let X and Y be indeterminates, and
set A := B[X] +XB[X, Y ]. Then A is a subring of B[X, Y ]. Claim 1: A is not noetherian. [The
case in the book is B := C.] Set

C := A/(X2) = B[x, Y ] = B[x] + xB[x, Y ] = B + xB + xB[Y ] = B[x][Y ],

where x is the image of X; in particular x2 = 0. It suffices to prove: Claim 2: C is not noetherian.
It suffices to show that we have xY n+1 /∈ (xY, xY 2, . . . , xY n) in C. Otherwise we would get

xY n+1 = b1xY + b2xY
2 + · · ·+ bnxY

n

with bi ∈ B, contradiction.

8.2.5 Page 84, Exercise 7.5

Statement. Let A be a Noetherian ring, B a finitely generated A-algebra, G a finite group of
A-automorphisms of B, and BG the set of all elements of B which are left fixed by every element of
G. Show that BG is a finitely generated A-algebra.

Hint. Use Exercise 5.12 p. 68 [see Section 6.2.12 p. 107 above] and Proposition 7.8 p. 81.

8.2.6 Page 84, Exercise 7.6

Statement. If a finitely generated ring is a field K, it is a finite field.

Hint. Let A be the prime subring of K. Then A = Z or A = Fp for some prime p. Proposition 5.7
p. 61 of the book and Noether Normalization Theorem [Theorem 75 p. 109] imply that the first case
is impossible and that, in the second case, K is a finite degree extension of Fp.

8.2.7 Page 85, Exercise 7.7

Statement. Let X be an affine algebraic variety given by a family of equations fα(t1, . . . , tn) = 0
(α ∈ I) (Chapter 1, Exercise 27 [Section 2.2.28 p. 31]). Show that there exists a finite subset I0 of I
such that X is given by the equations fα(t1, . . . , tn) = 0 for α ∈ I0.

Solution. Since k[t1, . . . , tn] is noetherian, there is a finite subset I0 of I such that the ideal
generated by the fα(t1, . . . , tn) with α ∈ I is also generated by the fα(t1, . . . , tn) with α ∈ I0.
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8.2.8 Page 85, Exercise 7.9

Hints. The inclusion
am1 ⊂

(x0

1
, · · · , xt

1

)
holds by the choice of xs+1, . . . , xt.

The inclusion
amr+1 ⊂

(x0

1
, · · · , xt

1

)
holds by the choice of x1 [indeed, x1/1 is a unit of Amr+1 ].

If m is a maximal ideal distinct from all the mi, then the inclusion

am ⊂
(x0

1
, · · · , xt

1

)
holds by the choice of m1, . . . ,mr+s [indeed, x0/1 is a unit of Am].

8.2.9 Page 85, Exercise 7.10

See Theorem 78 p. 128 above.

8.2.10 Page 85, Exercise 7.11

Statement. Let A be a ring such that each local ring Ap is Noetherian. Is A necessarily Noetherian?

Hints. See Exercises 2.28 and 3.10ii [cf. Section 4.2.10 p. 65] pages 35 and 44 of the book.

8.2.11 Page 85, Exercise 7.13

Statement. Let f : A→ B be a ring homomorphism of finite type and let f ∗ : Spec(B)→ Spec(A)
be the mapping associated with f . Show that the fibers of f ∗ are Noetherian subspaces of B. [Typo:
it should be “subspaces of Spec(B)”.]

Hint. Let p be in Spec(A) and set k := Ap/pp. By Exercise 3.21iv p. 47 of the book [Section 4.2.21
p. 72 above] and Exercise 6.8 p. 79 of the book [cf. Section 7.2.8 p. 126 above], it suffices to show
that k ⊗A B is noetherian. To do this, note that there are indeterminates x1, . . . , xn such that B is
a quotient of A[x1, . . . , xn], and conclude that k ⊗A B is a quotient of k[x1, . . . , xn].

8.2.12 Page 85, Exercise 7.14

Statement. Let k be an algebraically closed field, let A denote the polynomial ring k[t1, . . . , tn]
and let a be an ideal in A. Let V be the variety in kn defined by the ideal a, so that V is the set of
all x = (x1, . . . , xn) ∈ kn such that f(x) = 0 for all f ∈ a. Let I(V ) be the ideal of V , i.e. the ideal
of all polynomials g ∈ A such that g(x) = 0 for all x ∈ V . Then I(V ) = r(a).

Solution. This was proved in Paragraph 6.2.16 p. 111.
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8.2.13 Page 86, Exercise 7.15

Statement. Let A be a Noetherian local ring, m its maximal ideal and k its residue field, and let
M be a finitely generated A-module. Then the following are equivalent:

(i) M is free;

(ii) M is flat;

(iii) the mapping of m⊗M into A⊗M is injective;

(iv) TorAi (k,M) = 0.

[To show that (iv) =⇒ (i), let x1, . . . , xn be elements of M whose images in M/mM form a k-basis
of this vector space. By (2.8)5, the xi generateM . Let F be a free A-module with basis e1, . . . , en and
define φ : F →M by φ(ei) = xi. Let E = Ker(φ). Then the exact sequence 0→ E → F →M → 0
gives us an exact sequence

0→ k ⊗A E → k ⊗A F
1⊗φ−−→ k ⊗AM → 0.

Since k ⊗ F and k ⊗M are vector spaces of the same dimension over k, it follows that 1⊗ φ is an
isomorphism, hence k⊗E = 0, hence E = 0 by Nakayama’s Lemma (E is finitely generated because
it is a submodule of F , and A is Noetherian).]

Solution. Omitted.

8.2.14 Page 86, Exercise 7.16

Statement. Let A be a Noetherian ring, M a finitely generated A-module. Then the following are
equivalent:

(i) M is a flat A-module;

(ii) Mp is a free Ap-module, for all prime ideals p;

(iii) Mm is a free Am-module, for all maximal ideals m.

In other words, flat = locally free. [Use Exercise 15.]

Solution. Omitted.

8.2.15 Page 86, Exercise 7.17

Statement. Let A be a ring and M a Noetherian A-module. Show (by imitating the proofs of
(7.11) and (7.12)) that every submodule N of M has a primary decomposition (Chapter 4, Exercises
20-23).

Hint. Let M be a noetherian A-module whose zero submodule 0 ⊂M is irreducible. Let us show
that 0 is primary in M .

5Proposition 2.8 p. 22 of the book says “Let A be a local ring, m its maximal ideal, M a finitely generated
A-module, and xi (1 ≤ i ≤ n) elements of M whose images in M/mM form a basis of this vector space. Then the xi

generate M .”
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Let a be an element of A which is a zero-divisor in M . It suffices to show that a is nilpotent in
M .

The chain of submodules (0 : a) ⊂ (0 : a2) ⊂ · · · stabilizes. Say (0 : an) = (0 : an+1). It suffices
to show anM = 0.

Let x ∈M satisfy x 6= 0 and ax = 0. It is enough to prove anM ∩ Ax = 0.

Let y be in anM ∩ Ax = 0. We only need to show y = 0.

We have y = anz = bx for some z ∈M and some b ∈ A, and we get

ay = an+1z = abx = bax = 0,

and thus 0 = anz = y. This completes the proof.

8.2.16 Page 86, Exercise 7.18

Statement. Let A be a Noetherian ring, p a prime ideal of A, andM a finitely generated A-module.
Show that the following are equivalent:

(i) p belongs to 0 in M ;

(ii) there exists x ∈M such that Ann(x) = p;

(iii) there exists a submodule of M isomorphic to A/p.

Deduce that there exists a chain of submodules

0 = M0 ⊂M1 ⊂ · · · ⊂Mr = M

such that each quotient Mi/Mi−1 is of the form A/pi where pi is a prime ideal of A.

Solution. Recall Proposition 7.17 p. 83 of the book:

Proposition 79 (Proposition 7.17). Let a 6= (1) be an ideal in a Noetherian ring. Then the prime
ideals which belong to a are precisely the prime ideals which occur in the set of ideals (a : x) (x ∈ A).

This proposition and its proof can be generalized to modules according to the following table:

a 6= (1) x ∈ A qi pi = r(qi) ai pmi ⊂ qi ai ∩ pmi
N < M x ∈M Qi pi = r(Qi : M) Ni pmi M ⊂ Qi Ni ∩ pmi M

Here is the generalized proposition:

Proposition 80. Let A be a noetherian ring, let N be a proper submodule of an A-module M .
Then the prime ideals which belong to N in M are precisely the prime ideals which occur in the set
of ideals (N : x) (x ∈M).

The generalized proposition yields the equivalence (i)⇐⇒ (ii). The equivalence (ii)⇐⇒ (iii) is
clear. To prove the existence of the stated chain, the generalized proposition furnishes M0. The
same argument withM replaced byM/M0 gives a submoduleM ′

1 ofM/M0, and we can letM1 ⊂M
be the inverse image of M ′

1. Continuing this way, we get the desired chain after a finite number of
steps.
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8.2.17 Page 86, Exercise 7.19

Statement. Let a be an ideal in a Noetherian ring A. Let

a =
r⋂
i=1

bi =
s⋂
j=1

cj

be two minimal decompositions of a as intersections of irreducible ideals. Prove that r = s and that
[possibly after re-indexing the ci] r(bi) = r(ci) for all i. State and prove an analogous result for
modules.

Solution. Our goal is to prove:

Proposition 81. (a) Let A be a ring, M an A-module and W a submodule. Let

W =
n⋂
i=1

Ui =
m⋂
j=1

Vj

be two minimal decompositions of W as intersections of irreducible submodules. Then n = m.

(b) If M is noetherian, we have [possibly after re-indexing the Vj] r(Ui : M) = r(Vi : M) for all i.

Proof of Part (a) of Proposition 81.

Lemma 82. Let A be a ring, M an A-module and let U1, U2, V1,. . . , Vm, W be submodules of M
such that U1 is irreducible and W = U1 ∩U2 = V1 ∩ · · · ∩ Vm. Then we have W = Vi ∩U2 for some i.

We summarize Lemma 82 by saying that “we have replaced U1 with Vi in the equalityW = U1∩U2”.

Before proving Lemma 82, we show that it implies Part (a) of Proposition 81.

It suffices to derive a contradiction from the assumption n < m. Using Lemma 82 repeatedly we
get Vi1 ∩ · · · ∩ Vin = V1 ∩ · · · ∩ Vm, in contradiction with the minimality of the right side.

Proof of Lemma 82. We follow Matthew Emerton: https://mathoverflow.net/q/12322/461

We can assume W = 0. Let φi : M → M/Ui (i = 1, 2) and φ : M � M/U1 ×M/U2 be the
natural morphisms, note that φ is injective, and set Xj := Vj ∩ U2 for 1 ≤ j ≤ m.

It suffices to show Xj = 0 for some j.

We have
⋂
Xj ⊂

⋂
Vj = 0 and φ(Xj) = φ1(Xj)× 0. By injectivity of φ we also have⋂

φ(Xj) = φ
(⋂

Xj

)
= 0,

and thus
⋂
φ1(Xj) = 0. The zero submodule of M/U1 being irreducible, this implies φ1(Xj) = 0,

hence Xj = 0, for some j. This proves Lemma 82.

Part (a) of Proposition 81 has been proved, and it only remains to prove Part (b).
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Proof of Part (b) of Proposition 81. Recall the setting: A is a ring, M is a noetherian
A-module, W is a submodule,

W =
n⋂
i=1

Ui =
n⋂
j=1

Vj

are two minimal decompositions of W as intersections of irreducible submodules. We must show
that we have [possibly after re-indexing the Vj] r(Ui : M) = r(Vi : M) for all i.

Irreducible submodules being primary, the sets

{r(U1 : M), . . . , r(Un : M)} and {r(V1 : M), . . . , r(Vn : M)}

are equal. Denote this set by P , write [n] for the set {1, . . . , n} and define the maps f and g from
[n] to P by f(i) := r(Ui : M) and g(i) := r(Vi : M). It suffices to show that, for all p ∈ P , the fibers
f−1(p) and g−1(p) are equipotent.

Let I be an isolated subset of P . The Second Uniqueness Theorem for modules implies⋂
i∈f−1(I)

Ui =
⋂

i∈g−1(I)

Vi.

Then Part (a) of Proposition 81 entails that f−1(I) and g−1(I) are equipotent. In particular, if
p ∈ P is minimal, f−1(p) and g−1(p) have same cardinality, and an obvious induction completes the
proof.

8.2.18 Page 87, Exercise 7.20

Statement. Let X be a topological space and let F be the smallest collection of subsets of X which
contains all open subsets of X and is closed with respect to the formation of finite intersections and
complements.

(i) Show that a subset E of X belongs to F if and only if E is a finite union of sets of the form
U ∩ C, where U is open and C is closed.

(ii) Suppose that X is irreducible [see Section 2.2.20 p. 26 above] and let E ∈ F . Show that E is
dense in X [i.e., that E = X] if and only if E contains a non-empty open set in X.

Solution.

(i) Let F ′ be the set of those subsets E of X such that E is a finite union of sets of the form U ∩C,
where U is open and C is closed. It suffices to check that, if two sets are in F ′, then so are their
respective complements and their intersection. This is straightforward.

(ii) If E contains a non-empty open set U , then X = E ∪ U∗, where U∗ is the complement of U ,
and the irreducibility of X implies X = E. Conversely, if E = (U1 ∩ C1) ∪ · · · ∪ (Un ∩ Cn) [obvious
notation] is dense in X, then one of the Ui ∩ Ci is already dense in X. This implies Ci = X and
thus Ui ⊂ E.
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8.2.19 Page 87, Exercise 7.21

Statement. Let X be a Noetherian topological space [Chapter 6, Exercise 5 — see Section 8.2.18
p. 137 above] and let E ⊂ X. Show that E ∈ F if and only if Condition (?) below holds:

(?) for each irreducible closed set X0 ⊂ X, either E ∩X0 6= X0 or else E ∩X0 contains a non-empty
open subset of X0.

Solution. Let us denote by F(X) the set designated by F in Exercise 7.20 [see Section 8.2.18
p. 137 above].

To prove that E ∈ F(X) implies (?), note that E ∩ X0 ∈ F(X0) if E ∈ F(X) and use
Exercise 7.20.

To prove that (?) implies E ∈ F(X), we follow the hint, that is, we assume by contradiction
that (?) holds but that E is not in F := F(X).

Let Σ be the set of all closed subsets X ′ of X such that E ∩X ′ /∈ F .
Then Σ is nonempty because X ∈ Σ. Let X0 be a minimal element of Σ. In particular

E ∩X0 /∈ F . (50)

The subset X0 is irreducible, for if we had X0 = C ∪D with C,D closed and < X0, we would have
C,D /∈ Σ by minimality of X0, and thus E ∩ C and E ∩D would be in F , which would imply

F 3 (E ∩ C) ∪ (E ∩D) = E ∩ (C ∪D) = E ∩X0 /∈ F .

We claim
E ∩X0 = X0. (51)

To prove (51), assume by contradiction that we have E ∩X0 < X0. The minimality of X0 implies

E ∩ E ∩X0 ∈ F . (52)

We have E ∩X0 ⊂ E ∩ E ∩X0 because E ∩X0 ⊂ E and E ∩X0 ⊂ E ∩X0. This implies

E ∩X0 = E ∩ E ∩X0.

In view of (50) and (52), this gives the contradiction needed to prove (51).

Now (?) implies that there is a nonempty open subset U of X0 such that U ⊂ E.

We have U < X0 because U = X0 would imply F 3 X0 = E ∩X0 /∈ F by (50).

The set C := X0 \ U is closed in X, and we have X0 = U t C [disjoint union], U 6= ∅ 6= C, and
thus E ∩X0 = (E ∩ U) t (E ∩ C) = U t (E ∩ C). As U 6= ∅, we get E ∩ C < E ∩X0, and thus
E ∩ C ∈ F by minimality of X0. Then the above display implies E ∩X0 ∈ F , contradicting again
(50).

8.2.20 Page 87, Exercise 7.22

Statement. Let X be a Noetherian topological space and let E be a subset of X. Show that E
is open in X if and only if, for each irreducible closed subset X0 in X, either E ∩X0 = ∅ or else
E ∩X0 contains a non-empty open subset of X0.
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Solution. If E is open in X, then the indicated condition holds because E ∩X0 6= ∅ implies that
E ∩X0 is a non-empty open subset of X0 contained in E ∩X0.

Assume that E is not open in X. Set F := X \ E. Then F is not closed. Put

Σ := { X ′ ⊂ X| X ′ is closed, F ∩X ′ is not closed}.

In particular X belongs to Σ. Let X0 be a minimal element of Σ.

It suffices to show:

(a) X0 is irreducible,

(b) E ∩X0 6= ∅,

(c) E ∩X0 contains no non-empty open subset of X0.

Proof of (a): The conditions X0 = Y1 ∪ Y2 with Yi < X0 and Yi closed would imply F ∩ X0 =
(F ∩ Y1) ∪ (F ∩ Y2) with F ∩ Yi closed and F ∩X0 not closed, which is impossible.

Proof of (b): The equality E ∩X0 = ∅ would imply F ∩X0 = X0 with F ∩X0 not closed and X0

closed, contradiction.

Proof of (c): Assume E ∩X0 ⊃ U 6= ∅ with U open in X0. It suffices to derive a contradiction. Set
X1 := X0 \ U . We clearly have X1 < X0.

We claim: F ∩X1 = F ∩X0.

It is enough to show F ∩X0 ⊂ F ∩X1. Let a be in F ∩X0. As a cannot be in U [because this
would imply a ∈ E ∩ F = ∅], the point a is in X0 \ U = X1, and the claim is proved.

The claim implies X1 ∈ Σ, contradicting the minimality of X0. This completes the proof of (c).

8.2.21 Page 87, Exercise 7.23

Statement. Let A be a Noetherian ring, f : A→ B a ring homomorphism of finite type (so that
B is Noetherian). Let X = Spec(A), Y = Spec(B) and let f ∗ : Y → X be the mapping associated
with f . Then the image under f ∗ of a constructible subset E of Y is a constructible subset of X.

[By Exercise 20 [Section 8.2.18 p. 137] it is enough to take E = U ∩ C where U is open and C is
closed in Y ; then, replacing B by a homomorphic image, we reduce to the case where E is open in
Y . Since Y is Noetherian, E is quasi-compact and therefore a finite union of open sets of the form
Spec(Bg). Hence reduce to the case E = Y . To show that f ∗(Y ) is constructible, use the criterion of
Exercise 21 [Section 8.2.19 p. 137]. Let X0 be an irreducible closed subset of X such that f ∗(Y )∩X0

is dense in X0. We have f ∗(Y ) ∩X0 = f ∗(f ∗−1(X0)), and f ∗−1(X0) = Spec((A/p) ⊗A B), where
X0 = Spec(A/p). Hence reduce to the case where A is an integral domain and f is injective. If
Y1, . . . , Yn are the irreducible components of Y , it is enough to show that some f ∗(Yj) contains a
non-empty open set in X. So finally we are brought down to the situation in which A,B are integral
domains and f is injective (and still of finite type); now use Chapter 5, Exercise 21 [Section 6.2.21
p. 137] to complete the proof.]

Hints. The fact that “E is quasi-compact” in the hint of the book follows from Exercise 6.6 p. 79
of the book. The phrase “where X0 = Spec(A/p)” follows from Section 2.2.20 p. 26 above.
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Here are some details about various steps:

• Restriction to the case when A is a domain and f is injective: We have X0 = V (p) ' Spec(A/p)
for some p ∈ X. If f is the natural monomorphism A/p→ B/pe, then the diagram below, where
the vertical arrows are the obvious homeomorphisms, commutes:

Spec(B/pe) Spec(A/p)

f ∗−1(X0) X0.

f
∗

f∗

• Restriction to the case when A and B are domains and f is injective: As X is irreducible, at least
one of the f ∗(Yi) is dense. We have Yi ' Spec(B/q) for some q ∈ Y . We can replace B with B/q,
i.e. we can assume that B is a domain and f ∗(Y ) is dense, and Exercise 1.21v p. 13 of the book
[Section 2.2.22 p. 27] implies that f is injective.

• Last step: See Section 6.2.21 p. 113 above.

8.2.22 Page 87, Exercise 7.24

Statement. With the notation and hypotheses of Exercise 23 [Section 8.2.21 p. 139], f ∗ is an open
mapping ⇐⇒ f has the going-down property (Chapter 5, Exercise 10 [Section 6.2.10 p. 107]).
[Suppose f has the going-down property. As in Exercise 23 [Section 8.2.21 p. 139], reduce to proving
that E = f ∗(Y ) is open in X. The going-down property asserts that if p ∈ E and p′ ⊂ p then
p′ ∈ E: in other words, that if X0 is an irreducible closed subset of X and X0 meets E, then E ∩X0

is dense in X0. By Exercises 20 and 22 [Section 8.2.18 p. 137 and Section 8.2.20 p. 138], E is open
in X.]

Solution. Let us spell out the last two sentences of the hint.

Let p0 be in X, and set X0 := V (p0). Assuming that f has the going-down property, we want to
show that E := f ∗(Y ) is open in X. Suppose E ∩X0 6= ∅, and thus

p0 ∈ E (53)

[by the going-down property]. As E is constructible by Exercise 7.23, it suffices, in view of
Exercise 7.22, to show that E ∩X0 contains a nonempty open subset of X0, and Exercise 7.20ii [see
Section 8.2.18 p. 137 above] tells us that it is even enough to check the inclusion

X0 ⊂ E ∩X0. (54)

Setting a :=
⋂

p∈E∩X0
p, we get a ⊂ p0 because p0 ∈ E ∩X0 by (53), that is

X0 = V (p0) ⊂ V (a) = E ∩X0,

proving (54).
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8.2.23 Page 87, Exercise 7.25

Statement. Let A be Noetherian, f : A→ B of finite type and flat (i.e., B is flat as an A-module).
Then f ∗ : Spec(B) → Spec(A) is an open mapping. [Exercise 24 and Chapter 5, Exercise 11;
Section 8.2.22 p. 140 and Section 6.2.11 p. 107.]

Solution. Omitted. [The hint in the book is fairly complete.]

8.2.24 Page 88, Exercise 7.26

Statement. Let A be a Noetherian ring and let F (A) denote the set of all isomorphism classes of
finitely generated A-modules. Let C be the free abelian group generated by F (A). With each short
exact sequence 0→M ′ →M →M ′′ → 0 of finitely generated A-modules we associate the element
(M ′)− (M) + (M) of C, where (M) is the isomorphism class of M , etc. Let D be the subgroup of
C generated by these elements, for all short exact sequences. The quotient group C/D is called the
Grothendieck group of A, and is denoted by K(A). If M is a finitely generated A-module, let
γ(M), or γA(M), denote the image of (M) in K(A).

(i) Show that K(A) has the following universal property: for each additive function, λ on the
class of finitely generated A-modules, with values in an abelian group G, there exists a unique
homomorphism λ0 : K(A)→ G such that λ(M) = λ0(γ(M)) for all M .

(ii) Show that K(A) is generated by the elements γ(A/p), where p is a prime ideal of A. [Use
Exercise 18, Section 8.2.16 p. 135.]

(iii) If A is a field, or more generally if A is a principal ideal domain, then K(A) ' Z.
(iv) Let f : A→ B be a finite ring homomorphism. Show that restriction of scalars gives rise to a
homomorphism f! : K(B)→ K(A) such that fi(γB(N)) = γA(N) for a B-module N . If g : B → C
is another finite ring homomorphism, show that (g ◦ f)! = f! ◦ g!.

Hints. (i) Left to the reader.

(ii) In the notation of Exercise 18 Section 8.2.16 we have

γ(M) = γ(A/pr) + γ(Mr−1)

= γ(A/pr) + γ(A/pr−1) + γ(Mr−1)

...
= γ(A/pr) + γ(A/pr−1) + · · ·+ γ(A/p1).

(iii) If p is a nonzero prime ideal, we have 0 = γ(A)− γ(A) + γ(A/p) = γ(A/p) in K(A). This shows
that K(A) is generated by γ(A). Using again the notation of Exercise 18 Section 8.2.16, we have a
surjective rank morphism C → Z which induces by (i) a surjective morphism K(A)→ Z. This
implies K(A) ' Z.
(iv) Left to the reader.
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8.2.25 Page 88, Exercise 7.27

Statement. Let A be a Noetherian ring and let F1(A) be the set of all isomorphism classes of
finitely generated flat A-modules. Repeating the construction of Exercise 26 we obtain a group
K1(A). Let γ1(M) denote the image of (M) in K1(A).

(i) Show that tensor product of modules over A induces a commutative ring structure on K1(A),
such that γ1(M) · γ1(N) = γ1(M ⊗N). The identity element of this ring is γ1(A).

(ii) Show that tensor product induces a K1(A)-module structure on the group K(A), such that
γ1(M) · γ(N) = γ(M ⊗N).

(iii) If A is a (Noetherian) local ring, then K1(A) ' Z.
(iv) Let f : A→ B be a ring homomorphism, B being Noetherian. Show that extension of scalars
gives rise to a ring homomorphism f ! : K1(A) → K1(B) such that f !(γ1(M)) = γ1(B ⊗A M). [If
M is flat and finitely generated over A, then B ⊗A M is flat and finitely generated over B.] If
g : B → C is another ring homomorphism (with C Noetherian), then (f ◦ g)! = f ! ◦ g!.

(v) If f : A→ B is a finite ring homomorphism then

f!(f
!(x)y) = xf!(y)

for x ∈ K1(A), y ∈ K(B). In other words, regarding K(B) as a K1(A)-module by restriction of
scalars, the homomorphism f ! is a K1(A)-module homomorphism.

Remark. Since F1(A) is a subset of F (A) we have a group homomorphism ε : K1(A)→ K(A),
given by ε(γ1(M)) = γ(M). If the ring A is finite-dimensional and regular, i.e., if all its local rings
Ap are regular (Chapter 11) it can be shown that ε is an isomorphism.

Hints. (i) Hint: use Exercise 2.8i [Section 3.2.8 p. 38].

(ii) Left to the reader.

(iii) Hint: use Exercise 7.16 [Section 8.2.14 p. 134].

(iv) Left to the reader.

(v) Setting x = γ1A(M), y = γB(N) we get

f!(f
!(x)y) = f!(f

!(γ1A(M))γB(N)) = f!(γ1B(B ⊗AM)γB(N)) = f!(γB(N ⊗B B ⊗AM))

= f!(γB(M ⊗A N)) = γA(M ⊗A N)

and
xf!(y) = γ1A(M)f!(γB(N)) = γ1A(M)γA(N) = γA(M ⊗A N).
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9 About Chapter 8

9.1 Comments

9.1.1 Theorem 8.5 p. 90

Recall Theorem 8.5:

Theorem 83 (Theorem 8.5 p. 90 of the book). A ring A is Artin ⇐⇒ A is Noetherian and
dimA = 0.

Theorem 8.5 implies that an Artin ring A is a finite length A-module. In particular Propositions
6.7 and 6.8 p. 77 of the book apply to chains of ideals of A.

9.1.2 Proposition 8.6 p. 90

I suggest the following restatement of Proposition 8.6:

Let A be a noetherian local ring, m its maximal ideal. Then exactly one of the following two
statements is true:

(i) mn 6= mn+1 for all n and A is not Artin,

(ii) mn = 0 for some n, in which case A is an Artin local ring.

In particular
A is Artin ⇐⇒ m is nilpotent. (55)

By Proposition 8.6 p. 90 of the book [Section 9.1.2 p. 143] and Proposition 49 p. 86, we have:

Every proper ideal of an Artin local ring is m-primary (where m is the maximal ideal).

This fact is implicitly used in the proof of Theorem 8.7.

9.1.3 Theorem 8.7 p. 90

Recall the statement of the theorem:

Theorem 84 (Theorem 8.7 p. 90 of the book, structure theorem for Artin rings). An Artin ring A
is uniquely (up to isomorphism) a finite direct product of Artin local rings.

It seems to me that the second part of the proof of Theorem 8.7 can be simplified. We must
check the essential uniqueness of the decomposition of an Artin ring A as a finite product of Artin
local rings Ai. But, looking at minimal idempotents, one sees that, if a ring can be decomposed as
a product of finitely many local rings, such a decomposition is essentially unique. More precisely,
the kernels of the morphisms from the ring to the various factors are exactly those ideals which are
maximal among the proper ideals generated by an idempotent.
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9.1.4 Page 91, Proposition 8.8

Let A be an Artin local ring with maximal ideal m and consider the condition

(∗) there is an x in m such that every ideal of A is of the form (xr).

The proof of Proposition 8.8 shows that (∗) is equivalent to any of the conditions (i), (ii) or (iii).

9.2 Exercises

9.2.1 Page 91, Exercise 8.1

Statement. Let q1 ∩ · · · ∩ qn = (0) be a minimal primary decomposition of the zero ideal in a
Noetherian ring, and let qi be pi-primary. Let p(r)

i be the rth symbolic power of pi (Chapter 4,
Exercise 13; Section 5.3.10 p. 87). Show that for each i = 1, . . . , n there exists an integer ri such
that p(ri)

i ⊂ qi.

Suppose qi is an isolated primary component. Then Api is an Artin local ring, hence if mi is its
maximal ideal we have mr

i = (0) for all sufficiently large r, hence qi = p
(r)
i for all large r.

If qi is an embedded primary component, then Api , is not Artinian, hence the powers mr
i are all

distinct, and so the p
(r)
i are all distinct. Hence in the given primary decomposition we can replace

qi by any of the infinite set of pi-primary ideals p(r)
i where r ≥ ri and so there are infinitely many

minimal primary decompositions of (0) which differ only in the pi-component.

Solution. Reminder: Proposition 7.14 p. 83 of the book says that, in a noetherian ring, every ideal
a contains a power of its radical.

To show that for each i = 1, . . . , n there exists an integer ri such that p(ri)
i ⊂ qi, note that, by

Proposition 7.14 [see reminder above] there exists an integer ri such that (pi)
ri
pi ⊂ (qi)pi , and the

inclusion p
(ri)
i ⊂ qi follows by contraction.

In the second paragraph, we suppose in addition that qi is an isolated primary component. By
Corollary 46a p. 80 qi is the smallest pi-primary ideal. We have just shown that there exists an
integer r such that p(r)

i ⊂ qi. By Exercise 4.13i [Section 5.3.10 p. 87] p(r)
i is pi-primary. This implies

qi = p
(r)
i .

The claims in the second paragraph, follow from Proposition 8.6 p. 90 of the book [Section 9.1.2
p. 143].

9.2.2 Page 91, Exercise 8.2

Statement. Let A be a Noetherian ring. Prove that the following are equivalent:

(i) A is Artinian;

(ii) Spec(A) is discrete and finite;

(iii) Spec(A) is discrete.
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Hint. Use Exercise 1.22 [Section 2.2.23 p. 28], Theorem 83 p. 143 [recall that Theorem 83 says
that a ring A is Artin ⇐⇒ A is Noetherian and dimA = 0] and Theorem 84 p. 143 [recall that
Theorem 8.7 is the structure theorem for Artin rings and that it says that an Artin ring A is uniquely
(up to isomorphism) a finite direct product of Artin local rings].

9.2.3 Page 91, Exercise 8.3

Statement. Let k be a field and A a finitely generated k-algebra. Prove that the following are
equivalent:

(i) A is Artinian;

(ii) A is a finite k-algebra.

[To prove that (i) =⇒ (ii), use Theorem 84 p. 143 [recall that Theorem 8.7 is the structure theorem
for Artin rings and that it says that an Artin ring A is uniquely (up to isomorphism) a finite
direct product of Artin local rings] to reduce to the case where A is an Artin local ring. By the
Nullstellensatz, the residue field of A is a finite extension of k. Now use the fact that A is of finite
length as an A-module. To prove (ii) =⇒ (i), observe that the ideals of A are k-vector subspaces
and therefore satisfy d.c.c.]

Solution. Left to the reader. [Recall that Theorem 8.7 is the structure theorem for Artin rings and
that it says: “An Artin ring A is uniquely (up to isomorphism) a finite direct product of Artin local
rings.”]

9.2.4 Page 92, Exercise 8.4

Statement. Let f : A → B be a ring homomorphism of finite type. Consider the following
statements:

(i) f is finite;

(ii) the fibres of f ∗ are discrete subspaces of Spec(B);

(iii) for each prime ideal p of A, the ring B ⊗A k(p) is a finite k(p)-algebra (k(p) is the residue field
of Ap);

(iv) the fibres of f ∗ are finite.

Prove that (i) =⇒ (ii) ⇐⇒ (iii) =⇒ (iv). [Use Exercises 2 and 3.]

If f is integral and the fibres of f ∗ are finite, is f necessarily finite?

Hints. To prove (i) =⇒ (iii) on can use Section 4.1.12 p. 60, Claim 1 above and the following
Lemma:

Lemma 85. Let A→ B be an integral ring morphism, let S ⊂ A be a multiplicative subset, and let
p be a prime ideal of A disjoint from S. Then the induced morphism S−1A/S−1p→ S−1B/(S−1p)e

is integral.

Proof. By Proposition 5.6ii p. 61 of the book, S−1A → S−1B is integral. By Proposition 3.11iv
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p. 41 of the book [Proposition 33 p. 58], S−1p is prime. By Theorem 5.10 p. 62 of the book, S−1p is
contracted. Now the Lemma follows from Proposition 5.6i p. 61 of the book.

Hint for the last question, which is “If f is integral and the fibres of f ∗ are finite, is f necessarily
finite?”: Consider the case when A and B are fields.

Note that Z→ Z[1
2
] satisfies (ii) but not (i).

9.2.5 Page 91, Exercise 8.5

Statement. In Chapter 5, Exercise 16 [Section 6.2.16 p. 109; this is the section about the Noether’s
Normalization Theorem], show that X is a finite covering of L (i.e., the number of points of X lying
over a given point of L is finite and bounded).

Solution. Omitted.

9.2.6 Page 92, Exercise 8.6

Statement. Let A be a Noetherian ring and q a p-primary ideal in A. Consider chains of primary
ideals from q to p. Show that all such chains are of finite bounded length, and that all maximal
chains have the same length.

Hints. See Section 9.1.1 p. 143 above.

Note that

the poset of p-primary ideals of A between q and p

is canonically isomorphic to

the poset of pp-primary ideals of Ap containing qp,

and that the above poset is equal to

the poset of proper ideals of Ap containing qp.

In particular all proper ideals of Ap containing qp are pp-primary. [This is because all proper
ideals of an Artin local ring (A,m) are m-primary.]
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10 About Chapter 9

10.1 Comments

10.1.1 Page 94, Proposition 9.2

Recall Proposition 9.2:

Proposition 86 (Proposition 9.2). Let A be a Noetherian local domain of dimension one, m its
maximal ideal, k = A/m its residue field. Then the following are equivalent:

(i) A is a discrete valuation ring;

(ii) A is integrally closed;

(iii) m is a principal ideal;

(iv) dimk(m/m
2) = 1;

(v) Every non-zero ideal is a power of m;

(vi) There exists x ∈ A such that every non-zero ideal is of the form (xn), n 6= 0.

In the setting of Proposition 9.2, the condition

(v’) every non-zero ideal can be written in a unique way as a power of m

is equivalent to any of the conditions (i) to (vi). The same holds for

(vi’) there exists x ∈ A such that every non-zero ideal can be written in a unique way as (xn).

This follows from Statement (B) in the proof of Proposition 9.2.

10.1.2 Page 95

• Proof of the implication (iv) =⇒ (v) in Proposition 9.2 p. 94 [Proposition 86 p. 147]. It is written:
“from (8.8) (applied to A/mn) it follows that a is a power of m”. The fact that A/mn is Artin follows
from Proposition 8.6 p. 90 of the book [see Section 9.1.2 p. 143 above].

• The proof of the equivalence (ii) ⇐⇒ (iii) in Theorem 9.3 uses Statement (B) in the proof of
Proposition 9.2 p. 94.

• Corollary 9.4. See Section 10.1.1 above.

• The domain Z[−5] is Dedekind but does not have unique factorization. The fact that Z[−5] does
not have unique factorization follows from the fact that 2 · 3 and (1 +

√
5)(1−

√
5) are irreducible

factorizations of 6.

10.1.3 Page 97, proof of Theorem 9.8

The last sentence of the proof of Theorem 9.8 is “Then a is invertible, hence b = ap is invertible by
(9.7)”. I think the authors meant (9.6). Here are more details: We have b = ap by Proposition 3.11i
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p. 41 [Proposition 33 p. 58] and Proposition 1.17.iii p. 10 [see the proof of Proposition 7. p. 80].
Moreover ap is invertible by Proposition 9.6 [(i) =⇒ (ii)].

10.2 Exercises

10.2.1 Page 99, Exercise 9.1

Statement. Let A be a Dedekind domain, S a multiplicatively closed subset of A. Show that S−1A
is either a Dedekind domain or the field of fractions of A.

Suppose that S 6= A \ {0}, and let H,H ′ be the ideal class groups of A and S−1A respectively.
Show that extension of ideals induces a surjective homomorphism H → H ′.

Hint. See Section 6.1.6 p. 101 above.

10.2.2 Page 99, Exercise 9.2

Statement. Let A be a Dedekind domain. If f = a0 + a1x + · · · + anx
n is a polynomial with

coefficients in A, the content of f is the ideal c(f) = (a0, . . . , an) in A. Prove Gauss’s lemma
that c(fg) = c(f)c(g).

[Localize at each maximal ideal.]

Hint. See Exercise 1.2iv p. 11 of the book [Section 2.2.2 p. 17]. It suffices to show c(f)mc(g)m ⊂
c(fg)m for all maximal ideal m.

10.2.3 Page 99, Exercise 9.3

Statement. A valuation ring (other than a field) is Noetherian if and only if it is a discrete
valuation ring.

Solution. It is proved on p. 94 of the book that discrete valuation ring are noetherian. Exercise 5.28
p. 72 of the book [Section 6.2.28 p. 117] says that the ideals of a valuation ring are totally ordered.
In particular finitely generated ideals are principal. Thus any noetherian valuation ring A is a
principal ideal domain. Hence, if A is not a field, then it is of dimension one, and is therefore a
discrete valuation ring by Proposition 9.2 p. 94 of the book.

10.2.4 Page 99, Exercise 9.4

Statement. Let A be a local domain which is not a field and in which the maximal ideal m is
principal and

⋂
n≥1 m

n = (0). Prove that A is a discrete valuation ring.

Hint. Let p be a generator of m.

There is a unique surjection w : A \ {0} → N such that a ∈ mw(a) \mw(a)+1 for all a ∈ A \ {0}.
We have w(ab) = w(a) +w(b) for all a, b ∈ A \ {0}, and a ∈ A \ {0} is a unit if and only if w(a) = 0.
Moreover, if a ∈ A \ {0}, then a = pw(a)u with u a unit.
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If a is a nonzero ideal of A, and if n is the least nonnegative integer such that pn ∈ a, then
a = (pn).

This implies that A is a principal ideal domain, and thus [Proposition 9.2 p. 94 of the book] a
Dedekind domain.

10.2.5 Page 99, Exercise 9.6

Statement. Let M be a finitely-generated torsion module (T (M) = M) over a Dedekind domain
A. Prove that M is uniquely representable as a finite direct sum of modules A/pni

i , where the pi are
non-zero prime ideals of A.

Solution. Let M be a finitely-generated torsion module over the Dedekind domain A. Then M
has a nonzero annihilator a. Let a = pn1

1 · · · pnr
r be the prime factorization of a, and note that

M is a module over the ring A/a ' A/pn1
1 × · · · × A/pnr

r . This yields an obvious decomposition
M = M1 ⊕ · · · ⊕Mr of M , where each Mi is an A/pni

i -module.

Thus we can assume a = pn with p maximal, and it suffices to prove the claim below.

Claim 87. There is a unique k-tuple (m1, . . . ,mk) of integers such that 1 ≤ m1 ≤ · · · ≤ mk ≤ n
and M ' A/pm1 ⊕ · · · ⊕ A/pmk [isomorphism of A-modules].

We leave it to the reader to check that there is a unique pair (φ, ψ) of A-algebra morphisms

A/pn Ap/p
n
p

φ

ψ

such that
φ(a+ pn) =

a

1
+ pnp and ψ

(a
s

+ pnp

)
= s′a+ pn

for all a ∈ A and all s, s′ ∈ A \ p satisfying ss′ − 1 ∈ pn, and that φ and ψ are inverse isomorphisms.

For any A/pn-module N write N ′ for the the A-module N viewed as an Ap/p
n
p -module via the

formula ax := ψ(a)x for all a ∈ Ap/p
n
p and all x ∈ N . Note that N is finitely generated if and only

if N ′ is.

Going back to our moduleM , note that, Ap being a principal ideal domain and pp being maximal,
there is a unique k-tuple (m1, . . . ,mk) of integers such that 1 ≤ m1 ≤ · · · ≤ mk ≤ n and

M ′ ' Ap/p
m1
p ⊕ · · · ⊕ Ap/p

mk
p

[isomorphism of Ap-modules]. As (A/pmi)′ ' Ap/p
mi
p , this implies Claim 87.

10.2.6 Page 99, Exercise 9.7

Statement. Let A be a Dedekind domain and a 6= 0 an ideal in A. Show that every ideal in A/a is
principal.

Deduce that every ideal in A can be generated by at most two elements.
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Hint. See the previous exercise. More precisely: it suffices to show that any nontrivial quotient of
A is a principal ideal ring, and to deduce from this that, given any nonzero element x ∈ a, there is
a y ∈ a such that a = (x, y).
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11 About Chapter 10

11.1 Comments

11.1.1 Page 102, Completions 1

In the first paragraph after the proof of Lemma 10.1, it is written “Two Cauchy sequences are
equivalent if xν − yν → 0 in G”. Note that a sequence may have several limits.

In the penultimate paragraph of p. 102 it is claimed that f̂ : Ĝ → Ĥ is continuous, but no
topologies have been defined on Ĝ and Ĥ. It is simpler to fix this problem in the setting considered
in the last paragraph of p. 102. We shall use Corollary 10.4 p. 105. Note that, in this corollary, Ĝn

really means (Gn)∧, which can, and will, be viewed as a subgroup of Ĝ.

Then these subgroups do define a topology on Ĝ, and the canonical morphism c : G → Ĝ is
continuous and its image is dense.

Moreover f̂ : Ĝ → Ĥ is continuous if f : G → H is. (Here we assume that the topology of G
and H are such that 0 has a countable fundamental system of neighborhoods.)

11.1.2 Page 103, Completions 2

The penultimate display is
Ĝ ' lim←−G/Gn.

More precisely, let πi : G→ G/Gi be the canonical projection; let C ⊂ GN be the group of Cauchy
sequences [this is indeed easily seen to be a subgroup of GN]; and note that x ∈ GN is Cauchy
if and only if for each i the sequence j 7→ πi(xj) is eventually constant, in which case we write
πi(x∞) for its eventual value. Then there is a unique group morphism ϕ : C → lim←−G/Gi such that
ϕ(x)i = πi(x∞) for all x in C and all i in N, this morphism is an epimorphism, and it induces an
isomorphism Ĝ

∼−→ lim←−G/Gi.

11.1.3 Page 105

Even if it is very easy, we give additional details about the proofs of Corollary 10.4 and Proposi-
tion 10.5.

Setting G′ := Gn0 in Corollary 10.3 yields the exact sequence 0→ Ĝn0 → Ĝ→ (G/Gn0)̂→ 0.
Recall that p : G → G/Gn0 is the natural morphism. For n ≥ n0 we have pGn = 0. This implies
(G/Gn0)̂' G/Gn0 (canonical isomorphism), and thus Ĝ/Ĝn0 ' G/Gn0 , that is, Ĝ/Ĝn ' G/Gn for
all n. This entails ̂̂

G ' Ĝ.
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11.1.4 Page 109, Proposition 10.15

Proposition 10.15 (iii) says
an/an+1 ' ân/ân+1. (56)

Moreover (56) is derived from
A/an ' Ân/ân, (57)

but in the sequel (57) is needed at various places, and it is justified by stating that it follows from
(56). For instance in the proof of Proposition 10.16 it is written

“By (10.15) iii) we have Â/m̂ ' A/m”.

In fact, I think it is better to prove ân/ân+k ' an/an+k directly by noting that we have

ân/ân+k ' (an)∧/(an+k)∧ ' (an/an+k)∧ ' an/an+k,

the first isomorphism following from Proposition 10.15 (ii), the second from Corollary 10.3 p. 104,
and the third being obvious.

Note that (i), (ii) and the proof of (ii) imply (an)∧ = Â an = (Â a)n = ân ' Â ⊗A an. In
particular, the equality (an)∧ = Â an shows that

the a-topology and the â-topology of Â coincide.

The a-topology is finer than the â-topology even if A is not noetherian.

Note also

Proposition 88. Let A be a noetherian ring, a an ideal of A and M a finitely generated A-module,
and regard (aM)∧ as a sub-A-module of M̂ . Then the sub-A-modules (aM)∧, âM and aM̂ of M̂
coincide and are in fact sub-Â-modules of M̂ . Moreover they are isomorphic to Â⊗A aM .

The proof is the same as that of Proposition 10.15i in the book.

11.1.5 Page 110, Corollary 10.19

Statement in the book:

Let A be a Noetherian ring, a an ideal of A contained in the Jacobson radical and let M be a
finitely-generated A-module. Then the a-topology of M is Hausdorff, i.e.

⋂
anM = 0.

Here is a slightly stronger statement:

Let A be a Noetherian ring and a an ideal of A. Then the a-topology of M is Hausdorff for
all finitely-generated A-module M , i.e.

⋂
anM = 0, if and only if a is contained in the Jacobson

radical.

Let us prove that the a-topology is not necessarily Hausdorff if a is not contained in the Jacobson
radical. Indeed, if m is a maximal ideal not containing a, then the a-topology of A/m is the coarse
topology.
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11.1.6 Page 111, Corollaries 10.20 and 10.21

About the proof of Corollary 10.20: The fact that “an m-primary ideal of A is just any ideal contained
between m and some power mn” has already been stated as Corollary 7.16 p. 83.

About Corollary 10.21: Let a be in A. We must show:

a ∈ q for all p-primary ideal q ⇐⇒ there is an s in A \ p such that as = 0.

Proof. If s in A \ p satisfies as = 0, and if q is a p-primary ideal, then a is in q.

If as 6= 0 for all s ∈ A \ p, then a
1
6= 0, and Corollary 10.20 implies that there is a p-primary

ideal q such that a
1
/∈ qp, and thus a /∈ q.

11.2 Exercises

11.2.1 Page 113, Exercise 10.1

Statement. Let αn : Z/pZ→ Z/pnZ be the injection of abelian groups given by αn(1) = pn−1, and
let α :→ B be the direct sum of all the αn (where A is a countable direct sum of copies of Z/pZ,
and B is the direct sum of the Z/pnZ). Show that the p-adic completion of A is just A but that
the completion of A for the topology induced from the p-adic topology on B is the direct product
of the Z/pZ. Deduce that p-adic completion is not a right-exact functor on the category of all
Z-modules.

Hint. For any abelian group G write Ĝ for the p-adic completion of G.

We claim that
G 7→ Ĝ is neither left exact not right exact. (58)

Set Cj := Z/(pj) for j ≥ 0 and A :=
⊕

j≥1C1, B :=
⊕

j≥1Cj. The exact sequences

0→ C1
αj−→ Cj

πj−→ Cj−1 → 0,

where πj is the multiplication by p [we use the isomorphism pCj ' Cj−1 for j ≥ 1], induce an exact
sequence

0→ A
α−→ B

π−→ B → 0. (59)

We claim
Â

α̂−→ B̂
π̂−→ B̂ is not exact. (60)

This will imply (58). As Â is isomorphic to A [details left to the reader], we can rewrite (60) as

A
α̂−→ B̂

π̂−→ B̂ is not exact. (61)

Write A for the completion of A with respect to the filtration induced by the p-adic filtration of B.
We leave it to the reader to check that applying Corollary 10.3 p. 104 of the book to (59) yields the
exact sequence 0→ A

α′−→ B̂
π̂−→ B̂ → 0. We have A '

∏
j≥1C1 [details again left to the reader], and

thus A < A. Setting a ∈ A \ A we get α′(a) ∈ Ker π̂ \ Im α̂. This proves (61), (60) and (58).
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11.2.2 Page 114, Exercise 10.2

Statement. In Exercise 1, let An = α−1(pnB), and consider the exact sequence

0→ An → A→ A/An → 0.

Show that lim←− is not right exact, and compute lim←−
1An.

Solution. Omitted.

11.2.3 Page 114, Exercise 10.3

Statement. (a) Let A be a Noetherian ring, a an ideal and M a finitely-generated A-module.
Using Krull’s Theorem and Exercise 14 of Chapter 3, prove that⋂

n>0

anM =
⋂
m⊃a

Ker(M →Mm),

where m runs over all maximal ideals containing a.

(b) Deduce that
M̂ = 0 ⇐⇒ Supp(M) ∩ V (a) = ∅ [in Spec(A)].

Solution. (a) By Krull’s Theorem [Theorem 10.17 p. 110 of the book], we have

E := Ker(M → M̂) =
⋂

anM =
⋃
a∈a

AnnM(1 + a).

Set F :=
⋂

m⊃a Ker(M → Mm). We must show E = F . The inclusion E ⊂ F is easy [indeed we
have AnnM(1− a) ⊂ anM for a ∈ a and n ∈ N]. To prove F ⊂ E, first note that we have Fm = 0
if m ⊃ a. By Exercise 3.14 p. 45 of the book [Section 4.2.14 p. 68], this implies F = aF , hence
F = anF ⊂ anM for all n, hence F ⊂ E.

(b) Set b := Ann(M). We have

M̂ = 0 ⇐⇒ M = aM ⇐⇒ (∃ a ∈ a) 1− a ∈ b ⇐⇒ a + b = (1) ⇐⇒ Supp(M) ∩ V (a) = ∅,

the successive equivalences being justified as follows:

• first equivalence: obvious,
• second equivalence: Corollary 2.5 p. 21 of the book [Corollary 10 p. 10],

• third equivalence: obvious,

• fourth equivalence: Exercise 3.19v p. 46 of the book [Section 4.2.19 p. 70].

Details about the fourth equivalence: By Exercise 3.19v p. 46 of the book we have Supp(M) = V (b),
hence Supp(M) ∩ V (a) = V (a + b), hence Supp(M) ∩ V (a) = ∅ ⇐⇒ a + b = (1).
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11.2.4 Page 114, Exercise 10.4

Statement. Let A be a Noetherian ring, a an ideal in A, and Â the a-adic completion. For any
x ∈ A, let x̂ be the image of x in Â.

(a) Show that
x not a zero-divisor in A =⇒ x̂ not a zero-divisor in Â.

(b) Does this imply that
A is an integral domain =⇒ Â is an integral domain?

Answer to (b): No. Take a := (1).

11.2.5 Page 114, Exercise 10.5

Statement. Let A be a Noetherian ring and let a, b be ideals in A. If M is any A-module, let
M a,M b denote its a-adic and b-adic completions respectively. If M is finitely generated, prove that
(M a)b 'M a+b.

Hint. In view of the isomorphism Â⊗AM ' M̂ , it suffices to show

(Aa)b ' Aa+b. (62)

Using Proposition 10.2. p. 104 and Proposition 88 p. 152, and writing Li for limi, we have

(Aa)b ' Lj

(
Li

A
ai

bjLi
A
ai

)
' Lj

(
Li

A
ai

Libj
A
ai

)
' LjLi

(
A
ai

bj A
ai

)

' LjLi

(
A

ai + bj

)
' Ln

(
A

(a + b)n

)
' Aa+b.

11.2.6 Page 114, Exercise 10.6

Statement. Let A be a Noetherian ring and a an ideal in A. Prove that a is contained in the
Jacobson radical of A if and only if every maximal ideal of A is closed for the a-topology. (A
Noetherian topological ring in which the topology is defined by an ideal contained in the Jacobson
radical is called a Zariski ring. Examples are local rings and [by Proposition 10.15iv p. 109 of the
book] a-adic completions.)

Hint. Let A be a ring, a an ideal, and equip A with the a-adic topology.

Then any ideal containing a is open and closed [because such an ideal is a union of a-cosets].

Moreover any maximal ideal m not containing a is dense.

To prove this, let us show that any nonempty open subset U ⊂ A meets m. Set K := A/m
and let π : A→ K be the canonical projection. It suffices to check that 0 ∈ π(U). But the a-adic
topology of K being the codiscrete topology, π(U) is the unique nonempty subset of K, that is K
itself.
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11.2.7 Page 114, Exercise 10.7

Statement. Let A be a Noetherian ring, a an ideal of A, and Â the a-adic completion. Prove that
Â is faithfully flat over A (Chapter 3, Exercise 16; Section 4.2.16 p. 69) if and only if A is a Zariski
ring (for the a-topology).

[Since Â is flat over A, it is enough to show that

M → M̂ injective for all finitely generated M ⇐⇒ A is Zariski;

now use Corollary 10.19 p. 110 (see Section 11.1.5 p. 152) and Exercise 6.]

Hint. Let m be a maximal ideal of A. Proposition 10.15i p. 109 of the book implies that the
extension me of m in Â is m̂, and we get

a ⊂ m =⇒ 0 6= (A/m)∧ ' Â/m̂ =⇒ me 6= (1),

a 6⊂ m =⇒ 0 = (A/m)∧ ' Â/m̂ =⇒ me = (1).

11.2.8 Page 115, Exercise 10.8

Statement. Let A be the local ring of the origin in Cn (i.e., the ring of all rational functions
f/g ∈ C(z1, . . . , zn) with g(0) 6= 0), let B be the ring of power series in z1, . . . , zn which converge in
some neighborhood of the origin, and let C be the ring of formal power series in z1, . . . , zn, so that
A ⊂ B ⊂ C. Show that B is a local ring and that its completion for the maximal ideal topology is C.
Assuming that B is Noetherian, prove that B is A-flat. [Use Chapter 3, Exercise 17 (Section 4.2.17
p. 70, and Exercise 7 above.]

Hint. The proof that B is a local ring and that its completion for the maximal ideal topology is C
is left to the reader. Exercise 3.17 says that if A ⊂ B ⊂ C are rings, and if C is flat over A and
faithfully flat over B, then B is flat over A. Exercise 7 above implies that C is faithfully flat over B.
Note that A is also a local ring and that its completion for the maximal ideal topology is also C.
Then Proposition 10.14 p. 109 of the book [see below] entails that C is flat over A.

Here is Proposition 10.14 of the book:

Proposition 89 (Proposition 10.14 p. 109 of the book). If A is a Noetherian ring, a an ideal, Â
the a-adic completion of A, then Â is a flat A-algebra.

11.2.9 Page 115, Exercise 10.9, Hensel’s Lemma

To solve Exercise 10.9 we need only assume that A is complete with respect to some ideal m; we
do not necessarily need m maximal or A local. To emphasize the fact that m is not necessarily
maximal, we denote this ideal by a.

We shall prove:

Theorem 90 (Hensel’s Lemma). Let a be an ideal of a ring A such that A is complete for the
a-adic topology, set B := A/a and let π : A[x] → B[x] be the natural morphism. Let F ∈ A[x] be
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monic of degree n, set f := π(F ), and assume that g, h ∈ B[x] are coprime monic polynomials of
degrees r and n − r satisfying f = gh. Then there are monic lifts G,H ∈ A[x] of g, h such that
F = GH. [A lift of a polynomial u ∈ B[x] is an element of π−1(u) ⊂ A[x].]

The proof below is stolen from Thomas J. Haines, Lectures on Commutative Algebra
http://www.math.umd.edu/∼tjh/CommAlg.pdf

Proof. We first define two sequences G1, G2, . . . and H1, H2, . . . of monic lifts in A[x] of g and h as
follows.

The polynomials G1 and H1 are arbitrary monic lifts of g and h. We have in particular
F −G1H1 ∈ a[x].

Assume that Gk, Hk ∈ A[x] have already been constructed and satisfy

F −GkHk ∈ ak[x].

Let i be a nonnegative integer less than n. There are u, v ∈ B[x] such that xi = ug + vh. Let
q, ci ∈ B[x] satisfy u = qh+ ci and

deg ci < deg h = n− r.
Setting di := q + v we get

xi = cig + dih, (63)
as well as deg dih = deg(xi − cig) < n, and thus

deg di < r.

Let Ci, Di ∈ A[x] be lifts of the same degree of ci and di. We have

F −GkHk =
n−1∑
i=0

αi x
i

with αi ∈ ak. Then

Gk+1 := Gk +
n−1∑
i=0

αiDi and Hk+1 := Hk +
n−1∑
i=0

αiCi

are monic lifts of g, h ∈ B[x], and we get

F −Gk+1Hk+1 =
n−1∑
i=0

αi x
i −

n−1∑
i=0

αi (CiGk +DiHk)−
n−1∑
i,j=0

αiαjCiDj

=
n−1∑
i=0

αi x
i −

n−1∑
i=0

αi (x
i + Ei)−

n−1∑
i,j=0

αiαjCiDj

for some Ei ∈ a[x] — the last equality following from (63). This shows that F − Gk+1Hk+1 is in
ak+1[x].

Write Gk,i for the coefficient of xi in Gk and define Hk,i similarly. It is easy to see that the
sequences G1,i, G2,i, . . . and H1,i, H2,i, . . . in A are Cauchy, and thus convergent. Let G∞,i and H∞,i
be their limits. It is not hard to check that the polynomials G :=

∑
G∞,i x

i and H :=
∑
H∞,i x

i do
the job.
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11.2.10 Page 115, Exercise 10.10

Statement. (i) With the notation of Exercise 9, deduce from Hensel’s lemma that if f(x) has a
simple root α ∈ A/m, then f(x) has a simple root a ∈ A such that a = a mod m.

(ii) Show that 2 is a square in the ring of 7-adic integers.

(iii) Let f(x, y) ∈ k[x, y], where k is a field, and assume that f(0, y) has y = a0 as a simple root.
Prove that there exists a formal power series y(x) =

∑∞
n=0 anx

n such that f(x, y(x)) = 0.

(This gives the “analytic branch” of the curve f = 0 through the point (0, a0).)

Hint. Part (iii) is a particular case of Part (i):

A m f(x) α f(x) a f(α) = 0 f(a) = 0

k[[x]] (x) f(0, y) a0 f(x, y) y(x) f(0, a0) = 0 f(x, y(x)) = 0

[The condition that the roots α, a, a0 and y(x) are simple is implicit.]

11.2.11 Page 115, Exercise 10.11

Statment: Show that the converse of (10.26) is false, even if we assume that A is local and that Â
is a finitely-generated A-module.

Recall (10.26): If A is a Noetherian ring, a an ideal of A, then the a-completion Â of A is
Noetherian.

Hint. Let A be the ring of germs at 0 of C∞ functions from R to R, and m the ideal of those germs
which vanish at 0. Then Â ' R[[x]] and A → Â is surjective. Note that A is not noetherian by
Corollary 10.18 p. 110 of the book.

11.2.12 Page 115, Exercise 10.12

Statement: If A is Noetherian, then B := A[[x1, . . . , xn]] is a faithfully flat A-algebra.

Solution. Using Proposition 10.14 p. 109 of the book [Proposition 89 p. 156] it is easy to see that
B is A-flat. Let φ : A→ B be the inclusion, ψ : B → A the evaluation at 0, and m a maximal ideal
of A. It suffices to show that the extension of m along φ is a proper ideal of B [see Exercise 3.16iii
p. 45 of the book]. If this extension was the unit ideal of B, then the extension of m along ψ ◦ φ
would be the unit ideal of A. But this latter extension is m because ψ ◦ φ is the identity of A.
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12 About Chapter 11

12.1 Comments

12.1.1 Page 117, definition of d(M)

I think it would be more prudent to assume that M 6= 0, that A0 is Artin, and that λ(M) is the
length of M .

12.1.2 Page 118, Proposition 11.3

It seems better to assume xM 6= M .

12.1.3 Page 118, Example following Proposition 11.3

We have P (A, t) = ` (1− t)s where ` is the length of A0.

12.1.4 Page 118, proof of Proposition 11.4

• The ring A/q is Artin by (55) p. 143.

• The fact below is used on line 5 of the proof of Proposition 11.4:

A noetherian module over an Artin ring has finite length.

This follows from Propositions 6.2 p. 75 and 6.8 p. 77.

12.1.5 Page 119, old d new d

On p. 119 it is claimed that the new d evaluated on A coincides with the old d evaluated on Gm(A),
the asserted equality being written d(A) = d(Gm(A)).

We denote the old d by do and the new d by dν , so that the equality to check becomes

do(A) = dν(Gm(A)). (64)

Note that do(A) is defined when A is a noetherian graded ring, and dν(A) is defined when A is a
noetherian local ring. By Proposition 10.22 (i) p. 111, Ga(A) is a noetherian graded ring if A is a
noetherian ring and a is an ideal of A.

As in (1) p. 118 of the book we set `n := `(A/mn).

Corollary 11.5 p. 119 says that, for large n, the function n 7→ `n is a polynomial whose degree is
dν(A) by definition.

Corollary 11.2 p. 117 says that, for large n, the function n 7→ `(mn/mn+1) is a polynomial whose
degree is do(Gm(A))− 1.

Now (64) above follows from (1) p. 117 of the book.
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12.1.6 Page 120, Proposition 11.9

We must assume that x is not a unit.

12.1.7 Page 120, proof of Proposition 11.10

The claim “A is an Artin ring” is justified by (55) p. 143.

12.1.8 Page 121, Dimension Theorem

Here is an application of the Dimension Theorem:

Let K be a field, let x1, x2, . . . be indeterminates, and form the K-algebra A := K[[x1, x2, . . . ]].

Recall that A can be defined as the set of expressions of the form
∑

u auu, where u runs over the
set monomials in x1, x2, . . . , and each au is in K, the addition and multiplication being the obvious
ones.

Then A is a local domain, its maximal ideal m is defined by the condition a1 = 0, and we claim

A is not m-adically complete. (65)

This result is due to Uriya First and to the MathOverflow user dhy. See
https://mathoverflow.net/a/308266/461.

We equip A with the m-adic topology.

Let v : Z>0 → Z>1 be strictly increasing, assume that, for all n ∈ Z>0, the characteristic of K
does not divide v(n), and consider the sequence (sn)n∈Z>0 defined by sn =

∑n
i=1 x

v(i)
i . This sequence

being clearly Cauchy, it suffices to show that it diverges. To prove this we argue by contradiction
and assume that (sn) has a limit in A. It is easy to see that this limit is

∑
n>0 x

v(n)
n , and that this

element of A is in m2. Thus (65) will follow from∑
n>0

xv(n)
n /∈ m2. (66)

Our proof of (66) starts with the following claim.

(?) Let k and r be positive integers; let n be the maximal ideal of B := K[[x1, . . . , xk]]; let
a1, . . . , ar, b1, . . . , br be in n; set f =

∑r
i=1 aibi and Dj := ∂

∂xj
for 1 ≤ j ≤ k; and assume that

the ideal (D1f, . . . , Dkf) ⊂ B is n-primary. Then k ≤ 2r.

Proof of (?). We have

Djf =
r∑
i=1

(
(Djai) bi + ai (Djbi)

)
.

This implies that (D1f, . . . , Dkf) ⊂ (a1, . . . , ar, b1, . . . , br), and thus that (a1, . . . , ar, b1, . . . , br) is
n-primary [see Corollary 7.16 p. 83 of the book]. By the Examples pages 118 and 121, and by
Corollary 11.19 p. 122 of the book, we have dimB = k. Now the Dimension Theorem entails k ≤ 2r,
as desired. �
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Proof of (66). Assume by contradiction that we have
∑

n>0 x
v(n)
n =

∑r
i=1 ci di with ci, di ∈ m. Let

k be an integer > 2r. Mapping xj to 0 for j > k we get

f :=
k∑

n=1

xv(n)
n =

r∑
i=1

ai bi ∈ K[[x1, . . . , xk]]

for some ai, bi ∈ (x1, . . . , xk) ⊂ K[[x1, . . . , xk]]. As (D1f, . . . , Dkf) is (x1, . . . , xk)-primary by
Corollary 7.16 p. 83 of the book, this contradicts (?). �

The case when K is finite is a Bourbaki exercise: Exercice 22c p. 288 in Exercices du §2 chap.
III, Algèbre commutative, Bourbaki, Masson, Paris 1985.

12.1.9 Page 121, Proposition 11.13 and Corollary 11.16

The following statement is implicit in the book.

Proposition 91. If p is a prime ideal of a noetherian ring, then we have

height p = min
{
n ∈ N | (∃ x1, . . . , xn ∈ p) p is a minimal prime ideal of (x1, . . . , xn)

}
.

We start with Lemma 92 below. The statement and the proof of this lemma are almost the same
as those of Proposition 11.13 of the book. To make the analogy clearer we have used a notation as
close as possible to that of the book; in particular we warn the reader that we have denoted by m a
prime ideal which is not necessarily maximal!

Lemma 92. Let A be a noetherian ring and m a prime ideal of height d. Then there exist d elements
x1, . . . , xd of m such that m is a minimal prime ideal of (x1, . . . , xd).

Proof. Construct x1, . . . , xd inductively in such a way that every prime sub-ideal of m containing
(x1, . . . , xd) has height ≥ i, for each i. Suppose i > 0 and x1, . . . , xi−1 constructed. Let pj (1 ≤ j ≤ s)
be the minimal prime ideals of (x1, . . . , xi−1) which are contained in m and have height exactly
i− 1. Since i− 1 < d = height m, we have m 6= pj (1 ≤ j ≤ s), hence m 6=

⋃s
j=1 pj by (1.11). Choose

xi ∈ m, xi /∈
⋃

pj, and let q be any prime sub-ideal of m containing (x1, . . . , xi). Then q contains
some minimal prime ideal of (x1, . . . , xi−1) contained in m. If p = pj for some j, we have xi ∈ q,
xi /∈ p, hence q > p and therefore height q ≥ i; if p 6= pj (1 ≤ j ≤ s), then height p ≥ i, hence height
q ≥ i. Thus every prime ideal of (x1, . . . , xi) contained in m has height ≥ i.

If p is a prime ideal of (x1, . . . , xd) contained in m, then p has height ≥ d, hence p = m [for
p < m =⇒ height p < height m = d].

Now Proposition 91 follows from Lemma 92 above and Corollary 11.16 of the book.

12.1.10 Page 122

• Proof of Corollary 11.16. The fact that (x1, . . . , xr)p is pp-primary follows easily from Propositions
4.8 (ii) p 53 and 4.9 p 54 [Proposition 43 p. 80].

• Proof of Proposition 11.20. The d(?) are do(?) in the notation of Section 12.1.5.
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12.1.11 Page 123, proof of Theorem 11.22

I think “by (11.20)” should be “by (11.21)”.

12.1.12 Page 125, proof of (11.25)

For the last sentence of the proof, see the Examples on p. 121.

12.2 Exercises

12.2.1 Page 125, Exercise 11.1

Statement. Let f ∈ k[x1, . . . , xn] be an irreducible polynomial over an algebraically closed field k.
A point P on the variety f(x) = 0 is non-singular ⇐⇒ not all the partial derivatives of ∂f/∂xi
vanish at P . Let A = k[x1, . . . , xn]/(f), and let m be the maximal ideal of A corresponding to the
point P . Prove that P is non-singular ⇐⇒ Am is a regular local ring.

[By Corollary 11.18 p. 122 (see below) we have dimAm = n− 1. Now

m/m2 ' (x1, . . . , xn)/(x1, . . . , xn)2 + (f)

and has dimension n− 1 if and only if f /∈ (x1, . . . , xn)2.]

Hints. I think the assumption that f is irreducible is unnecessary, and that it suffices to suppose
that f is nonzero.

Recall that Corollary 11.18 says: “Let A be a Noetherian local ring, x an element of m which is
not a zero-divisor. Then dimA/(x) = dimA− 1.”.

We can assume P = 0. We will use the following notation: X1, . . . , Xn are indeterminates, A is
defined by A := k[X1, . . . , Xn]/(f) = k[x1, . . . , xn] where xi is the image of Xi, we set

m := (X1, . . . , Xn), m := (x1, . . . , xn) ' m/(f).

We have
dimAm = n− 1 (67)

by Corollary 11.18. We also have

m

m2 =
m/(f)

(m2 + (f))/(f)
' m

m2 + (f)
. (68)

• If f ∈ m2 we get
m

m2 '
m

m2
' kn

by (68), and Am is singular by (67).

• If f 6∈ m2 we have n− 1 = dimAm ≤ dimkm/m
2 ≤ n− 1 by (67), Corollary 11.15 p. 121 of the

book and (68), so that Am is regular in this case. [Corollary 11.15 says: “dimA ≤ dimk(m/m
2).]
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We conclude that Am is regular if and only if f 6∈ m2. It remains to check that 0 is non-singular
if and only if f 6∈ m2, or, in other words, that ∂f

∂Xi
(0) 6= 0 for some i if and only if f 6∈ m2. But this

follows from that fact that ∂f
∂Xi

(0) is the coefficient of Xi in f .

12.2.2 Page 125, Exercise 11.2

Statement. In (11.21) assume that A is complete. Prove that the homomorphism k[[t1, . . . , td]]→ A
given by ti 7→ xi (i = 1, . . . , d) is injective and that A is a finitely-generated module over k[[t1, . . . , td]].

Recall (11.21): If (A,m) is a noetherian local ring and k ⊂ A a field mapping isomorphically
onto A/m, and if x1, . . . , xd is a system of parameters, then x1, . . . , xd are algebraically independent
over k.

Solution. Let q be the m-primary ideal (x1, . . . , xd), set

n := (t1, . . . , td) ⊂ B0 := k[t1, . . . , td], B := k[[t1, . . . , td]],

and let φ : B0 → A be the obvious morphism mapping ti to xi. The n-topology, the q-topology
and the m-topology coincide on A [see proof of Proposition 11.6 p. 119]. In particular φ extends
uniquely to a continuous morphism ψ : B → A. Let us show that ψ is injective. Let

0 6= b :=
∑

cαt
α1
1 · · · t

αd
d

be in B and assume by contradiction ψ(b) = 0. Write b = bn + bn+1 + · · · with bi homogeneous of
degree i and bn 6= 0. Set ai := φ(bi). We get an ∈ qn+1, and Proposition 11.20 p. 122 of the book
implies bn = 0, contradiction.

Let us show that A is a finitely generated B-module. By Proposition 10.24 p. 112 of the book, it
suffices to show that Gn(A) = Gq(A) is a finitely generated Gn(B)-module, where n is the maximal
ideal of B. Note that Gn(B) is a sub-Gn(B)-module of Gq(A), the quotient being

A/q

A/m
=
A/q

k
,

which a finite dimensional k-vector space, and a fortiori a finitely generated Gn(B)-module.

12.2.3 Page 126, Exercise 11.3

Statement. Extend (11.25) to non-algebraically-closed fields.

Recall (11.25): For any irreducible variety V over K the local dimension of V at any point is
equal to dimV .

Solution. Let K be a field and A a finitely generated K-algebra. By Noether’s Normalization
Theorem [Theorem 75 p. 109], the Krull dimension n of A is finite, and there are n elements of A
which are algebraically independent over K.

Claim: Any n+ 1 elements of A are algebraically dependent over K.
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Proof. If A is a domain, we are done because Noether’s Normalization Theorem implies that n is
the transcendence degree of the field of fractions of A over K. If A is not a domain, we can argue as
follows.

Assume by contradiction that the elements x1, . . . , xn+1 of A are algebraically independent over
K. Set B := K[x1, . . . , xn+1] ⊂ A and S := B \ {0}. This is a multiplicative subset of A which does
not contain 0. Thus there is a prime ideal p of A which is disjoint from S, and B imbeds into the
domain A/p, whose Krull dimension is at most n. This contradicts the first part of the argument.

12.2.4 Page 126, Exercise 11.4

The purpose of the exercise is to prove:

Theorem 93 (Nagata). There are noetherian domains of infinite dimension.

We sketch a proof [which will give explicit examples].

Let N =
⊔
i∈NNi be a partition of N such that each Ni is finite and nonempty, let K be a field,

let A be the K-algebra K[x0, x1, . . . ], where the xi are indeterminates, for each i ∈ N let pi be the
ideal of A generated by the xj with j ∈ Ni, and let S ⊂ A be the complement of the union of the pi.
Clearly the pi are prime and S is a multiplicative subset of A. Set B := S−1A.

Our main goal is to prove
(a) B is noetherian.

Reduction to Statements (d) and (e). By Exercise 7.9 p. 85 of the book, it suffices to show

(b) For each maximal ideal m of B, the local ring Bm is noetherian.

(c) For each b 6= 0 in B, the set of maximal ideals of B which contain b is finite.

We claim

(d) If a is an ideal of A contained in the union of the pi, then a is contained in some pi.

Statement (d) will imply that the maximal ideals of B are the S−1pi, and thus, (d) will imply
(c). Statement (d) will also reduce (b) to

(e) For each i the local ring BS−1pi is noetherian.

To summarize, it suffices to prove (d) and (e).

Proof of (d). Recall Statement (d):

(d) If a is an ideal of A contained in the union of the pi, then a is contained in some pi.

To prove (d) we shall implicitly use the following easy fact:

Note 94. Let b be an ideal of A. Then b is generated by monomials if and only if it has the following
property:

A polynomial f ∈ A is in b if and only if all the monomials occurring in f are in b.
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Proof of (d). Assume by contradiction that a is contained in the union of the pi, but is contained in
no pi. Let 0 6= f ∈ a.

There is an n ∈ N such that no monomial occurring in f is in pn+1 ∪ pn+2 ∪ · · · . In particular

(A) f /∈ pn+1 ∪ pn+2 ∪ · · · .
We claim that there is a g ∈ a such that

(B) g /∈ p0 ∪ · · · ∪ pn,

(C) g has no monomial in common with f .

In view of (A) the claim will imply that f + g is in a but not in any of the pi, contradiction [this
contradiction will complete the proof of (d)].

By Proposition 3 p. 14 there is an h ∈ a such that h /∈ p0∪· · ·∪pn. If j is in Nn+1, then g := xjh
will satisfy (B) and (C). This proves the claim, and completes the proof of (d).

Proof of (e). It only remains to prove Statement (e), which we recall:

(e) For each i the local ring BS−1pi is noetherian.

We change the setting as follows [letting again K be a field]. Let x1, . . . , xn and y1, y2, . . . be inde-
terminates, denote by x the sequence (x1, . . . , xn) of indeterminates, and by y the sequence (y1, y2, . . .)
of indeterminates. Let K[x, y] be the polynomial K-algebra over all the above indeterminates. We
claim

(g) The equality
K[x, y](x1,...,xn) =

((
K(y)

)
[x]
)

(x1,...,xn)

holds as an equality between subrings of K(x, y). In particular this ring is noetherian.

We leave the proof of (g) to the reader. Clearly (g) implies (e).

12.2.5 Page 126, Exercise 11.6

Statement. Let A be a ring [not necessarily Noetherian]. Prove that

1 + dimA ≤ dimA[x] ≤ 1 + 2 dimA.

Solution. We denote the Krull dimension of any ring A by dimA and the height of any prime ideal
p by h(p). If we have a ring morphism A→ B and a prime ideal qi of B, we write pc

i for (pi)
c.

Proof of the inequality dimA[x] ≥ 1 + dimA: If p0 < · · · < pn is a chain of prime ideals in A, then

p0[x] < · · · < pn[x] < pn + (x)

is chain of prime ideals in A[x] [see Exercise 4.7 p. 55 of the book — see Section 5.3.4 p. 82 — and
Lemma 48 p. 83 above]. �

Proof of the inequality dimA[x] ≤ 1 + 2 dimA: This inequality follows immediately from Lemma 48
p. 83 above.
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12.2.6 Page 126, Exercise 11.7

Statement. Let A be a Noetherian ring. Then

dimA[x] = 1 + dimA, (69)

and hence, by induction on n,

dimA[x1, . . . , xn] = n+ dimA.

Hint. [This is the hint given in the book.] Let p be a prime ideal of height m in A. Then there
exist a1, . . . , am ∈ p such that p is a minimal prime ideal belonging to the ideal a = (a1, . . . , am).
By Exercise 7 of Chapter 4, the ideal p[x] is a minimal prime ideal of a[x] and therefore the height
p[x] is ≤ m. On the other hand, a chain of prime ideals

p0 < p1 < · · · < pm = p

gives rise to a chain
p0[x] < p1[x] < · · · < pm[x] = p[x],

hence the height of p is ≥ m. Hence the height of p[x] is equal to the height of p. Now use the
argument of Exercise 6.

Solution. As in the previous section, we denote the Krull dimension of any ring A by dimA and
the height of any prime ideal p by h(p). We follow the hint of the book, and we shall use the
following obvious fact:

Note 95. If p0 < · · · < pn is a chain of prime ideals, then h(pn) ≥ n+ h(p0).

The existence of a1, . . . , am results from Lemma 92 p. 161 above. The phrase “and therefore the
height p[x] is ≤ m” follows from Corollary 11.16 page 121 of the book. As explained in the hint,
this implies

h(p[x]) = h(p). (70)

In view of Section 12.2.5 above p. 165, (69) reduces to dimA[x] ≤ 1 + dimA. We can assume
dimA < ∞. Set n := dimA and let p0 < · · · < pn+2 be a chain of prime ideals in A[x] of length
n+ 2.

It suffices to derive a contradiction from this assumption.

The above chain contracting to a chain of length at most n in A, there are indices i such that
pc
i = pc

i+1. Let i be the largest such index. We have pi = pc
i [x] by Lemma 48 p. 83 above, and

h(pc
i ) = h(pc

i [x]) = h(pi) ≥ i, (71)

the first equality following from (70) and the inequality following from Note 95. Then we get

h(pc
n+2) ≥ n+ 1− i+ h(pc

i ) ≥ n+ 1− i+ i = n+ 1,

the inequalities following respectively from Note 95 and Display (71). This contradicts the definition
of n, proving (69).
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