CIGARETTE SMOKING AND ASTHMA

Neil C. Thomson, MD, Riccardo Polosa, MD, Don D. Sin, MD

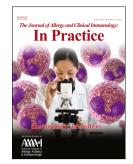
PII: S2213-2198(22)00478-0

DOI: https://doi.org/10.1016/j.jaip.2022.04.034

Reference: JAIP 4206

To appear in: The Journal of Allergy and Clinical Immunology: In Practice

Received Date: 10 March 2022


Revised Date: 27 April 2022

Accepted Date: 29 April 2022

Please cite this article as: Thomson NC, Polosa R, Sin DD, CIGARETTE SMOKING AND ASTHMA, *The Journal of Allergy and Clinical Immunology: In Practice* (2022), doi: https://doi.org/10.1016/j.jaip.2022.04.034.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2022 Published by Elsevier Inc. on behalf of the American Academy of Allergy, Asthma & Immunology

		· · · · · · · · · · · · · · · · · · ·
1		JACI: In Practice Clinical Management Review
2		
3		CIGARETTE SMOKING AND ASTHMA
4		
5	Autho	ors: Neil C Thomson ¹ MD, Riccardo Polosa ^{2,3,4} MD, Don D Sin ⁵ MD.
6		
7	Institu	utional affiliations:
8	1	Institute of Infection, Immunity & Inflammation, University of Glasgow, Glasgow, UK.
9		Email: neil.thomson@glasgow.ac.uk
10	2	Department of Clinical & Experimental Medicine, University of Catania, Italy.
11		Email: polosa@unict.it
12	3	Centre for the Prevention and Treatment of Tobacco Addiction (CPCT), Teaching
13		Hospital "Policlinico - V. Emanuele", University of Catania, Italy
14	4	Center of Excellence for the Acceleration of HArm Reduction (CoEHAR), University of
15		Catania, Italy
16	5	Centre for Heart Lung Innovation, St. Paul's Hospital, & Department of Medicine
17		(Division of Respirology), University of British Columbia, Vancouver, BC, Canada.
18		Email: Don.Sin@hli.ubc.ca
19		
20	Corre	sponding Author:
21	Profes	ssor Neil C Thomson, Institute of Infection, Immunity & Inflammation, University of

22 Glasgow, Glasgow, G12 OYN, United Kingdom. Email: neil.thomson@glasgow.ac.uk

23 Declaration of the source of funding:

24 NCT: The author received no funding related to this work

RP: The author received no funding related to this work 25

- 26 DDS: The author received no funding related to this work
- 27

28 **Disclosures:**

29

N. C. Thomson declares no relevant conflicts of interest. 30

R. Polosa is full tenured professor of Internal Medicine at the University of Catania (Italy) 31 32 and Medical Director of the Institute for Internal Medicine and Clinical Immunology at the 33 same University. He has received grants from U-BIOPRED and AIRPROM, Integral Rheumatology & Immunology Specialists Network (IRIS), Foundation for a Smoke Free 34 35 World, Pfizer, GlaxoSmithKline, CV Therapeutics, NeuroSearch A/S, Sandoz, Merk Sharp & Dohme, Boehringer Ingelheim, Novartis, Arbi Group Srl., Duska Therapeutics, and Forest 36 37 Laboratories. He is founder of the Center for Tobacco prevention and treatment (CPCT) at 38 the University of Catania and of the Center of Excellence for the acceleration of Harm 39 Reduction at the same University. He receives consultancy fees Pfizer, Boehringer Ingelheim, Duska Therapeutics, Forest Laboratories, CV Therapeutics, and Sermo Inc. He is 40 being paid textbook royalties from Elsevier. He is involved in a patent application for ECLAT 41 42 Srl. He is an unpaid scientific advisor for Lega Italiana Anti Fumo (LIAF) and the International Network of Nicotine Consumers Organizations (INNCO); and he is Chair of the European 43 44 Technical Committee for standardization on "Requirements and test methods for emissions of electronic cigarettes" (CEN/TC 437; WG4). 45

- 46 D. D. Sin has received speakers honoraria from GlaxoSmithKline, Boehringer Ingelheim, and
- 47 AstraZeneca.
- 48
- 49 Keywords:
- 50 Asthma; Asthma-Chronic obstructive pulmonary disease overlap; Chronic obstructive
- 51 pulmonary disease; Cigarette smoking; Smokers with asthma; Smoking cessation
- 52
- 53 Word count: 4749 words
- 54
- 55 Abbreviations
- 56 ACO: asthma-COPD overlap
- 57 AHR: airway hyperreactivity
- 58 AMAZES: Asthma and Macrolides: The Azithromycin Efficacy and Safety trial
- 59 COPD: chronic obstructive pulmonary disease
- 60 FeNO: fractional concentration of exhaled nitric oxide
- 61 GINA: Global Initiative for Asthma
- 62 GOAL: Gaining Optimal Asthma Control trial
- 63 GR: glucocorticoid receptor
- 64 HDAC: histone deacetylase activity
- 65 ICS: inhaled corticosteroid
- 66 IgE: immunoglobulin E
- 67 IL: interleukin

- 68 ILC2: type 2 innate lymphoid cell
- 69 LABA: long-acting beta₂-agonist
- 70 LAMA: long-acting muscarinic antagonist
- 71 MART: Maintenance and Reliever Therapy
- 72 MMPs: matrix metalloproteinase
- 73 NET: neutrophil extracellular trap
- 74 NETosis: neutrophil extracellular trap formation
- 75 NK: natural killer
- 76 PDE₄: phosphodiesterase 4
- 77 PGD₂: prostaglandin D₂
- 78 PROSPERO: Prospective Observational Study to Evaluate Predictors of Clinical Effectiveness
- 79 in Response to Omalizumab trial
- 80 ROS: reactive oxygen species
- 81 SABA: short-acting beta₂-agonist
- 82 START: inhaled Steroid Treatment As Regular Therapy trial
- 83 Tc1: CD8⁺ cytotoxic T cell
- 84 Th2: T helper 2
- 85 TNF: tumor necrosis factor
- 86 TSLP: thymic stromal lymphopoietin
- 87 T2 inflammation: type 2 inflammation
- 88 WHO: World Health Organization

90 ABSTRACT

92	Globally, around half the adult asthma population are current or former cigarette smokers.
93	Cigarette smoking and asthma interact to induce an 'asthma-smoking phenotype(s)', which
94	has important implications for diagnosis, pathogenic mechanisms, and management. The
95	lack of progress in understanding the effects of smoking on adults with asthma is due in part
96	to their exclusion from most investigative studies and large clinical trials. In this review, we
97	summarize the adverse clinical outcomes associated with cigarette smoking in asthma,
98	highlight challenges in diagnosing asthma among cigarette smokers with chronic respiratory
99	symptoms, particularly in older individuals with a long-standing smoking history, and review
100	pathogenic mechanisms involving smoking and asthma-related airway inflammation, tissue
101	remodeling, corticosteroid insensitivity, and low-grade systemic inflammation. We discuss
102	key components of management including the importance of smoking cessation strategies,
103	evidence for the effectiveness of the Global Initiative for Asthma recommendations on
104	treatment in cigarette smokers, and the role of treatable traits such as type 2 eosinophilic
105	airway inflammation. Lastly, we provide an algorithm to aid clinicians to manage current and
106	former smokers with asthma. In the future, controlled and pragmatic trials in real-world
107	populations should include cigarette smokers with asthma to provide an evidence base for
108	treatment recommendations.
109	
110	Word count n=198
111	
112	
113	

114 INTRODUCTION

115

116	Nearly 1 billion people globally are tobacco smokers. ¹ Although its prevalence is projected
117	to decrease over the next decade, the total number of smokers will remain high due to
118	population growth. In 2020, men had a much higher prevalence of cigarette smoking than
119	women, 26% and 5% respectively, which was particularly evident among men living in the
120	World Health Organization (WHO) Western Pacific region of the world (42%), largely
121	reflecting data from China, and the European region (30%). ¹ A WHO survey undertaken in
122	the early 2000s showed that the proportion of current smokers with asthma was no
123	different from the general population. ² Current smoking rates are higher among some
124	asthma subgroups, such as adults attending US emergency departments with an
125	exacerbation, where over one third were smokers. ³ International severe asthma registry
126	data have shown a low prevalence of current smoking (<10%), ⁴ although higher smoking
127	rates were found among patients with severe asthma in primary care. ⁵ The prevalence of
128	former smoking in asthma ranges from around one quarter ⁶ to over 40%. ^{5, 7} Globally,
129	cigarette smoking has an adverse impact on disability-adjusted life years of people with
130	asthma, particularly in men and among those living in Europe, Western Pacific nations, and
131	Southeast Asia. ⁸ Collectively, these findings indicate that around fifty percent of adults with
132	asthma give a history of current or former cigarette smoking and that cigarette smoking
133	contributes to the worldwide health burden of asthma.
134	

135 Cigarette smoking and asthma interact to induce a mixed 'asthma-smoking phenotype',

136 which has important implications for diagnosis, pathogenic mechanisms, and management.

137	The lack of progress in understanding the impact of smoking on adults with asthma is due in
138	part to their exclusion from investigative studies and large clinical trials because of concerns
139	that these patients may also have chronic obstructive pulmonary disease (COPD). The
140	review aims to summarize the adverse clinical outcomes associated with cigarette smoking
141	in asthma and to answer the following key questions: 1. What are the main issues that
142	clinicians should consider when making a diagnosis of asthma in adults with chronic
143	respiratory symptoms and a smoking history? 2. Why do patients with asthma and smoking
144	history have worse clinical outcomes? 3. What is the best approach to managing patients
145	with asthma and a smoking history? The article provides an update on earlier reviews of
146	smoking and asthma. ^{9, 10}
147	
148	ADVERSE CLINICAL OUTCOMES
149	
150	Epidemiological data have demonstrated that current and former cigarette smoking ¹¹⁻¹³ and
151	cumulative pack-years of smoking ¹⁴ are risk factors for the development of asthma in adults.
152	Numerous observational studies have shown that current smoking is frequently associated
153	with worse clinical outcomes in asthma ¹⁵ (figure 1) including suboptimal asthma control, ^{7, 16}
154	lower asthma or generic health-related quality of life domain scores, ^{17, 18} more
155	exacerbations, ¹⁹⁻²¹ greater asthma-related health care utilization ²² and a higher proportion
156	of individuals with chronic bronchitis. ^{23, 24} Likewise, greater cumulative exposure to cigarette
157	smoke is associated with worse asthma control ²⁵ and predicted asthma-related hospital
158	admissions in adult-onset asthma. ²⁶

In asthma, current smoking status and cumulative exposure to cigarette smoke^{27, 28} are 160 associated with the development of persistent airflow obstruction over time, especially 161 after 50 years of age, leading to asthma-COPD overlap (ACO) in some cases.^{29, 30}. Several 162 longitudinal population-based studies³¹⁻³⁴ reported an accelerated decline in lung function 163 from early adulthood among current smokers with asthma compared to never smokers with 164 asthma, which was associated with a higher pack-year history in middle-aged adults with 165 asthma³⁵. For example, data from the Busselton Health Study showed that compared to 166 never-smokers with asthma, heavy smoking accelerated the decline by 14 ml/year in males 167 and 7 ml/year in females³⁴ (figure 2). In the longitudinal population-based European 168 169 Community Respiratory Health Survey, early- and late-onset asthma (defined as onset after 10 years of age) were both associated with a 10 to over 20-fold increase in the risk of adult 170 airflow obstruction. The development of persistent airflow obstruction was independent of 171 smoking among early-onset asthma, whereas cigarette smoking increased the risk in the 172 173 late-onset asthma subgroup (25-fold increase) compared to never smoking (11-fold increase), particularly among nonatopic subjects (30-fold increase).³² Suboptimal lung 174 growth from early-life events may contribute to persistent airflow obstruction in adulthood 175 among some current smokers with asthma.³⁶ 176

177

Several surveys of current smokers with asthma report a higher prevalence of comorbidities such as anxiety and depression,²¹ osteoporosis,³⁷ cardiovascular diseases,⁷ lung cancer,^{7, 38} and pneumonia^{7, 39} compared to never smokers with asthma. The cause of comorbidities in current smokers with asthma is likely to be multifactorial due to cigarette smoking, asthma, and/or oral corticosteroid burden. Current smoking is an important risk factor for increased all-cause mortality in asthma,⁴⁰ particularly in global regions with low socio-demographics.⁴¹

184 DIAGNOSIS AND DESCRIPTION

185

Based on symptoms of wheeze, cough, chest tightness, and/or dyspnea and objective 186 evidence of variable expiratory airflow limitation,⁴² the diagnosis of asthma in younger 187 adults with a smoking history is often straightforward. In some cases, measuring airway 188 hyperreactivity (AHR) to methacholine confirms the diagnosis, although even in the absence 189 190 of asthma, cigarette smoking increases the occurrence of AHR by over 3-fold in heavy daily smokers (>25 cigarettes/day).⁴³ Some have proposed the addition of fractional 191 concentration of exhaled nitric oxide (FeNO) measurements for individuals whose diagnosis 192 of asthma remains uncertain⁴⁴, but values are decreased in current smokers,⁴⁵ limiting its 193 diagnostic value. Distinguishing asthma from symptomatic smokers without spirometry 194 COPD (pre-COPD)^{15, 46, 47} or with COPD is more problematic in older individuals with a long-195 196 standing smoking history. Data from several studies have demonstrated the poor sensitivity of bronchodilator reversibility,⁴⁸ AHR,⁴³ diffusing capacity of lung to carbon monoxide, 197 computed tomography (CT) imaging of the chest, or biomarkers to differentiate asthma 198 from smoking-related chronic airway disease.⁴⁹ Furthermore, several smoking-associated 199 phenotypes have emerged from cluster analysis studies of asthma populations that included 200 adults with asthma and a smoking history.⁵⁰⁻⁶¹ The main variables identified were smoking 201 202 status, age of onset of asthma, severity of asthma, airflow obstruction, and type 2 203 inflammation (T2) status (figure 3). Although these clusters provide insights into the 204 heterogeneity of asthma-smoking phenotypes, their clinical relevance is uncertain. Given 205 the substantial risk of diagnostic misclassification of chronic airway disease in symptomatic current and former smokers,^{15,62} particularly in older age groups, we recommend an 206 207 approach that involves an assessment of the probability that clinical features are suggestive

208 of a diagnosis of asthma or smoking-related ACO as outlined in the GINA report⁴² and that 209 describes individual clinical, physiological, pathological, biomarker variables, and treatable 210 traits.^{63, 64}

211

212 MECHANISMS OF DISEASE

213

214 Multiple risk factors contribute to the adverse health outcomes experienced by smokers with asthma. Risk factors include current or former smoking status, cumulative exposure to 215 cigarette smoke, asthma phenotypes such as non-atopic late-onset asthma,³² and coexistent 216 217 social factors such as lower socioeconomic status, environmental exposures such as passive smoke⁶⁵ or air pollution⁶⁶ and behavioral factors. Furthermore, early life events such as 218 maternal smoking, prematurity, early respiratory infection, and previous severe childhood-219 220 onset asthma⁶⁷ can contribute to suboptimal lung growth and submaximal lung function 221 that impacts lung function in adulthood. The exposure to different risk factors is likely to induce heterogeneous phenotypes and endotypes. 222

223

224 Cellular and structural changes

225

Cigarette smoking can alter airway eosinophil and neutrophil numbers in asthma. Although
airway eosinophils were reduced in some studies,^{21, 68-70} more often eosinophil numbers
were unaltered by smoking status.⁷¹⁻⁷⁵ A recent study of predominately former smokers
with severe asthma found that a ≥10 pack-year history was associated with higher
proportion of patients with eosinophilic airway inflammation, autoimmunity towards
eosinophils, and reduced sputum eosinophil sensitivity to systemic corticosteroids

suggesting a phenotype of severe refractory eosinophilic asthma among former smokers 232 with a history of a higher cumulative exposure to cigarette smoke.⁷⁶ Many studies have 233 shown that current smoking was associated with neutrophilic airway inflammation, 68, 71, 74 234 235 whereas other data have shown that neutrophil numbers did not differ from never smokers.^{21, 69, 70, 77} A cross-sectional study of over 800 adults with mild to severe asthma 236 found similar proportions with eosinophilic, neutrophilic, and paucigranulocytic 237 238 inflammation among current smokers (37%, 15%, and 45% respectively) compared with never smokers (43%, 16%, and 37% respectively).⁷² Differences in risk factors may explain 239 the variability in eosinophil and/or neutrophil numbers between studies. Overall, data from 240 241 these studies have shown that over one-third of current smokers with mild to severe asthma have airway eosinophilia and over one-half have neutrophilic or paucigranulocytic 242 airway inflammation. Additionally, exposure to cigarette smoke in adults with asthma is 243 associated with the recruitment, activation, and/or altered function of macrophages,⁷⁸ 244 dendritic cells,⁷⁹ mast cells,⁷⁰ natural killer cells,⁸⁰ and T and B cells^{75, 79} compared to never 245 smokers, although data are limited, and some findings are conflicting. 246

247

Structural changes to the airway epithelium associated with cigarette smoking in asthma 248 include increased goblet cell numbers,^{70, 77} epithelial cell hyperplasia,⁷⁰ and squamous 249 metaplasia. Pathological features of epithelial remodeling may underlie respiratory 250 251 symptoms since increased goblet cells numbers correlated with a self-reported history of sputum production and greater epithelial thickness correlated with self-reported 252 breathlessness.⁷⁰ The percentage of mucus positive epithelium, epithelial thickness, and 253 proliferating epithelial cells in former smokers was similar to never smokers with asthma,⁷⁰ 254 suggesting reversal of epithelial cell remodeling following smoking cessation. Several studies 255

± .

have found that basement membrane thickness,^{70, 75, 77} histological airway smooth muscle 256 area thickness,^{75, 77} and wall thickness on CT⁸¹ were not associated with smoking status in 257 adults with mild to severe asthma. In contrast, data from other CT imaging studies found 258 increased airway wall thickness in current smokers with asthma⁷⁴ and among ACO patients 259 with a cumulative smoking history of ≥20 pack-years compared with those with <5 pack-260 years.⁸² CT emphysema is typically absent from adults with asthma and a smoking history,^{81,} 261 ⁸² although visual analysis showed a greater prevalence of emphysema in smoking-related 262 ACO (≥20 pack-years) compared to those with ACO (<5 pack-years).⁸² Collectively, these 263 findings suggest remodeling of the epithelium and possibly other lung structures among 264 current smokers with asthma. 265

266

267 Pathogenesis

268

Pathogenic mechanisms underlying airway inflammation and tissue remodeling in smokers 269 with asthma are poorly understood but are thought to involve interactions between 270 smoking and asthma-related airway inflammation (Figure 4). Exposure to cigarette smoke 271 induces oxidative stress⁸³ and the release of proinflammatory mediators by activated 272 neutrophils, macrophages, and CD8⁺ cytotoxic T (Tc1) cells.⁸⁴ Exposure to allergens in 273 274 sensitized individuals or other stimuli induces pro-inflammatory mediator release from 275 activated eosinophils, T helper 2 (Th2) cells, type 2 innate lymphoid cells (ILC2), and mast cells. Collectively these inflammatory pathways cause T2 low and/or T2 high airway 276 inflammation, and tissue damage to the epithelium and other structures. Innate immune 277 responses mediated by epithelial cells, alveolar macrophages, dendritic cells, and natural 278 279 killer cells can be suppressed by exposure to cigarette smoke and thus impair host

± 4

280	responses against infection. ⁸⁵ Corticosteroid insensitivity occurs due to refractory
281	eosinophilic, neutrophilic or paucigranulocytic airway inflammation, in addition to other
282	causes such as non-adherence. Possible molecular mechanisms of corticosteroid
283	insensitivity include altered glucocorticoid receptor (GR) subtypes, such as increased
284	inactive GR eta and decreased active GR $lpha$ expression, ⁸⁶ and increased pro-inflammatory
285	transcription factors activity, such as NF- κ B, or decreased histone deacetylase activity
286	(HDAC)2 activity. ⁸⁷ In addition to airway inflammation, low-grade systemic inflammation is
287	found in current and former smokers with asthma, ⁷ which in one study was associated with
288	comorbidities, a higher pack-year history, and lower lung function. ⁸⁸ Whether low-grade
289	systemic inflammation is a causative factor for adverse clinical outcomes in smokers with
290	asthma is not known.
291	
292	MANAGEMENT
293	
294	The management strategy for current smokers with asthma starts with smoking cessation.

292 MANAGEMENT

294	The management strategy for current smokers with asthma starts with smoking cessation.
295	Global Initiative for Asthma (GINA) provides recommendations for drug treatment, ⁴²
296	although evidence for the effectiveness of therapies in current smokers with asthma and
297	those with heavier smoking history is uncertain since clinical trial data were generated
298	among never smokers or former smokers with a very low pack-year history, typically 5 pack-
299	years or less. Recently, the identification and targeting of treatable traits have been
300	proposed as a personalized approach to the management of chronic airway diseases, ⁶⁴
301	although data are limited on its effectiveness for the management of current smokers with
302	asthma. ⁸⁹ In addition to smoking cessation, management involves the identification and
303	targeting of high-yield treatable risk factors and behavioral traits, such as infection and poor

adherence with asthma therapies, pulmonary traits, such as exacerbations, airflow
 obstruction, and T2 eosinophilic inflammation, and extrapulmonary traits, such as
 comorbidities (figure 5). Published evidence for the effectiveness of specific components of
 a management plan for adults with asthma and a smoking history is reviewed below.

309 Smoking cessation

All smokers with asthma should be advised to quit. This advice should be personalized by 310 listing the improvements in asthma outcomes soon after quitting. In several studies in 311 asthma, quitting smoking is associated with improvements in symptoms,⁹⁰⁻⁹² asthma-related 312 quality of life,⁹⁰ lung function,⁹² and AHR.^{90, 91} Furthermore, former smokers with asthma 313 often have better symptom control than current smokers.^{21, 93} A COPD risk-prediction model 314 315 estimated that a 43-year-old female unskilled worker with asthma who smoked 20 cigarettes/day for 30 years had an estimated 42% risk of COPD in the next 10 years, but only 316 4.5% if she stopped smoking at age 43.94 Cigarette smokers with asthma and COPD are no 317 more likely to receive smoking cessation counseling and pharmacotherapy from physicians 318 compared to the general smoking population.⁹⁵ Cigarette smoking quit rates are improved 319 with behavioral counseling in combination with pharmacotherapies, such as nicotine 320 replacement products, varenicline, and bupropion.⁹⁶ A tailored approach to the smoking 321 cessation of the smokers with asthma has been described previously.^{97, 98} While the 322 preferred goal is abstinence, this is not always achievable and substitution of conventional 323 cigarettes with alternatives that do not require combustion to deliver nicotine such as E-324 cigarettes may be an alternative for those smokers with asthma who do not wish to stop 325 smoking. 99, 100 326

	nal	D			01
			_	C (III) 3	C (III) 311

Targeting non-adherence, poor inhaler technique, and infection risk

328	
329	Cigarette smoking has been associated with poorer adherence to drug therapies for asthma in
330	some ¹⁰¹ but not all studies. ¹⁰² An international cross-sectional study of over 4000 adults with
331	asthma identified current smoking as a risk factor for ≥ 1 inhaler technique errors and worsening
332	asthma outcomes among those who used a metered-dose inhaler but not among those who used
333	a dry powder inhaler device. ¹⁰³ Infection risk reduction for current smokers with asthma
334	including smoking-related ACO involves annual influenza vaccination, ⁴² COVID-19 vaccination,
335	and pneumococcal vaccination for patients >65 years. ⁴⁹
336	
337	Drug treatments and other therapies
338	
339	Published studies on the influence of current smoking status on GINA recommendations for
340	the treatment of symptoms, exacerbations, and airflow obstruction in adolescents and
341	adults with asthma are summarized in the following section.
342	
343	Maintenance low to high dose inhaled corticosteroids
344	
345	Data from several small randomized controlled trials have shown reduced improvement in
346	lung function after low to medium dose ICS administered from <1 month to 6 months
347	among current smokers with mild to moderate asthma compared to never-smokers (Table
348	1). ^{69, 104-107} In one study, current smokers with asthma who were insensitive to low dose ICS
349	improved lung function after high-dose ICS therapy for 12 weeks ¹⁰⁵ suggesting that smokers
350	with mild to moderate asthma may require a higher dose ICS treatment to overcome

351 corticosteroid insensitivity and improve airflow obstruction. The beneficial effect of low dose ICS on allergen-induced early asthmatic responses is attenuated in current smokers 352 with asthma.¹⁰⁸ A *post hoc* analysis of the GOAL (Gaining Optimal Asthma Control) trial 353 354 showed that 1-year treatment with medium to high dose ICS was less effective in preventing severe exacerbations in current compared to never smokers with asthma.¹⁰⁹ Data from a 355 post hoc analysis of the START (inhaled Steroid Treatment As Regular Therapy) trial in 356 recent-onset mild asthma¹¹⁰ and observational studies^{111, 112} have shown that long-term ICS 357 treatment (\geq 1 year) reduced the decline in lung function among current smokers with 358 asthma, although in one observational study, a beneficial effect of ICS was restricted to men 359 and smokers with a <5 pack-year history.¹¹¹ Two systematic reviews have shown that 360 current smoking was associated with a reduced improvement in FEV1 after low and high-361 dose ICS treatment compared to non-smokers.^{113, 114} Exploratory analysis of UK General 362 Practice Database has found a lower rate of severe exacerbations and improvement in 363 364 asthma control for current and former smokers with asthma after one year's treatment with extra-fine-particle ICS compared to standard-particle ICS,¹¹⁵ although other studies have not 365 found better outcomes with extra-fine-particle ICS in current smokers with asthma.¹¹⁶ Data 366 from one study in asthma have shown that a higher pack-year history was associated with 367 reduced improvement in FEV₁ after 2 weeks and 1-year treatment with ICS.⁶⁹ Collectively, 368 369 these findings suggest that the improvement in lung function after short-term low to 370 medium dose ICS is impaired among current smokers with asthma compared to never smokers. In current smokers with asthma, long-term treatment with ICS may reduce the 371 decline in lung function but it is less effective in preventing exacerbations compared with 372 never smokers with asthma. Preliminary data from clinical trials in current and former 373

τ.

Journal Pre-proof	
	+/

374	smokers with asthma ^{109, 110} or COPD ¹¹⁷⁻¹¹⁹ suggest that the beneficial effects of ICS on
375	exacerbations and lung function are greater in former smokers than in current smokers.
376	
377	As-needed low dose ICS-formoterol reliever
378	
379	The GINA recommendation for the use of as-required ICS-formoterol in symptomatic mild or
380	moderate asthma is based on evidence from large clinical trials generalizable to current or
381	former smokers with a low cumulative smoking history. ¹²⁰⁻¹²³ Currently, there are no clinical
382	trials that have assessed the as-needed low dose ICS-formoterol reliever strategy in smokers
383	with medium to high tobacco use. ¹²⁴
384	
385	Maintenance low to high dose ICS-long-acting beta-agonist (LABA)
386	
387	Maintenance medium to high dose standard-particle ICS-LABA combination in current and
388	former smokers with asthma produced greater improvement in asthma control and
389	reduction in exacerbations than high dose ICS. ^{107, 109, 116} Data on the effectiveness of low-
390	dose ICS-LABA maintenance treatment, including extra-fine particle ICS-LABA ¹²⁵ are limited
391	to findings from a small number of observational studies.
392	
393	ICS-LABA MART (Maintenance and Reliever Therapy) regimen
394	
395	A study of medium-dose maintenance budesonide/formoterol (200/6 μ g) two puffs twice
396	daily showed that the reduction in severe exacerbations with low dose
397	budesonide/formoterol (200/6 μ g) one puff (MART regimen) compared with SABA for

398	symptom relief was unrelated to smoking status among 303 adults with asthma of whom
399	half were current or former smokers with <10 pack-year smoking history. ¹²⁶ A six-month
400	open-label study in light smokers with asthma found that the reduction in symptoms and
401	severe exacerbations was greater with the MART regimen using medium-dose
402	budesonide/formoterol (200/6 μ g) two puffs twice daily compared with one inhalation
403	twice daily suggesting that a higher maintenance dose of budesonide/formoterol may be
404	required in smokers with asthma. ¹²⁷ Collectively, these findings suggest that the MART
405	regimen is effective in current smokers with asthma who have a low cumulative smoking
406	history.

407

408 Add-on long-acting muscarinic antagonist (LAMA)

409

410 A post hoc analysis of phase 3 trials of once-daily tiotropium add-on therapy in symptomatic 411 patients with asthma despite treatment with medium to high dose ICS with or without LABA reported a reduced time to first severe exacerbation in former smokers with persistent 412 airflow obstruction.¹²⁸ A 12-week randomized placebo-controlled study in 472 current and 413 414 former heavy cigarette smokers (34 pack-year history) with ACO reported improvements in FEV1 and a decrease in rescue medication use with add-on tiotropium.¹²⁹ A randomized 415 cross-over trial in 16 current smokers with asthma found that the addition of tiotropium to 416 417 medium dose ICS-LABA improved trough small airway flow rates, but had no added effect on symptoms or reliever use.¹³⁰ Collectively, these findings suggest benefits from the 418 addition of tiotropium to symptomatic ever smokers with asthma associated with persistent 419 420 airflow obstruction despite treatment with medium to high dose ICS-LABA.

422 Biologics

423

424 Post-hoc analysis of the PROSPERO (Prospective Observational Study to Evaluate Predictors of Clinical Effectiveness in Response to Omalizumab) study showed that omalizumab for 48 425 426 weeks improved symptom control, but not lung function, among 50 current and former smokers with ACO compared to 663 adults without ACO, of whom two-thirds were never 427 smokers.¹³¹ Data from a global observational cohort study of 368 real-world patients newly 428 prescribed mepolizumab for severe asthma, of whom 39% were current smokers or former 429 smokers demonstrated reductions in exacerbations and maintenance oral corticosteroid use 430 similar to those reported in clinical trials of mepolizumab.¹³² A post-hoc analysis of a phase 431 2b trial of the anti-interleukin (IL)-4 receptor α monoclonal antibody dupilumab in patients 432 with severe asthma reported improvements in FEV₁ and reduced severe exacerbations in a 433 subgroup of patients with a smoking history and ACO.¹³³ Collectively, these data and other 434 observational studies¹¹⁶ provide low-certainty evidence of clinical benefits from treatment 435 436 with anti-IgE omalizumab, anti-IL5 mepolizumab, and anti-IL4 receptor α dupilumab in 437 patients with smoking-related ACO.

438

439 Add-on azithromycin

440

Add-on azithromycin treatment for 12 weeks did not affect clinical outcomes and
inflammatory biomarkers among current smokers with mild to moderate asthma.¹³⁴ The
AMAZES (Asthma and Macrolides: The Azithromycin Efficacy and Safety) trial, which
recruited 420 never and former smokers (38% of participants; <10 pack-year history) with
persistent uncontrolled asthma , showed that the addition of azithromycin for 48 weeks

446	reduced severe and moderate exacerbations and improved asthma-specific quality of life
447	compared to placebo. ¹³⁵ In COPD, daily azithromycin decreased acute exacerbations in
448	former smokers, but not in current smokers ¹³⁶ . Collectively, these findings suggest that the
449	addition of azithromycin is not effective in current smokers with mild to moderate asthma,
450	whereas it may reduce exacerbations in former smokers with asthma who have a low
451	cumulative smoking history.
452 453 454	Low dose maintenance oral corticosteroid
455	Several clinical trials showed that the improvement in lung function after short-term high-
456	dose oral corticosteroid treatment was impaired in current smokers with asthma compared
457	to never smokers. ^{137, 138} The influence of smoking status on low dose maintenance oral
458	corticosteroid treatment or the efficacy of high dose oral corticosteroid treatment of
459	exacerbations is not known.
460	
461	Other therapies
462	
463	The number of participants with a smoking history included in real-world patient
464	observational studies of bronchial thermoplasty is too small to establish the efficacy or
465	safety of the procedure in current or former smokers with severe asthma. ¹³⁹ A small
466	number of clinical studies have reported the benefits of the leukotriene receptor antagonist
467	montelukast as a first-line controller therapy in current smokers with asthma. $^{106, 140}$ In a
468	controlled clinical trial among 1019 current smokers with asthma, a better clinical response
469	to montelukast was found in those with a higher cumulative exposure to tobacco smoke

470 (>11 pack-year), whereas a better response to medium-dose ICS was shown in those with

471 lower cumulative exposure to tobacco smoke (<11 pack-year).¹⁴¹

472

473	Drugs used to treat symptoms of chronic bronchitis, such as thiol compounds ¹⁴² and the
474	phosphodiesterase (PDE) $_4$ inhibitor roflumilast, which is an add-on option to reduce
475	exacerbations in current and former smokers with severe COPD and chronic bronchitis 49
476	have not been studied in smokers with asthma and chronic bronchitis. Preliminary studies
477	with statins ^{143, 144} or low-dose theophylline, ¹⁴⁵ have shown clinical benefits in current
478	smokers with mild to moderate asthma, but larger trials are required.

479

480 T2 eosinophilic inflammation status

481

482 Current cigarette smoking alters biomarkers of T2 inflammation in asthma, for example, by reducing FeNO,⁴⁵ and serum periostin concentrations.¹⁴⁶ Blood eosinophil numbers in 483 current smokers with asthma can be increased,¹⁴⁷ reduced⁶⁹ or similar ^{7 21, 148} to never 484 smokers with asthma. Among current smokers (>10 pack-year smoking history) with mild to 485 moderate asthma, a single blood eosinophil count (>2%) was shown to be a good predictor 486 of airway eosinophilia.¹⁴⁹ Blood eosinophils are used to identify individuals with T2 high 487 488 airway inflammation who are potentially suitable for ICS or biologic treatment among adults 489 with asthma (data mainly from non-smokers) and ICS use in smoking-related COPD. Based on these findings, it is likely that blood eosinophils can be also used to predict ICS 490 responsiveness among adults with asthma and a smoking history, although published clinical 491 492 data are limited. Current smoking is associated with elevated total IgE antibody levels in the general population,¹⁵⁰ whereas most studies in asthma have found that total IgE levels are 493

494 not influenced by smoking status.^{7, 21} Smoking is associated with a reduced sensitization to
 495 common aeroallergens,¹⁵¹ except for increased sensitization house dust mites in some
 496 studies.^{21, 151}

497

498 T2 high eosinophilic inflammation

499

500 Over one-third of current smokers with asthma have biomarker evidence of T2 high inflammation.^{146, 152, 153} In a large UK primary care asthma cohort, of whom over 50% were 501 current and former smokers, a multidimensional eosinophil algorithm classified an 502 eosinophilic phenotype in the majority.¹⁵⁴ Current and former smokers with poorly 503 controlled asthma despite moderate dose ICS-LABA who have persistently raised blood 504 eosinophils should be considered for high dose ICS-LABA and/or biologics. The optimum 505 506 blood eosinophil count cut-off value for high-dose ICS or biologic treatment is uncertain in 507 smokers with asthma. In smoking-related COPD, the addition of ICS to LABA or LABA and LAMA reduced moderate and severe exacerbations^{117, 118} at all blood eosinophil counts 508 509 among former smokers, but among current smokers, clinical benefits were lacking at lower eosinophil counts (<200cells/µl), whereas exacerbations were reduced at higher eosinophil 510 counts (>200cells/µl).^{117, 118} In smoking-related ACO, observational data suggested that a 511 512 blood eosinophil count of >300cells/ul predicted a decrease in exacerbations with ICS.¹⁵⁵. 513 Possible blood eosinophil values predicting ICS responsiveness in current smokers with 514 asthma are: >300 cells/ μ l, good ICS response; >100 to 300 cells/ μ l, uncertain ICS response; \leq 100 cells/µl, low probability of ICS response. Collectively, these findings suggest that 515 former smoking status and elevated blood eosinophil count may predict ICS responsiveness 516 in adults with asthma and a smoking history, although further studies are required to assess 517

- the interrelationships between smoking status, blood eosinophil count, ICS responsiveness,
- 519 exacerbations, and severity of asthma.
- 520
- 521 T2 low neutrophilic and/or paucigranulocytic inflammation
- 522

Around fifty percent of adults with asthma and a smoking history have neutrophilic or paucigranulocytic airway inflammation. T2 low inflammation is associated with a high cumulative exposure to tobacco smoke.^{52, 156} Specific drug therapies are not currently available to target T2 low inflammation.

- 527
- 528 Overview of management
- 529

As an aid for clinicians, an algorithm summarizes the key components of the management of 530 current and former smokers with clinical features suggestive of asthma and/or smoking 531 532 related ACO (figure 5) and emphasizes the central place of smoking cessation for current smokers. Despite limited data on the effectiveness of therapies for current smokers with 533 534 asthma, pharmacological management is based on GINA recommendations.⁴² Overall, published data suggest that smoking status (current versus former smokers), 109, 110, 137 535 cumulative smoking exposure,⁶⁹ and biomarker evidence of T2 high eosinophilic 536 537 inflammation influence the therapeutic response to pharmacological and biological interventions. Blood eosinophil count should be used to assess T2 status in current and 538 539 former smokers with poorly controlled asthma despite maintenance medium-dose ICS-LABA 540 combination treatment before considering high dose ICS-LABA and/or biologics (or low dose oral corticosteroids) for those with persistently raised blood eosinophils. Therapeutic 541

542 options for patients with persistently poorly controlled asthma despite moderate dose ICS-543 LABA and T2 low inflammation or with treated T2 high inflammation include add-on LAMA 544 for patients with chronic airflow obstruction, a trial of add-on azithromycin, particularly in 545 former smokers, and bronchial thermoplasty. Management also includes targeting risk factors, behavioral, and extrapulmonary comorbidity treatable traits. In the future, 546 controlled trials and pragmatic trials in real-world populations should include cigarette 547 548 smokers with asthma to provide evidence on the effectiveness of drug and biological treatments in this subgroup of chronic airway disease. 549 550

551 CONCLUSIONS

552

Globally, adults with asthma frequently give a history of current or previous cigarette 553 smoking. Current smoking is a risk factor for the development of asthma and worse clinical 554 outcomes including suboptimal asthma control, increased exacerbations, accelerated 555 decline in lung function, persistent airflow obstruction, more comorbidities, and higher all-556 557 cause mortality. Although diagnosing asthma in symptomatic younger adults with a smoking history can be straightforward, distinguishing asthma from smoking-related chronic airway 558 559 diseases such as COPD can be difficult, particularly in older individuals with a long-standing smoking history. Given the substantial risk of diagnostic misclassification in symptomatic 560 561 smokers, we recommend an approach that involves an assessment of the probability that 562 clinical features are suggestive of a diagnosis of asthma or smoking-related ACO as outlined 563 in the GINA report and that describes clinical, physiological, pathological, and/or biomarker variables and treatable traits. Exposure to cigarette smoke and other risk factors cause 564 pathogenic mechanisms involving smoking and asthma-related airway inflammation, tissue 565

566	remodeling, corticosteroid insensitivity, and low-grade systemic inflammation. Key
567	components of the management strategy for current smokers with asthma include smoking
568	cessation advice, and targeting risk factors, behavioral, and extrapulmonary comorbidity
569	treatable traits. Despite limited data on the effectiveness of therapies and evidence of
570	reduced sensitivity to ICS treatment, pharmacological management is based on GINA
571	recommendations. T2 high eosinophilic inflammation should be confirmed before a step-up
572	to high dose ICS or the use of biologics. Controlled trials and pragmatic trials are required in
573	real-world populations that include cigarette smokers with asthma to provide data on the
574	effectiveness of drug and biological treatments.
575	
576	ACKNOWLEDGMENTS
577	
578	NCT: none
579	RP: full tenured professor of Internal Medicine supported by the University of Catania (Italy)
580	DDS: supported by a Canada Research Chair Award and the de Lazzari Family Chair at the
581	Centre of Heart Lung Innovation (HLI)

WHO global report on trends in prevalence of tobacco use 2000-2025, fourth

583 **REFERENCES**

1.

584

- 586 edition. In: . ed. Geneva: World Health Organization, 2021:https://www.who.int/publications/i/item/9789240039322. Accessed 24th 587 January 2022. 588 2. To T, Stanojevic S, Moores G, Gershon A, Bateman E, Cruz A, et al. Global asthma 589 prevalence in adults: findings from the cross-sectional world health survey. BMC 590 591 Public Health 2012; 12:204. 592 3. Silverman RA, Hasegawa K, Egan DJ, Stiffler KA, Sullivan AF, Camargo Jr CA. 593 Multicenter study of cigarette smoking among adults with asthma exacerbations in the emergency department, 2011–2012. Respir Med 2017; 125:89-91. 594 595 4. Wang E, Wechsler ME, Tran TN, Heaney LG, Jones RC, Menzies-Gow AN, et al. 596 Characterization of severe asthma worldwide: data from the International Severe 597 Asthma Registry (ISAR). CHEST 2020; 157.
- 5985.Ryan D, Heatley H, Heaney LG, Jackson DJ, Pfeffer PE, Busby J, et al. Potential severe599asthma hidden in UK primary care. J Allergy Clin Immunol Pract 2021; 9:1612-23.e9.
- 600 6. Nwaru BI, Ekerljung L, Rådinger M, Bjerg A, Mincheva R, Malmhäll C, et al. Cohort
- 601 profile: the West Sweden Asthma Study (WSAS): a multidisciplinary population-
- based longitudinal study of asthma, allergy and respiratory conditions in adults. BMJ
 Open 2019; 9:e027808.
- 7. Çolak Y, Afzal S, Nordestgaard BG, Lange P. Characteristics and Prognosis of Never-
- Smokers and Smokers with Asthma in the Copenhagen General Population Study. A
 Prospective Cohort Study. Am J Resp Crit Care Med 2015; 192:172-81.
- 8. Mattiuzzi C, Lippi G. Estimation of Worldwide Burden of Smoking-Related Asthma.
 Int Arch Allergy Immunol 2020; 181.
- 609 9. Thomson NC, Chaudhuri R, Livingston E. Asthma and cigarette smoking. Eur Respir J
 610 2004; 24:822-33.
- 10. Polosa R, Thomson NC. Smoking and asthma: dangerous liaisons. Eur Respir J 2013;
 41:716-26.

- 613 11. Coogan PF, Castro-Webb N, Yu J, O'Connor GT, Palmer JR, Rosenberg L. Active and
 614 Passive Smoking and the Incidence of Asthma in the Black Women's Health Study.
 615 Am J Resp Crit Care Med 2015; 191:168-76.
- Skaaby T, Taylor AE, Jacobsen RK, Paternoster L, Thuesen BH, Ahluwalia TS, et al.
 Investigating the causal effect of smoking on hay fever and asthma: a Mendelian
 randomization meta-analysis in the CARTA consortium. Sci Rep 2017; 7:2224.
- 13. Jayes L, Haslam PL, Gratziou CG, Powell P, Britton J, Vardavas C, et al. SmokeHaz:
 Systematic reviews and meta-analyses of the effects of smoking on respiratory
 health. Chest 2016; 150:164-79.
- Polosa R, Knoke JD, Russo C, Piccillo G, Caponnetto P, Sarvà M, et al. Cigarette
 smoking is associated with a greater risk of incident asthma in allergic rhinitis. J
 Allergy Clin Immunol 2008; 121:1428-34.
- Thomson NC. Asthma and smoking-induced airway disease without spirometric
 COPD. Eur Respir J 2017; 49.
- Braido F, Brusselle G, Guastalla D, Ingrassia E, Nicolini G, Price D, et al. Determinants
 and impact of suboptimal asthma control in Europe: The INTERNATIONAL CROSSSECTIONAL AND LONGITUDINAL ASSESSMENT ON ASTHMA CONTROL (LIAISON)
 study. Respir Res 2016; 17:51.
- G31 17. Upton J, Lewis C, Humphreys E, Price D, Walker S. Asthma-specific health related
 G32 quality of life of people in Great Britain: A national survey. J Asthma 2016; 53:975-82.
- Iansson S-A, Axelsson M, Hedman L, Leander M, Stridsman C, Rönmark E. Subjects
 with well-controlled asthma have similar health-related quality of life as subjects
 without asthma. Respir Med 2016; 120:64-9.
- The Health Consequences of Smoking: 50 Years of Progress. A Report of the Surgeon
 General. Atlanta, GA: U.S. Department of Health and Human Services, Centers for
 Disease Control and Prevention, Coordinating Center for Health Promotion, National
 Center for Chronic Disease Prevention and Health Promotion, Office on Smoking and
 Health, 2014.
- Bloom CI, Nissen F, Douglas IJ, Smeeth L, Cullinan P, Quint JK. Exacerbation risk and
 characterisation of the UK's asthma population from infants to old age. Thorax 2018;
 73:313-20.

644 21. Thomson NC, Chaudhuri R, Heaney LG, Bucknall C, Niven RM, Brightling CE, et al. 645 Clinical outcomes and inflammatory biomarkers in current smokers and exsmokers with severe asthma. J Allergy Clin Immunol 2013; 131:1008-16. 646 647 22. Noble M, Burden A, Stirling S, Clark A, Musgrave S, Al Sallakh M, et al. Predicting 648 asthma-related crisis events using routine electronic healthcare data. Br J Gen Pract 649 2021; 71:e948-e57. 23. Thomson N, Chaudhuri R, Messow CM, Spears M, MacNee W, Connell M, et al. 650 651 Chronic cough and sputum production are associated with worse clinical outcomes 652 in stable asthma. Respir Med 2013; 107:1501-8. 653 24. Suzuki K, Tanaka H, Kaneko S, Nishi M, Teramoto S, Itoh S, et al. Respiratory 654 symptoms and cigarette smoking in 3,197 pulmonologist-based asthmatic patients with a highly prevalent use of inhaled corticosteroid. J Asthma 2003; 40:243-50. 655 656 25. Polosa R, Russo C, Caponnetto P, Bertino G, Sarva M, Antic T, et al. Greater severity 657 of new onset asthma in allergic subjects who smoke: a 10-year longitudinal study. Resp Res 2011; 12:16. 658 26. Tommola M, Ilmarinen P, Tuomisto LE, Lehtimäki L, Niemelä O, Nieminen P, et al. 659 Cumulative effect of smoking on disease burden and multimorbidity in adult-onset 660 661 asthma. Eur Respir J 2019; 54:1801580. 27. To T, Zhu J, Gray N, Feldman LY, Villeneuve PJ, Licskai C, et al. Asthma and Chronic 662 Obstructive Pulmonary Disease Overlap in Women. Incidence and Risk Factors. Ann 663 Am Thorac Soc 2018; 15:1304-10. 664 28. Morgan BW, Grigsby MR, Siddharthan T, Chowdhury M, Rubinstein A, Gutierrez L, et 665 al. Epidemiology and risk factors of asthma-chronic obstructive pulmonary disease 666 overlap in low- and middle-income countries. J Allergy Clin Immunol 2019; 143:1598-667 668 606. 29. Leung JM, Sin DD. Asthma-COPD overlap syndrome: pathogenesis, clinical features, 669 670 and therapeutic targets. BMJ 2017; 358. 30. Thomson NC. The role of smoking in asthma and chronic obstructive pulmonary 671 disease overlap. Immunol Allergy Clin North Am 2022; in press. 672

67331.Lange P, Parner J, Vestbo J, Schnohr P, Jensen G. A 15-Year Follow-Up Study of

674 Ventilatory Function in Adults with Asthma. N Engl J Med 1998; 339:1194-200.

675	32.	Aanerud M, Carsin A-E, Sunyer J, Dratva J, Gislason T, Jarvis D, et al. Interaction
676		between asthma and smoking increases the risk of adult airway obstruction. Eur
677		Respir J 2015; 45:635-43.
678	33.	Perret JL, Dharmage SC, Matheson MC, Johns DP, Gurrin LC, Burgess JA, et al. The
679		Interplay between the Effects of Lifetime Asthma, Smoking, and Atopy on Fixed
680		Airflow Obstruction in Middle Age. Am J Respir Crit Care Med 2013; 187:42-8.
681	34.	James AL, Palmer LJ, Kicic E, Maxwell PS, Lagan SE, Ryan GF, et al. Decline in Lung
682		Function in the Busselton Health Study: The Effects of Asthma and Cigarette
683		Smoking. Am J Respir Crit Care Med 2005; 171:109-14.
684	35.	Tommola M, Ilmarinen P, Tuomisto LE, Haanpää J, Kankaanranta T, Niemelä O, et al.
685		The effect of smoking on lung function: a clinical study of adult-onset asthma. Eur
686		Respir J 2016; 48:1298-306.
687	36.	Lange P, Celli B, Agustí A, Boje Jensen G, Divo M, Faner R, et al. Lung-Function
688		Trajectories Leading to Chronic Obstructive Pulmonary Disease. N Eng J Med 2015;
689		373:111-22.
690	37.	Chalitsios CV, McKeever TM, Shaw DE. Incidence of osteoporosis and fragility
691		fractures in asthma: a UK population-based matched cohort study. Eur Respir J 2021;
692		57:2001251.
693	38.	Lemmetyinen RE, Karjalainen JV, But A, Renkonen RLO, Pekkanen JR, Toppila-Salmi
694		SK, et al. Higher mortality of adults with asthma: a 15 year follow-up of apopulation-
695		based cohort. Allergy 2018; 73:1479-88.
696	39.	Torres A, Blasi F, Dartois N, Akova M. Which individuals are at increased risk of
697		pneumococcal disease and why? Impact of COPD, asthma, smoking, diabetes, and/or
698		chronic heart disease on community-acquired pneumonia and invasive
699		pneumococcal disease. Thorax 2015; 70:984-9.
700	40.	Engelkes M, de Ridder M, Svensson E, Berencsi K, Prieto-Alhambra D, Lapi F, et al.
701		Multinational cohort study of mortality in patients with asthma and severe asthma.
702		Respir Med 2020; 2:105919.
703	41.	Li X, Cao X, Guo M, Xie M, Liu X. Trends and risk factors of mortality and disability
704		adjusted life years for chronic respiratory diseases from 1990 to 2017: systematic
705		analysis for the Global Burden of Disease Study 2017. BMJ 2020; 368:m234-m.

- Global Initiative for Asthma (GINA). http://www.ginasthma.org/; 2021.] Accessed
 24th January 2022.
- Jansen DF, Schouten JP, Vonk JM, Rijcken B, Timens W, Kraan J, et al. Smoking and
 airway hyperresponsiveness especially in the presence of blood eosinophilia increase
 the risk to develop respiratory symptoms: a 25-year follow-up study in the general
 adult population. Am J Respir Crit Care Med 1999; 160:259-64.
- 712 44. Cloutier MM, Baptist AP, Blake KV, Brooks EG, Bryant-Stephens T, DiMango E, et al.
- 713 2020 Focused Updates to the Asthma Management Guidelines: A Report from the
- National Asthma Education and Prevention Program Coordinating Committee Expert
 Panel Working Group. J Allergy Clin Immunol 2020; 146:1217-70.
- Ahovuo-Saloranta A, Csonka P, Lehtimäki L. Basic characteristics and clinical value of
 FeNO in smoking asthmatics—a systematic review. J Breath Res 2019; 13:034003.
- 718 46. Thomson NC. Asthma with a Smoking History and Pre–Chronic Obstructive
- 719 Pulmonary Disease. Am J Respir Crit Care Med 2021; 204:109-10.
- Han MK, Agusti A, Celli BR, Criner GJ, Halpin DMG, Roche N, et al. From GOLD 0 to
 Pre-COPD. Am J Respir Crit Care Med 2021; 203:414-23.
- 48. Janson C, Malinovschi A, Amaral AFS, Accordini S, Bousquet J, Sonia Buist A, et al.
- 723 Bronchodilator reversibility in asthma and COPD: Findings from three large
- population studies. Eur Respir J 2019; 54:1900561.
- Global strategy for the diagnosis, management and prevention of chronic obstructive
 pulmonary disease.: http://www.goldcopd.org; 2021.] Accessed 24th January 2022
- 50. Fingleton J, Huang K, Weatherall M, Guo Y, Ivanov S, Bruijnzeel P, et al. Phenotypes
- of symptomatic airways disease in China and New Zealand. Eur Respir J 2017; 50.
- 729 51. Ilmarinen P, Tuomisto LE, Niemelä O, Tommola M, Haanpää J, Kankaanranta H.
- Cluster Analysis on Longitudinal Data of Patients with Adult-Onset Asthma. J Allergy
 Clin Immunol in Pract 2017; 5:967-78.e3.
- 52. Konno S, Taniguchi N, Makita H, Nakamaru Y, Shimizu K, Shijubo N, et al. Distinct
 Phenotypes of Smokers with Fixed Airflow Limitation Identified by Cluster Analysis of
 Severe Asthma. Ann Am Thorac Soc 2018; 15:33-41.
- 53. Wang L, Liang R, Zhou T, Zheng J, Liang BM, Zhang HP, et al. Identification and
 validation of asthma phenotypes in Chinese population using cluster analysis. Annals
 Allergy Asthma Immunol 2017; 119:324-32.

738	54.	Hsiao H-P, Lin M-C, Wu C-C, Wang C-C, Wang T-N. Sex-Specific Asthma Phenotypes,
739		Inflammatory Patterns, and Asthma Control in a Cluster Analysis. J Allergy Clin
740		Immunol in Pract 2019; 7:556-67.e15.
741	55.	Lefaudeux D, De Meulder B, Loza MJ, Peffer N, Rowe A, Baribaud F, et al. U-BIOPRED
742		clinical adult asthma clusters linked to a subset of sputum omics. J Allergy Clin
743		Immunol 2017; 139:1797-807.
744	56.	Kim T-B, Jang A-S, Kwon H-S, Park J-S, Chang Y-S, Cho S-H, et al. Identification of
745		asthma clusters in two independent Korean adult asthma cohorts. Eur Respir J 2013;
746		41:1308-14.
747	57.	Khusial RJ, Sont JK, Loijmans RJB, Snoeck-Stroband JB, Assendelft PJJ, Schermer TRJ,
748		et al. Longitudinal outcomes of different asthma phenotypes in primary care, an
749		observational study. npj Prim Care Respir Med 2017; 27:55.
750	58.	Kisiel MA, Zhou X, Sundh J, Ställberg B, Lisspers K, Malinovschi A, et al. Data-driven
751		questionnaire-based cluster analysis of asthma in Swedish adults. NPJ Prim Care
752		Respir Med 2020; 30:14.
753	59.	Qiu R, Xie J, Chung KF, Li N, Yang Z, He M, et al. Asthma phenotypes defined from
754		parameters obtained during recovery from a hospital-treated exacerbation. J Allergy
755		Clin Immunol in Pract 2018; 6:1960-7.
756	60.	Nadif R, Febrissy M, Andrianjafimasy MV, Le Moual N, Gormand F, Just J, et al.
757		Endotypes identified by cluster analysis in asthmatics and non-asthmatics and their
758		clinical characteristics at follow-up: the case-control EGEA study. BMJ Open Respir
759		Res 2020; 7.
760	61.	Kaneko Y, Masuko H, Sakamoto T, Iijima H, Naito T, Yatagai Y, et al. Asthma
761		phenotypes in Japanese adults - their associations with the CCL5 and ADRB2
762		genotypes. Allergol Int 2013; 62:113-21.
763	62.	Reddel HK, Vestbo J, Agustí A, Anderson GP, Bansal AT, Beasley R, et al.
764		Heterogeneity within and between physician-diagnosed asthma and/or COPD:
765		NOVELTY cohort. Eur Respir J 2021; 58:2003927.
766	63.	Papi A. Asthma COPD Overlap PRO-CON Debate. ACO: The Mistaken Term. COPD
767		2020; 17:474-6.
768	64.	McDonald VM, Fingleton J, Agusti A, Hiles SA, Clark VL, Holland AE, et al. Treatable

traits: a new paradigm for 21st century management of chronic airway diseases:

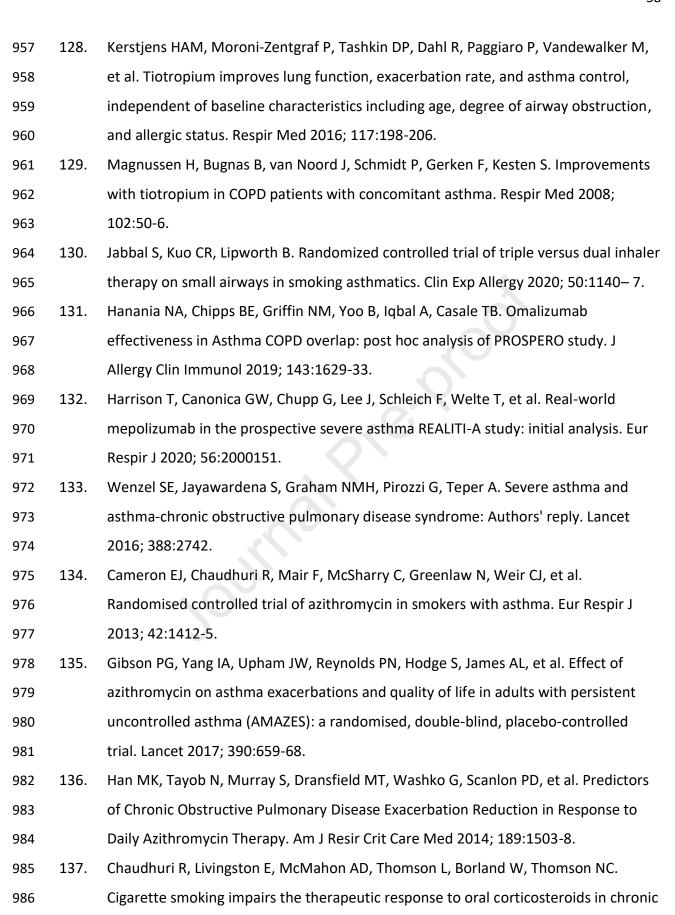
770		Treatable Traits Down Under International Workshop report. Eur Respir J 2019;
771		53:1802058.
772	65.	Eisner MD, Anthonisen N, Coultas D, Kuenzli N, Perez-Padilla R, Postma D, et al. An
773		Official American Thoracic Society Public Policy Statement: Novel Risk Factors and
774		the Global Burden of Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care
775		Med 2010; 182:693-718.
776	66.	To T, Zhu J, Larsen K, Simatovic J, Feldman L, Ryckman K, et al. Progression from
777		Asthma to Chronic Obstructive Pulmonary Disease. Is Air Pollution a Risk Factor? Am
778		J Resir Crit Care Med 2016; 194:429-38.
779	67.	Martinez FD. Early-Life Origins of Chronic Obstructive Pulmonary Disease. N Eng J
780		Med 2016; 375:871-8.
781	68.	Chalmers G, MacLeod K, Thomson L, Little S, McSharry C, Thomson N. Smoking and
782		airway inflammation in patients with mild asthma. Chest 2001; 120:1917-22.
783	69.	Telenga E, Kerstjens H, ten Hacken N, Postma D, van den Berge M. Inflammation and
784		corticosteroid responsiveness in ex-, current- and never-smoking asthmatics. BMC
785		Pulm Med 2013; 13:58.
786	70.	Broekema M, ten Hacken NHT, Volbeda F, Lodewijk ME, Hylkema MN, Postma DS, et
787		al. Airway Epithelial Changes in Smokers but Not in Ex-Smokers with Asthma. Am. J.
788		Respir. Crit. Care Med. 2009; 180:1170-8.
789	71.	Boulet L-P, Lemiere C, Archambault F, Carrier G, Descary MC, Deschesnes F. Smoking
790		and Asthma: Clinical and Radiologic Features, Lung Function, and Airway
791		Inflammation. Chest 2006; 129:661-8.
792	72.	Demarche S, Schleich F, Henket M, Paulus V, Van Hees T, Louis R. Detailed analysis of
793		sputum and systemic inflammation in asthma phenotypes: are paucigranulocytic
794		asthmatics really non-inflammatory? BMC Pulm Med 2016; 16:1-13.
795	73.	Jang A, Park J, Lee J, Park S, Kim D, Uh S, et al. The impact of smoking on clinical and
796		therapeutic effects in asthmatics. J Korean Med Sci 2009; 24:209-14.
797	74.	Wu D, Lai T, Yuan Y, Chen M, Xia J, Li W, et al. Elevated expression of placental
798		growth factor is associated with airway-wall vascular remodelling and thickening in
799		smokers with asthma. Scientific Reports 2017; 7:43017.

. _

	urn		D		nr	\sim	~ 1
υ	սու	aı		1		U	υı

- Wilson SJ, Ward JA, Sousa AR, Corfield J, Bansal AT, De Meulder B, et al. Severe
 asthma exists despite suppressed tissue inflammation: findings of the U-BIOPRED
 study. Eur Respir J 2016; 48:1307-19.
- Klein DK, Silberbrandt A, Frøssing L, Hvidtfeldt M, von Bülow A, Nair P, et al. Impact
 of former smoking exposure on airway eosinophilic activation and autoimmunity in
 patients with severe asthma. Eur Respir J 2022 in press.
- St-Laurent J, Bergeron C, Pagé N, Couture C, Laviolette M, Boulet L. Influence of
 smoking on airway inflammation and remodelling in asthma. Clin Exp Allergy 2008;
 38:1582-9.
- Kane B, Kolsum U, Southworth T, Armstrong J, Woodcock A, Singh D. The Effects of
 Smoking on the Lipopolysaccharide Response and Glucocorticoid Sensitivity of
 Alveolar Macrophages of Patients With Asthma. Chest 2009; 136:163-70.
- 79. Tsoumakidou M, Elston W, Zhu J, Wang Z, Gamble E, Siafakas NM, et al. Cigarette
 Smoking Alters Bronchial Mucosal Immunity in Asthma. Am J Resp Crit Care Med
 2007; 175:919-25.
- 80. Jung YS, Park JH, Park DI, Sohn CI, Lee JM, Kim TI. Impact of Smoking on Human
 Natural Killer Cell Activity: A Large Cohort Study. J Cancer Prev 2020; 25:13-20.
- 817 81. Thomson NC, Chaudhuri R, Spears M, Messow CM, MacNee W, Connell M, et al.
- 818 Poor symptom control is associated with reduced CT scan segmental airway lumen 819 area in smokers with asthma. Chest 2015; 147:735-44.
- 820 82. Boulet LP, Boulay ME, Coxson HO, Hague CJ, Milot J, Lepage J, et al. Asthma with
 821 Irreversible Airway Obstruction in Smokers and Nonsmokers: Links between Airway
 822 Inflammation and Structural Changes. Respiration 2020:1-11.
- 83. Takahashi K, Pavlidis S, Ng Kee Kwong F, Hoda U, Rossios C, Sun K, et al. Sputum
 proteomics and airway cell transcripts of current and ex-smokers with severe asthma
 in U-BIOPRED: an exploratory analysis. Eur Respir J 2018; 51.
- 826 84. Strzelak A, Ratajczak A, Adamiec A, Feleszko W. Tobacco Smoke Induces and Alters
 827 Immune Responses in the Lung Triggering Inflammation, Allergy, Asthma and Other
- Lung Diseases: A Mechanistic Review. Int J Environ Res Public Health 2018; 15:1033.
- 829 85. Feldman C, Anderson R. Cigarette smoking and mechanisms of susceptibility to
- infections of the respiratory tract and other organ systems. J Infect 2013; 67:169-84.

831	86.	Livingston E, Darroch C, Chaudhuri R, McPhee I, McMahon A, MacKenzie S, et al.
832		Glucocorticoid receptor alpha to beta ratio in blood mononuclear cells is reduced in
833		cigarette smokers. J Allergy Clin Immunol 2004; 114:1475-8.
834	87.	Barnes PJ. Role of HDAC2 in the Pathophysiology of COPD. Annu Rev Physiol 2009;
835		71:451-64.
836	88.	Ilmarinen P, Tuomisto LE, Niemelä O, Danielsson J, Haanpää J, Kankaanranta T, et al.
837		Comorbidities and elevated IL-6 associate with negative outcome in adult-onset
838		asthma. Eur Respir J 2016; 48:1052-62.
839	89.	Simpson AJ, Hekking P-P, Shaw DE, Fleming LJ, Roberts G, Riley JH, et al. Treatable
840		traits in the European U-BIOPRED adult asthma cohorts. Allergy 2019; 74:406-11.
841	90.	Tonnesen P, Pisinger C, Hvidberg S, Wennike P, Bremann L, Westin A, et al. Effects of
842		smoking cessation and reduction in asthmatics. Nicotine Tob Res 2005; 7:139-48.
843	91.	Westergaard CG, Porsbjerg C, Backer V. The effect of smoking cessation on airway
844		inflammation in young asthma patients. Clin Exp Allergy 2014; 44:353-61.
845	92.	Chaudhuri R, Livingston E, McMahon AD, Lafferty J, Fraser I, Spears M, et al. Effects
846		of smoking cessation on lung function and airway inflammation in smokers with
847		asthma. Am J Respir Crit Care Med 2006; 174:127 - 33.
848	93.	Clatworthy J, Price D, Ryan D, Haughney J, Horne R. The value of self-report
849		assessment of adherence, rhinitis and smoking in relation to asthma control. Prim
850		Care Resp J 2009; 18:300-5.
851	94.	Perret JL, Vicendese D, Simons K, Jarvis DL, Lowe AJ, Lodge CJ, et al. Ten-year
852		prediction model for post-bronchodilator airflow obstruction and early detection of
853		COPD: development and validation in two middle-aged population-based cohorts.
854		BMJ Open Respir Res 2021; 8.
855	95.	Vozoris NT, Stanbrook MB. Smoking prevalence, behaviours, and cessation among
856		individuals with COPD or asthma. Respir Med 2011; 105:477-84.
857	96.	Jiménez-Ruiz CA, Andreas S, Lewis KE, Tonnesen P, van Schayck CP, Hajek P, et al.
858		Statement on smoking cessation in COPD and other pulmonary diseases and in
859		smokers with comorbidities who find it difficult to quit. Eur Respir J 2015; 46:61-79.
860	97.	Polosa R, Caponnetto P, Sands MF. Caring for the smoking asthmatic patient. J
861		Allergy Clin Immunol 2012; 130:1221-4.


862 98. Leone FT, Zhang Y, Evers-Casey S, Evins AE, Eakin MN, Fathi J, et al. Initiating 863 Pharmacologic Treatment in Tobacco-Dependent Adults. An Official American Thoracic Society Clinical Practice Guideline. Am J Respir Crit Care Med 2020; 202:e5-864 865 e31. 99. 866 Hajat C, Stein E, Shantikumar S, Niaura R, Ferrara P, Polosa R. A scoping review of 867 studies on the health impact of electronic nicotine delivery systems. Intern Emerg Med 2022; 17:241-68. 868 100. 869 Polosa R, Morjaria JB, Caponnetto P, Caruso M, Campagna D, Amaradio MD, et al. 870 Persisting long term benefits of smoking abstinence and reduction in asthmatic 871 smokers who have switched to electronic cigarettes. Discov Med 2016; 21:99-108. 872 101. Hayes-Watson C, Nuss H, Tseng TS, Parada N, Yu Q, Celestin M, et al. Selfmanagement practices of smokers with asthma and/or chronic obstructive 873 874 pulmonary disease: a cross-sectional survey. COPD Res Prac 2017; 3:3. 875 102. Monteiro C, Maricoto T, Prazeres F, Augusto Simões P, Augusto Simões J. 876 Determining factors associated with inhaled therapy adherence on asthma and 877 COPD: A systematic review and meta-analysis of the global literature. Respir Med 2021; 191:106724. 878 Barbara SA, Kritikos V, Price DB, Bosnic-Anticevich S. Identifying patients at risk of 879 103. poor asthma outcomes associated with making inhaler technique errors. J Asthma 880 881 2021; 58:967-78. 882 104. Chalmers GW, Macleod KJ, Little SA, Thomson LJ, McSharry CP, Thomson NC. 883 Influence of cigarette smoking on inhaled corticosteroid treatment in mild asthma. Thorax 2002; 57:226-30. 884 105. Tomlinson JEM, McMahon AD, Chaudhuri R, Thompson JM, Wood SF, Thomson NC. 885 886 Efficacy of low and high dose inhaled corticosteroid in smokers versus non-smokers with mild asthma. Thorax 2005; 60:282-7. 887 106. Lazarus SC, Chinchilli VM, Rollings NJ, Boushey HA, Cherniack R, Craig TJ, et al. 888 Smoking Affects Response to Inhaled Corticosteroids or Leukotriene Receptor 889 890 Antagonists in Asthma. Am. J. Respir. Crit. Care Med. 2007; 175:783-90. 107. Clearie KL, McKinlay L, Williamson PA, Lipworth BJ. Fluticasone/Salmeterol 891 Combination Confers Benefits in People With Asthma Who Smoke. Chest 2012; 892 893 141:330-8.

...

- 894 108. Cahn A, Boyce M, Mistry S, Musani N, Rambaran C, Storey J, et al. Randomised trial of allergen-induced asthmatic response in smokers and non-smokers: effects of 895 inhaled corticosteroids. Clin Exp Allergy 2015; 45:1531-41. 896 897 109. Pedersen SE, Bateman ED, Bousquet J, Busse WW, Yoxall S, Clark TJ. Determinants of 898 response to fluticasone propionate and salmeterol/fluticasone propionate 899 combination in the Gaining Optimal Asthma control study. J Allergy Clin Immunol 2007; 120:1036-42. 900 901 110. O'Byrne PM, Lamm CJ, Busse WW, Tan WC, Pedersen Sr. The Effects of Inhaled 902 Budesonide on Lung Function in Smokers and Nonsmokers With Mild Persistent 903 Asthma. Chest 2009; 136:1514-20. 904 111. Dijkstra A, Vonk JM, Jongepier H, Koppelman GH, Schouten JP, ten Hacken NHT, et al. 905 Lung function decline in asthma: association with inhaled corticosteroids, smoking 906 and sex. Thorax 2006; 61:105-10. 907 112. Lange P, Scharling H, Ulrik CS, Vestbo J. Inhaled corticosteroids and decline of lung 908 function in community residents with asthma. Thorax 2006; 61:100-4. 909 113. Zheng X, Guan W, Zheng J, Ye P, Liu S, Zhou J, et al. Smoking influences response to inhaled corticosteroids in patients with asthma: a meta-analysis. Curr Med Res Opin 910 911 2012; 28:1791-8. 114. Hayes CE, Nuss HJ, Tseng T-S, Moody-Thomas S. Use of asthma control indicators in 912 measuring inhaled corticosteroid effectiveness in asthmatic smokers: a systematic 913 914 review. J Asthma 2015; 52:996-1005. 115. Roche N, Postma DS, Colice G, Burden A, Guilbert TW, Israel E, et al. Differential 915 Effects of Inhaled Corticosteroids in Smokers/Ex-Smokers and Nonsmokers with 916 Asthma. Am J Resp Crit Care Med 2015; 191:960-4. 917 918 116. Thomson NC. Challenges in the management of asthma associated with smokinginduced airway diseases. Expert Opin Pharmacother 2018; 19:1565-79. 919 117. Pascoe S, Barnes N, Brusselle G, Compton C, Criner GJ, Dransfield MT, et al. Blood 920 eosinophils and treatment response with triple and dual combination therapy in 921 chronic obstructive pulmonary disease: analysis of the IMPACT trial. Lancet Respir 922 Med 2019; 7:745-56. 923 118. Bafadhel M, Peterson S, De Blas MA, Calverley PM, Rennard SI, Richter K, et al. 924
- 925 Predictors of exacerbation risk and response to budesonide in patients with chronic

	obstructive pulmonary disease: a post-hoc analysis of three randomised trials. Lancet
	Respir Med 2018; 6:117-26.
119.	Bhatt SP, Anderson JA, Brook RD, Calverley PMA, Celli BR, Cowans Nicholas J, et al.
	Cigarette smoking and response to inhaled corticosteroids in COPD. Eur Respir J
	2018; 51.
120.	O'Byrne PM, FitzGerald JM, Bateman ED, Barnes PJ, Zhong N, Keen C, et al. Inhaled
	Combined Budesonide–Formoterol as Needed in Mild Asthma. N Eng J Med 2018;
	378:1865-76.
121.	Bateman ED, Reddel HK, O'Byrne PM, Barnes PJ, Zhong N, Keen C, et al. As-Needed
	Budesonide–Formoterol versus Maintenance Budesonide in Mild Asthma. N Eng J
	Med 2018; 378:1877-87.
122.	Beasley R, Holliday M, Reddel HK, Braithwaite I, Ebmeier S, Hancox RJ, et al.
	Controlled trial of budesonide-formoterol as needed for mild asthma. N Eng J Med
	2019; 380:2020-30.
123.	Hardy J, Baggott C, Fingleton J, Reddel HK, Hancox RJ, Harwood M, et al. Budesonide-
	formoterol reliever therapy versus maintenance budesonide plus terbutaline reliever
	therapy in adults with mild to moderate asthma (PRACTICAL): a 52-week, open-label,
	multicentre, superiority, randomised controlled trial. The Lancet 2019; 394
	(10202):919-28.
124.	Thomson NC, Chaudhuri R. GINA recommendations in adults with symptomatic mild
	asthma and a smoking history. Eur Respir J 2020; 55:1902043.
125.	Contoli M, Bellini F, Morandi L, Forini G, Bianchi S, Gnesini G, et al. Assessing small
	airway impairment in mild-to-moderate smoking asthmatic patients. Eur Respir J
	2016; 47:1264-7.
126.	Pilcher J, Patel M, Reddel HK, Pritchard A, Black P, Shaw D, et al. Effect of smoking
	status on the efficacy of the SMART regimen in high risk asthma. Respirology 2016;
	21:858-66.
127.	van Schayck OCP, Haughney J, Aubier M, Selroos O, Ekström T, Ostinelli J, et al. Do
	asthmatic smokers benefit as much as non-smokers on budesonide/formoterol
	maintenance and reliever therapy? Results of an open label study. Respir Med 2012;
	106:189-96.

5,

987 asthma. Am J Respir Crit Care Med 2003; 168:1308-11.

In				n n		Δf
	urn	al	1.	DT.	U	UΙ

138. Livingston E, Chaudhuri R, McMahon AD, Fraser I, McSharry CP, Thomson NC.
Systemic sensitivity to corticosteroids in smokers with asthma. Eur Respir J 2007;
29:64-71.

991 139. Otoshi R, Baba T, Aiko N, Tabata E, Sadoyama S, Nakagawa H, et al. Effectiveness and
992 Safety of Bronchial Thermoplasty in the Treatment of Severe Asthma with Smoking
993 History: A Single-Center Experience. Int Arch Allergy Immunol 2020; 181:522-8.

994 140. Price D, Musgrave SD, Shepstone L, Hillyer EV, Sims EJ, Gilbert RFT, et al. Leukotriene
995 Antagonists as First-Line or Add-on Asthma-Controller Therapy. N Engl J Med 2011;
996 364:1695-707. Control

997 141. Price D, Popov TA, Bjermer L, Lu S, Petrovic R, Vandormael K, et al. Effect of
998 montelukast for treatment of asthma in cigarette smokers. J Allergy Clin Immunol
999 2013; 131:763-71.

1000 142. Poole P, Sathananthan K, Fortescue R. Mucolytic agents versus placebo for chronic
1001 bronchitis or chronic obstructive pulmonary disease. Cochrane Database Syst Rev
1002 2019; 5:Cd001287.

1003 143. Thomson NC, Charron CE, Chaudhuri R, Spears M, Ito K, McSharry C. Atorvastatin in
 1004 combination with inhaled beclometasone modulates inflammatory sputum
 1005 mediators in smokers with asthma. Pulm Pharmacol Ther 2015; 31:1-8.

1006 144. Braganza G, Chaudhuri R, McSharry C, Weir CJ, Donnelly I, Jolly L, et al. Effects of
1007 short-term treatment with atorvastatin in smokers with asthma - a randomized
1008 controlled trial. BMC Pulm Med 2011; 11:16.

1009 145. Spears M, Donnelly I, Jolly L, Brannigan M, Ito K, McSharry C, et al. Effect of low-dose
theophylline plus beclometasone on lung function in smokers with asthma: a pilot
1011 study. Eur Respir J 2009; 33:1010-7.

1012 146. Thomson NC, Chaudhuri R, Spears M, Haughney J, McSharry C. Serum periostin in
1013 smokers and never smokers with asthma. Respir Med 2015; 109:708-15.

1014 147. Shantakumar S, Ho YF, Beale J, Gribben B. Characterization and burden of severe
1015 eosinophilic asthma in New Zealand: Results from the HealthStat Database.
1016 Multidiscip Respir Med 2020; 15:662.

1017 148. Tsiavia T, Henny J, Goldberg M, Zins M, Roche N, Orsi L, et al. Blood inflammatory
1018 phenotypes were associated with distinct clinical expressions of asthma in adults
1019 from a large population-based cohort. eBioMedicine 2022; 76.

	urn	D		n			
υ	սոս			Ρ	U	U.	

- 149. Papathanasiou E, Bakakos P, Hillas G, Ntontsi P, Blizou M, Kostikas K, et al. Diagnostic
 accuracy of T2 biomarkers for the prediction of airway eosinophilia in treated
 smoking asthmatics with loss of asthma control. J Allergy Clin Immunol Pract 2020;
 8:385-7.
- 1024 150. Jarvis D, Chinn S, Lucynska C, Burney P. The association of smoking with sensitization
 1025 to common environmental allergens: results from the European Community Health
 1026 Survey. J Allergy Clin Immunol 1999; 104:934-40.
- 1027 151. Mónico B, Gama JMR, Pastorinho MR, Lourenço O. Tobacco smoke as a risk factor for
 allergic sensitization in adults: conclusions of a systematic review and meta-analysis.
 J Allergy Clin Immunol 2019; 143:417-9.
- 1030 152. Brown T, Jones T, Gove K, Barber C, Elliott S, Chauhan A, et al. Randomised
 1031 controlled trials in severe asthma: selection by phenotype or stereotype. Eur Respir J
 1032 2018; 52:1801444.
- 1033 153. Han YY, Zhang X, Wang J, Wang G, Oliver BG, Zhang HP, et al. Multidimensional
 1034 assessment of asthma identifies clinically relevant phenotype overlap: a cross1035 sectional study. J Allergy Clin Immunol Pract 2020 in press; S2213-2198(20)30806-0.
- 1036 154. Kerkhof M, Tran TN, Allehebi R, Canonica GW, Heaney LG, Hew M, et al. Asthma
 1037 phenotyping in primary care: applying the International Severe Asthma Registry
 1038 eosinophil phenotype algorithm across all asthma severities. J Allergy Clin Immunol
 1039 Pract 2021; 9:4353-70.
- 1040155.Jo YS, Hwang YI, Yoo KH, Kim TH, Lee MG, Lee SH, et al. Effect of Inhaled1041Corticosteroids on Exacerbation of Asthma-COPD Overlap According to Different
- 1042 Diagnostic Criteria. J Allergy Clin Immunol Pract 2020; 8:1625-33.e6.
- 1043 156. Ricciardolo FLM, Sprio AE, Baroso A, Gallo F, Riccardi E, Bertolini F, et al.
- 1044 Characterization of T2-Low and T2-High Asthma Phenotypes in Real-Life. 1045 Biomedicines 2021; 9:1684.
- 1046 157. Livingstone-Banks J, Norris E, Hartmann-Boyce J, West R, Jarvis M, Chubb E, et al.
 1047 Relapse prevention interventions for smoking cessation. Cochrane Database Syst Rev
 1048 2019; 2019.

1049

Table 1. Selected studies of the efficacy of inhaled corticosteroid treatment in current smokers with asthma compared to never smokers with asthma

Reference	Study design	Number of participants	Mean age, years	Mean baseline FEV ₁ % predicted	Mean pack- year history	ICS dose and duration	Main outcome
ICS treatment for <	3 months	I.					
Chalmers, 2002 104	Randomized, placebo- controlled, cross-over	CS/NS 17/21	CS/NS 35/35	CS/NS 87/88	CS 17	FP 1000 µg daily for 3 weeks	Improvement in morning PEF greater in NS than in CS (27 l/min v -5 l/min) (p=0.006). Within-group improvement in FEV ₁ (0.17 l), geometric mean PC20 (2.6 doubling dose), and a decrease in the proportion of sputum eosinophils (-1.75%) after FP compared with placebo among NS, with no improvement in these outcomes in CS.
Tomlinson, 2005 105	Randomized, parallel- group	CS/NS 40/55*	CS/NS 46/43	CS/NS 86/85	CS/NS 25/3	BDP 400 μg and 2000 μg daily for 3 months	Among those receiving 400 μg daily, the improvement in mean (95% CI) morning PEF (I/min) in CS was less than NS (-25, -45 to -4), p = 0.02). Among those receiving 2000 μg BDP daily, the difference was reduced between CS and NS.
Lazarus, 2007 ¹⁰⁶	Randomized, cross- over	CS/NS 39/44**	CS/NS 29/29	CS/NS 78/80	CS/NS 7/0	BDP 400 µg daily for 8 weeks	Improvement In FEV ₁ in NS (170 ml, p=0.0003) and no improvement in CS. Improvement PEF and reduction in sputum eosinophils similar between NS and CS.
Clearie, 2012 ¹⁰⁷	Randomized, controlled, cross-over	CS/NS 15/16	CS/NS 38/39	CS/NS 88/83	CS 14	FP 500 μg daily for 2 weeks	Improvement in methacholine PC_{20} was greater in NS than in CS: 2.5 doubling doses (p<0.01). Improvement in FEV ₁ was greater in NS than in CS: 7.9% (p=0.02) Within-group improvement in ACQ in NS, but not in CS.
Telenga, 2013 ⁶⁹	Randomized, controlled	CS/FS/NS 30/29/55	CS/FS/NS 27/38/25	CS/FS/NS 78/79/82	CS/FS 7/7	FP 500 μg and 2000 μg daily for 2 weeks	Improvement in FEV ₁ was lower in CS compared with NS (p=0.01) and in FS compared to NS (p=0.07). Improvement in FEV ₁ in NS of 8% (p<0.001) but no improvement in FEV ₁ in CS (2.4%) (p=0.17) or FS (4%) (p=0.07). A higher pack-year history was associated with less improvement in FEV ₁ .
ICS treatment for <				•			
Pedersen 2007 ¹⁰⁹	Post hoc analysis of the GOAL randomized controlled, parallel- group trial	CS/FS/NS 142/306/1259	Total group 40	CS/FS/NS 77/76/77	CS/FS <10	FP up to 1000 µg daily alone or combined with inhaled salmeterol for one year	A higher proportion of CS receiving inhaled medium to high dose FP had severe exacerbations compared to NS (0.35 versus 0.17 per patient per year respectively) (p=0.012)
O'Byrne 2009 110	Post hoc analysis of the START randomized placebo-controlled	CS/NS 263/1183	CS/NS 32/35	CSNS 88/86	Not recorded	BUD 400 µg daily for 3 years	Improvement in pre- and post-BD FEV_1 was similar in CS and NS.

Dijkstra 2006 ¹¹¹	Observational	CS/FS/NS 55/7/60	Total group 28	Total group 85	Total group 0.1	ICS (dose and formulation not specified) for a mean follow-up of 23 years	The decline in FEV ₁ was reduced in male CS with <5 pack-year history after ICS, but no effect of ICS on the decline in FEV ₁ among women or CS with >5 pack-year history.
Lange, 2006 ¹¹²	Observational	CS/NS 76/158	Total group (range 52 to 58)	Total group 83	Not recorded	ICS (dose and formulation not specified) for 10 years	ICS treatment compared to no ICS treatment associated with a 27 ml per year lower decline in FEV_1 among smokers.
Telenga, 2013 ⁶⁹	Observational (Open- label follow-up from randomized, controlled	CS/FS/NS 16/16/32	CS/FS/NS 29/37/25	Not recorded	Not recorded	FP 500 μg and 2000 μg daily for 2 weeks, then FP 500 μg daily group continued for 50 weeks (1 year in total)	Improvement in FEV ₁ was similar between NS, CS, and FS groups after 1 year. Improvement in FEV ₁ in NS of 10% (p<0.001), in FS group of 5% (p=0.01) but no improvement in FEV ₁ in CS (3%) (p=0.06)

Abbreviations: ACQ, asthma control questionnaire; BD, bronchodilator; BDP, beclometasone dipropionate; BUD, budesonide; CS, current smoker; GOAL, Gaining Optimal Asthma Control; NS, never smoker; FEV₁, forced expiratory volume in one second; FS, former smoker; FP, fluticasone propionate; BDP, beclometasone dipropionate; BUD, budesonide; ICS, inhaled corticosteroid; PC₂₀ provocative concentration that produced a 20% fall in FEV₁; PD₁₅, provocative dose that produced a 15% fall in FEV₁; PEF, peak expiratory flow; START, inhaled Steroid Treatment As Regular Therapy;

Symbols: *Study included a small number of non-smokers defined as follows: stopped smoking over 5 years ago and had smoked <5 pack-year; ** Study included a small number of non-smokers defined as follows: stopped smoking at least 1 years ago and had smoked <2 pack-year

FIGURES

Figure 1: Summary of adverse clinical outcomes in current smokers with asthma compared to never smokers with asthma.

Acknowledgment: Created with BioRender.com.

Figure 2: The average annual rate of decline in FEV_1 of a typical 49-year-old heavy smoker and never smoker with and without asthma according to sex.

Legend: Reference indicates lifetime never smokers without asthma. Created from James et al.³⁴

Figure 3: Asthma smoking phenotypes identified from cluster analysis studies that included current and former smokers with asthma.

* Summary data from cluster analysis studies that included current and former smokers with asthma $^{\rm 50-61}$

Acknowledgment: Created with BioRender.com.

Figure 4: Schematic diagram illustrating potential inflammatory pathways underlying airway immunopathology of asthma in adults with a smoking history.

Legend: Exposure to cigarette smoke, which contains high concentrations of reactive oxygen species (ROS), activates airway epithelial cells to synthesize proinflammatory mediators such as IL-8 and IL-1 β , which recruit and/or activate neutrophils, macrophages, and CD8⁺ cytotoxic T cells (Tc1) cells. Activated neutrophils secrete ROS, proteases, and inflammatory mediators, such as matrix metalloproteinase (MMP)s, and can form neutrophil extracellular traps (NETs). Excessive NET formation (NETosis) induces Th17 responses that contribute to neutrophilic inflammation. Activated macrophages secrete proteases, MMPs, and chemokines that attract neutrophils, Th17, Th1 cells, and Tc1 cells. Th17 cells are chemotactic to neutrophils, Tc1 cells secrete serine protease granzyme B and Th1 cells release IFN γ . Current cigarette smoking in asthma is likely to induce predominately non-T2 inflammation, although T2 high eosinophilic inflammation may coexist due to allergeninduced pathways, NETosis causing DNA induced T2 responses, and cigarette-smoke induced release of alarmins such as IL-33, thymic stromal lymphopoietin (TSLP), IL-25. Exposure to allergens in sensitized individuals and the release of alarmins from injured epithelial cells activate Th2 cells and type 2 innate lymphoid cells (ILC2) respectively to release T2 cytokines IL-4, IL-5, and IL-13. Dendritic cells process antigens and when activated by alarmins can initiate T2 immunity. IL-4 causes immunoglobulin E (IgE) production from B cells and IL-5 recruits and activates eosinophils. Smoking and asthma-related inflammation cause T2 high and/or T2 low inflammation, tissue remodeling, corticosteroid insensitivity, and impaired host responses, which together contribute to adverse clinical outcomes in current and former smokers with asthma.

Journal Pre-proof

Abbreviations: IgE, immunoglobulin E; IL, interleukin; ILC2, type 2 innate lymphoid cell, MMPs, matrix metalloproteinase; NET, neutrophil extracellular trap; NETosis, neutrophil extracellular trap formation; NK, natural killer; PGD₂, prostaglandin D₂; Tc1, CD8⁺ cytotoxic T cells; TNF, tumor necrosis factor; ROS, reactive oxygen species; Th2, T helper 2; TSLP, thymic stromal lymphopoietin; T2, type 2 inflammation

Acknowledgment: Created with BioRender.com.

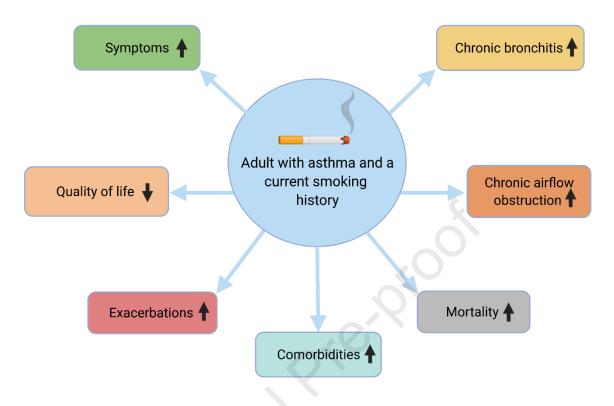
Figure 5: Algorithm for the management of current and former smokers with clinical features suggestive of asthma.

Legend:

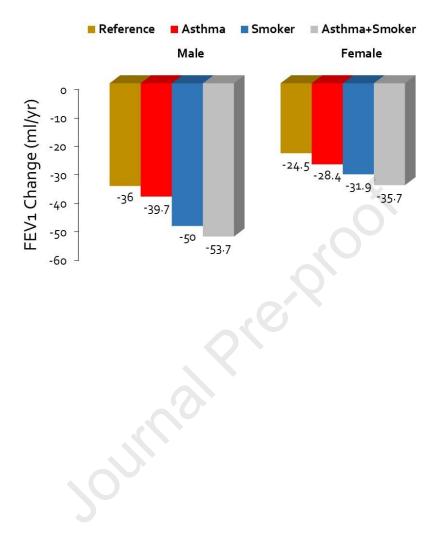
* Some patients may have clinical features suggestive of smoking-related ACO. There is a risk of diagnostic misclassification of chronic airway disease such as COPD in symptomatic current and former smokers, particularly in older age groups.

Key components of management:

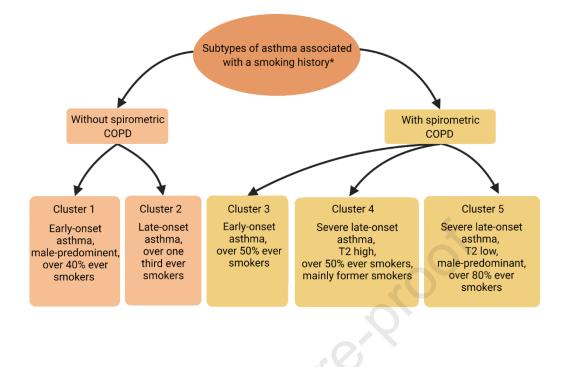
(1) Smoking cessation or relapse prevention advice: smoking cessation advice is a priority component of management among current smokers; relapse prevention advice is an option for recent quitters.¹⁵⁷

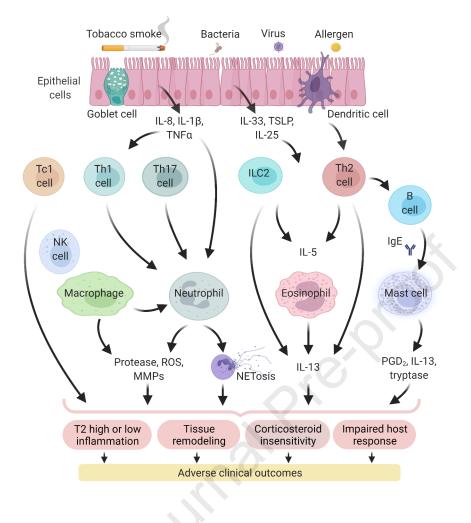

(2) *Pharmacological management:* based on Global Initiative for Asthma recommendations, although data is limited on the effectiveness of therapies for current smokers with asthma and there is evidence of corticosteroid insensitivity to ICS treatment.

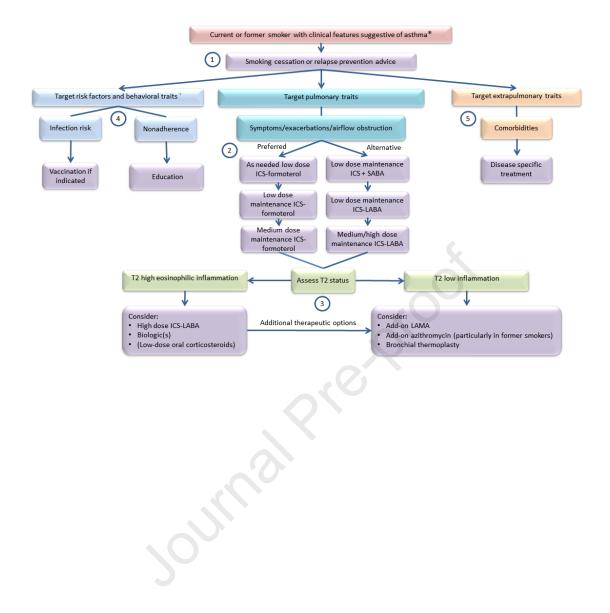
(3) Assess T2 status: Among current or former smokers with poorly controlled asthma despite moderate dose ICS-LABA who have T2 high eosinophilic inflammation (raised blood eosinophil count), consider high dose ICS-LABA and/or biologics (or low dose oral corticosteroids). Therapeutic options for patients with persistently poorly controlled asthma associated with T2 low inflammation or associated with treated T2 high inflammation include add-on LAMA for patients with chronic airflow obstruction, a trial of add-on azithromycin, particularly in former smokers, and bronchial thermoplasty.


(4) *Target risk factors and behavioral treatable traits:* such as non-adherence, poor inhaler technique, and infection risk

(5) Target *extrapulmonary co-morbidities:* disease-specific treatment.


Abbreviations: ICS, inhaled corticosteroid; LABA, long-acting beta-agonist; LAMA, long-acting muscarinic antagonist; SABA, short-acting beta-agonist; T2 inflammation, type 2 inflammation


Symbols: \uparrow increased or \clubsuit decreased compared to never-smoker with asthma



Journal Pre-proof

Journal Pre-proof

