There is a newer version of this record available.

Software Open Access

AMICI: High-Performance Sensitivity Analysis for Large Ordinary Differential Equation Models

Fröhlich, Fabian; Weindl, Daniel; Schälte, Yannik; Pathirana, Dilan; Paszkowski, Lukasz; Lines, Glenn Terje; Stapor, Paul; Hasenauer, Jan

MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="">
  <controlfield tag="005">20220717184616.0</controlfield>
  <datafield tag="500" ind1=" " ind2=" ">
    <subfield code="a">If you use this software, please cite both the article from preferred-citation and the software itself.</subfield>
  <controlfield tag="001">6524929</controlfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="0">(orcid)0000-0001-9963-6057</subfield>
    <subfield code="a">Weindl, Daniel</subfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="0">(orcid)0000-0003-1293-820X</subfield>
    <subfield code="a">Schälte, Yannik</subfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="0">(orcid)0000-0001-7000-2659</subfield>
    <subfield code="a">Pathirana, Dilan</subfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="a">Paszkowski, Lukasz</subfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="0">(orcid)0000-0002-6294-1805</subfield>
    <subfield code="a">Lines, Glenn Terje</subfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="0">(orcid)0000-0002-7567-3985</subfield>
    <subfield code="a">Stapor, Paul</subfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="0">(orcid)0000-0002-4935-3312</subfield>
    <subfield code="a">Hasenauer, Jan</subfield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">6876474</subfield>
    <subfield code="z">md5:69da1026352cae9bee291499f50ec982</subfield>
    <subfield code="u"></subfield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2022-05-06</subfield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">software</subfield>
    <subfield code="o"></subfield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="0">(orcid)0000-0002-5360-4292</subfield>
    <subfield code="a">Fröhlich, Fabian</subfield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">AMICI: High-Performance Sensitivity Analysis for Large Ordinary Differential Equation Models</subfield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="a">Other (Open)</subfield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2"></subfield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;Features:&lt;/p&gt;
&lt;li&gt;Performance: Limit newton step convergence check by @FFroehlich in &lt;a href=""&gt;;/a&gt;&lt;/li&gt;
&lt;li&gt;More informative NaN/Inf warnings by @dweindl in &lt;a href=""&gt;;/a&gt;&lt;/li&gt;
&lt;li&gt;SBML import can now handle initial events by @FFroehlich in &lt;a href=""&gt;;/a&gt;&lt;/li&gt;
&lt;li&gt;Avoid error if no measurements in PEtab problem; fixed type handling in PEtab parameter mapping by @dilpath in &lt;a href=""&gt;;/a&gt;&lt;/li&gt;
&lt;li&gt;Fixed substitution of expressions in root and stau by @dilpath in &lt;a href=""&gt;;/a&gt;&lt;/li&gt;
&lt;li&gt;Workaround for PEtab problems with state-dependent noise models by @dweindl in &lt;a href=""&gt;;/a&gt;&lt;/li&gt;
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">url</subfield>
    <subfield code="i">isSupplementTo</subfield>
    <subfield code="a"></subfield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.5281/zenodo.597928</subfield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.6524929</subfield>
    <subfield code="2">doi</subfield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">software</subfield>
All versions This version
Views 1,64328
Downloads 6601
Data volume 6.1 GB6.9 MB
Unique views 1,41026
Unique downloads 1321


Cite as