ARGUMENTS IN DEFENCE OF TRADITIONAL AND HISTORICAL IRRIGATION SYSTEMS

Historical and traditional irrigation systems provide efficient, multifunctional solutions for all

A. MAINTAINING NATURAL AND AGRICULTURAL SPACES

 Traditional irrigation sustains a high level of agricultural diversity (crops, pastures, etc.) and **biological diversity** (species and habitats)

- It generates and regenerates **soil**, maintaining its fertility and regulating its salinity
- It provides a paradigmatic example of green and blue infrastructure
- It produces large-scale ecological corridors
- It facilitates and accelerates ecological restoration processes

D. RESILIENCE AND SUSTAINABILITY

- They are **local circular economy** systems (by using local natural materials without producing waste)
- Their technological and external input dependency is very low (by not requiring electronic components, industrial supplies, etc.)
- By relying on **gravity**, their **energy dependence** is very low (they do not require electricity, fuel, etc.)
- They are particularly **sustainable** and **resilient**, able to adapt to major social, environmental, cultural and political changes over time
- They increase the **production** of crops, pastures and other ecosystems, contributing to the **food sovereignty** of a region
- They complement **local incomes**, helping to consolidate the rural population
- They protect water from privatization and commercialization, deterring land grabbing

B. WATER REGULATION

- Traditional irrigation supplies **drinking** and **irrigation** water
- It regulates **hydrological cycles**, increasing the duration and availability of water in the basin through infiltration and irrigation returns
- It recharges **aquifers** and **springs** and is a resourceful system for **water sowing** and harvesting

• These integrated water management systems are examples of nature-based solutions

E. FIGHTING CLIMATE CHANGE AND **PREVENTING ENVIRONMENTAL DISASTERS**

- They prevent **fires** by minimizing low flow periods, lowering temperatures and increasing atmospheric humidity
- They act as **firebreaks** and provide water for firefighting operations
- They reduce **erosion** and the risk of **landslides** by maintaining optimal plant cover and regulating surface runoff, torrential

C. SOCIAL COHESION

 These communal systems improve **social justice** through the consensus-based, equitable distribution of water

• Their conflict resolution systems contribute to good **relations** between neighbours

• They build a more **participatory** and democratic society by teaching shared **responsibility** about basic resources

 They store priceless traditional ecological knowledge for the future

• They offer a legal and institutional **framework** to prevent and reverse initiatives from other public or private actors contrary to the common interest

watercourse patterns and floods

 Their operation and maintenance have a minimal carbon footprint

• They increase the capacity of irrigation ecosystems to store large amounts of carbon

F. HISTORICAL AND CULTURAL HERITAGE

• They are **agrosystems** with a long **historical tradition** (dating, at least, back to medieval times) and a powerful impact on the culture and history of many regions

• They are indispensable for understanding the shaping of the cultural landscape and local identity

· Understanding and preserving this historical and cultural heritage as alive and active can help to solve problems and find social, economic and environmental solutions

www.regadiohistorico.es

More information

MEMOLab. Laboratorio de Arqueología Biocultural