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  Welcome to the BioCreative III workshop being held in Bethesda, Maryland, USA on September 13-15. On 
behalf of the Organizing Committee, we would like to thank you for your participation and hope you 
enjoy the workshop. 
  
The BioCreative (Critical Assessment of Information Extraction systems in Biology) challenge evaluation 
consists of a community-wide effort for evaluating text mining and information extraction systems 
applied to the biological domain (http://www.biocreative.org/). Its aim is to promote the development of 
text mining and text processing tools which are useful to the communities of researchers and database 
curators in the biological sciences. The main emphasis is on the comparison of methods and the 
community assessment of scientific progress, rather than on the purely competitive aspects. 
  
The first BioCreative was held in 2004, and since then each challenge has consisted on a series of defined 
tasks, areas of focus in which particular NLP tasks are defined. BioCreative I focused on the extraction of 
gene or protein names from text , and their mapping into standardized gene identifiers (GN) for three 
model organism databases, and functional annotation, requiring systems to identify specific text 
passages that supported Gene Ontology annotations for specific proteins, given full text articles. 
BioCreative II (2007) focused on GN task but for human genes or gene products mentioned in 
PubMed/MEDLINE abstracts, and on protein-protein interaction (PPI) extraction, based on the main steps 
of a manual protein interaction annotation workflow. BioCreative II.5 (2009) focus on the PPI, the tasks 
were to rank articles for curation based on curatable PPIs; to identify the interacting proteins in the 
positive articles, and to identify interacting protein pairs. 
 
The BioCreative III continues the tradition of a challenge evaluation on several tasks judged basic to 
effective text mining in biology, including a gene normalization (GN) task and two protein-protein 
interaction (PPI) tasks (interaction article classification, and interaction method detection). It also 
introduces a new interactive task (IAT), run as a demonstration task. The goal of IAT is to develop an 
interactive system to facilitate a user’s annotation of the unique database identifiers for all the genes 
appearing in an article. This task includes ranking genes by importance based preferably on the amount 
of described experimental information regarding genes. 
  
The Biocreative III workshop includes two special panels, one to discuss the challenges and 
opportunities for text mining in biology led by several funding agencies and publishers, and a panel to 
discuss about system interoperability led by systems developers. 
 
We would like to thank all participating teams, panelists and all the chairs and committee members. 
 
The BioCreative III Workshop  was supported by NSF grant DBI-0850319  
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Biocreative III Interactive Task: an Overview 
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§Corresponding author 
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Abstract 

The interactive task (IAT) in Biocreative III is a demonstration task, and is focused on 
indexing (identifying which genes are being studied in an article and linking these 
genes to standard database identifiers) and gene-oriented document retrieval 
(identifying papers relevant to a selected gene) applied to full-length articles. A User 
Advisory Group (UAG), made up of curators and industry representatives, was set up  
to provide system requirements as well as testing of the systems. For the evaluation, 
six developer teams each provided an interface for testing by UAG members. The 
comparison of manual vs. system-assisted annotations will facilitate the definition of 
metrics and acquisition of data that are necessary for designing the evaluation of the 
interactive systems in the future BioCreative IV challenge. This will be discussed in 
the IAT session during the workshop. 

Background  
The biological literature represents the repository of biological knowledge. The ever 
increasing scientific literature now available electronically and the exponential growth 
of large-scale molecular data have prompted active research in biological text mining 
and information extraction to facilitate literature-based curation of molecular 
databases and bio-ontologies. Many text mining tools and resources have been 
developed and there are community efforts, including BioCreative, for evaluating text 
mining systems applied to the biological domain [1,2,3].  However, these tools are 
still not being fully utilized by the broad biological user communities. Such a gap is 
partly due to the intrinsic complexity of the biological literature for text mining, and 
partly to the lack of standards and limited interactions between the text mining and the 
user communities of biological researchers and database curators. Previous 
BioCreative challenges have involved experienced curators from specialized 
databases (e.g., the MINT, BioGrid and IntAct protein-protein interaction databases in 
Biocreative II, and II.5), to generate gold standard data for training and testing of the 
systems. However, after that step, there was no curator intervention. Although this 
approach is valuable to address the system performance, it did not address system 
usage and adoption by curators or biologists. Therefore, in Biocreative III we 
introduced a demonstration interactive task (IAT) that aims at providing key 
component modules for text mining services for biocuration. Our goal in BioCreative 
III has been to provide an interface to support curators and other specialized end 
users, with results that can be integrated in the curation workflow. 
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Results  
Establishment of the User Advisory Group 

A critical aspect of the BioCreative III is the active involvement of the end users to 
guide development and evaluation of useful tools and standards.  This prompted the 
creation of the UAG by recruiting members from major public databases as well as a 
small number of interested advisors from industry.  This group is currently composed 
of 13 members (http://www.biocreative.org/about/biocreative-iii/UAG/) 

 The roles of the User Advisory Group included:  
• Developing end user requirements for interactive text mining tools: the 

UAG provided the guidelines for the requirements delivered to the participants 
in the BioCreative III interactive 
task(http://www.biocreative.org/tasks/biocreative-iii/iat/). 

• Providing users for the interactive task:  UAG members tested the systems, 
and provided feedback.  

• Providing gene normalization annotation of a corpus of full text articles 
for use in developing baseline statistics (inter-annotator agreement, and time 
for task completion) as well as a gold standard of articles correctly annotated 
for gene/protein normalization.  

Interactive Task 
Monthly discussions with the UAG provided important insight into what would be of 
general interest for literature curation. The group was able to identify a common need  
underlying the different specific curation tasks (e.g. model organism database, 
protein-protein interaction database, and protein sequence database); this common 
need was the identification, within an article of the genes/proteins that have some 
experimental data, and their linkage to appropriate database identifiers (e.g., 
EntrezGene or UniProt identifiers).  For this activity it is critical to consider the full-
length article in order to rank the corresponding genes by relevance in context of the 
overall article. A natural extension to this task is the retrieval of additional articles for 
which the gene in question has experimental information. So in addition to a gene 
normalization and ranking task, a document retrieval task was included. 

IAT System Requirements 
A web based interface should be user friendly and assist curators to easily find the 
desired information. 
Indexing task: For this subtask, the input requirement was a PubMed Central ID, and 
the output would return a list of gene/protein identifiers linked to the appropriate 
database identifiers from the selected full-text article. The list of genes/proteins 
should be ranked for their importance or “centrality” to the article.  Such a ranking 
could, for example, take into consideration the frequency of gene/protein mentions, 
but might also weight the sections of the article where the gene is mentioned. For 
example, a gene with associated experimental results that is mentioned with low 
frequency should rank higher than a high frequency mentioned gene with no 
experimental results. 
Retrieval task: For this subtask, the input was a user-selected gene; the system output 
was a ranked list of documents from PubMedCentral (with links to the full text) which 
would be relevant to provide information on the selected gene. 
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IAT System Testing 
Six systems were made available for testing. All systems were run against the same 
set of articles. Members from the UAG curated the papers using the systems. To 
familiarize her/himself with the system, each evaluator first went over an article 
previously curated by the group (they were familiar with results). Each evaluator was 
assigned a primary system, but could access others as well. Curators recorded the time 
spent with the system while curating and also answered a questionnaire related to 
interface usability and task performance.  The results were collected and compared to 
the manually annotated set.  

Discussion  
IAT in Biocreative III is a demonstration task and was designed to facilitate the 
definition of metrics and acquisition of data that are necessary for designing the 
evaluation of the interactive systems in the BioCreative IV challenge. Both the 
participating teams and the UAG are instrumental in accomplishing this goal. The 
analysis of the overall results will be presented and discussed during the IAT 
workshop session.  

Methods 

All information about the IAT task is available at 
http://www.biocreative.org/tasks/biocreative-iii/iat/). The full text articles in XML 
format from the PubMed Central Open Access collection was made available at 
http://www.biocreative.org/resources/corpora/biocreative-iii-corpus/, IAT 
PubMedCentral XML Data. 

Acknowledgements  
We would like to acknowledge the UAG and participating systems for their 
participation and key contributions to this effort, as well as the six participating 
groups who fielded systems for evaluation.  This work was supported under NSF 
grant DBI-0850319.   
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Abstract  

Background 

A considerable effort has been made to standardize the annotation process of protein 
interaction data through the development of the Molecular Interaction (MI) ontology. 
Among other terms, it contains a hierarchy for the experimental context used to 
determine protein-protein interactions (PPIs). These experimental approaches provide 
qualitative information on the type and reliability of an interaction. The Interaction 
Method Task (IMT) aims to promote the implementation of automated systems for 
detecting associations between articles and these interaction detection method 
concepts with the goal of facilitating the manual curation strategies. 

Results 

A total of eight teams submitted predictions for the IMT. Each team was allowed to 
send up to 5 runs, plus an additional 5 using the BioCreative Meta-Server; in total, we 
received 42 runs. These were compared to a Gold Standard, manually generated 
annotations done by trained domain experts from the BioGRID and MINT databases. 
The annotations consisted in associations of full text articles to the interaction 
detection method concepts as defined in the MI ontology that supported protein 
interactions described in the articles. The highest AUC iP/R achieved by any run was 
53%, the best MCC score 0.55. In case of competitive systems with an acceptable 
recall (above 35%) the macro-averaged precision ranged between 50% and 80%, with 
a maximum F-Score of 55%. 

Conclusions 

Participating systems where able to achieve competitive results despite the difficulties 
of this task: the variability of method term mentions, challenges due to pre-processing 
of full text articles provided as PDF files, and the heterogeneity and different 
granularity of method term concepts encountered in the ontology. As the document 
associations had to be accompanied with supporting evidence text passages for human 
interpretation, such systems may serve to generate text-mining assisted coarse level 
annotations efficiently. In the case of online systems (team 89), full-text articles can 
be annotated with method concepts on average in 3.7 seconds (sd: +/-0.35 sec), while 
still achieving competitive results; thus, such tools could be integrated into biological 
annotation workflows. 

Background  
Biomedical sciences require a strong support of generated discoveries by their 
experimental approach. The experimental context is crucial for the interpretation of 
biological assertions as well as to determine the reliability of given biological finding 
[1]. An important aspect for the annotation of protein interactions is to identify the 
experimental techniques (“interaction detection methods”) described in an article to 
support the interactions [2]. Annotation of experimental techniques or “evidence” is 
also common with other annotation efforts, such as the Gene Ontology Annotations 
(GOA; in the form of evidence codes) [3]. Knowing the experimental method that 
provided the evidence for an interaction serves as “credibility” or likelihood indicator 
that the reported interaction actually occurs in a living organism (“in vivo”) or cell 
culture (“in vitro”). 
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These types of text classification tasks are based on associating standardized terms 
from a controlled vocabulary to the text in question. In the case of protein-protein 
interaction annotations, efforts have been made to develop a controlled vocabulary 
(“ontology”) about interaction detection methods in order to standardize the 
terminology serving as experimental evidence support. A considerable amount of 
database curation work is devoted to the manual extraction of the experimental 
evidence support for the interaction pairs described in articles [4]. A relevant work 
with this respect was the implementation of a system for detecting experimental 
techniques in biomedical articles by Oberoi and colleagues [5].  Also the construction 
of a text mining system with a particular focus on interaction detection methods using 
statistical inference techniques has been explored recently [6], motivated by the 
Interaction Method Task of the BioCreative II challenge [7], where two different 
teams provided results [8, 9]. 
For BioCreative III, participants were asked to provide a list of interaction detection 
methods identifiers for a set of full-text articles (publications), ordered by their 
likelihood of having been used to detect the PPIs described in each article. These 
identifiers correspond to the standardized experimental detection method terms from 
the PSI-MI ontology for an experimental detection method. The evaluation of the 
results is oriented to lessen to database curation efforts by providing with a list of the 
most likely PSI-MI identifiers so as to facilitate their identification and subsequent 
assignment. 

Results  

Overview 

In total, eight teams participated in this task. The official evaluation results of each 
run are shown in Table 2, measuring the performance on the documents for which the 
system provided results. The evaluation of the overall performance of the systems on 
the whole test set is shown in Table 3. The team information is shown in Table 1. 
Teams could participate offline, sending the results via e-mail, as well as online via 
the BioCreative Meta-Server (BCMS) [10]. The highest AUC iP/R achieved by any 
run was 53%, the best MCC score measured was 0.55 (see Methods for a quick 
explanation of these two scoring schemas). 
 
 

Team Contact/Leader Organization 
65 Fabio Rinaldi University of Zurich 
69 Robert Leaman Arizona State University 
70 Sérgio Matos Universidade de Aveiro, IEETA 
81 Luis Rocha Indiana University 
88 Ashish Tendulkar IIT Madras 
89 Shashank Agarwal University of Wisconsin-Milwaukee 
90 Xinglong Wang National Centre for Text Mining 
100 Zhiyong Lu NCBI\NLM\NIH 

Table 1: IMT Participants 

List of IMT participants by team ID, team leader/main contact and institution.
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Team Run/Srvr Docs Precision Recall F1 Score AUC iP/R 
T65 RUN_1 222 9.35% 83.21% 0.16322 0.47884 
T65 RUN_2 222 2.45% 100.00% 0.04750 0.44034 
T65 RUN_3 222 9.99% 79.38% 0.17163 0.47650 
T65 RUN_4 222 33.48% 42.88% 0.35403 0.30927 
T65 RUN_5 222 2.44% 100.00% 0.04735 0.50111 
T69 RUN_1 214 54.87% 57.91% 0.52392 0.52112 
T69 RUN_2 211 57.01% 57.35% 0.53415 0.51844 
T69 RUN_3 203 60.24% 56.41% 0.54454 0.51470 
T69 RUN_4 199 62.46% 55.17% 0.55060 0.51013 
T69 RUN_5 190 64.24% 52.44% 0.54354 0.49390 
T70 RUN_1 143 51.78% 35.01% 0.37838 0.31402 
T70 RUN_2 72 71.76% 36.81% 0.45608 0.36215 
T70 RUN_3 30 80.00% 41.50% 0.51508 0.41500 
T70 RUN_4 205 31.65% 38.72% 0.31747 0.32295 
T70 RUN_5 159 36.36% 21.26% 0.24754 0.18976 
T81 RUN_1 222 4.44% 63.91% 0.08191 0.22022 
T81 RUN_2 221 9.39% 41.92% 0.14117 0.19766 
T81 RUN_3 222 13.51% 28.35% 0.17414 0.17010 
T81 RUN_4 222 13.21% 29.57% 0.17341 0.20388 
T81 RUN_5 209 21.93% 24.64% 0.21339 0.18733 
T88 RUN_1 219 29.10% 45.04% 0.33601 0.38590 
T88 RUN_2 220 28.67% 45.53% 0.33353 0.38373 
T89 RUN_1 200 54.78% 53.37% 0.50905 0.46061 
T89 RUN_2 200 54.95% 53.23% 0.50760 0.46423 
T89 RUN_3 201 54.05% 53.25% 0.50234 0.45330 
T89 RUN_4 199 54.48% 54.18% 0.51254 0.47211 
T89 RUN_5 201 55.30% 56.12% 0.52377 0.47807 
T89 SRVR_4 200 55.33% 55.61% 0.52112 0.47636 
T89 SRVR_5 199 54.09% 54.00% 0.50962 0.47650 
T89 SRVR_6 201 55.14% 56.12% 0.52350 0.48047 
T89 SRVR_7 203 50.46% 55.66% 0.50064 0.47392 
T89 SRVR_8 199 54.04% 54.05% 0.50840 0.47534 
T90 RUN_1 200 56.11% 51.59% 0.50720 0.44687 
T90 RUN_2 203 56.37% 53.19% 0.51203 0.47159 
T90 RUN_3 217 55.29% 59.90% 0.54616 0.52974 
T90 RUN_4 177 63.98% 46.89% 0.51355 0.44118 
T90 RUN_5 164 66.26% 46.78% 0.52021 0.44458 
T100 RUN_1 213 47.26% 54.97% 0.47062 0.43312 
T100 RUN_2 222 41.19% 54.61% 0.44178 0.43238 
T100 RUN_3 222 35.29% 45.53% 0.37496 0.32459 
T100 RUN_4 222 35.29% 45.53% 0.37496 0.32459 
T100 RUN_5 125 56.40% 30.65% 0.37011 0.29387 
Team Run/Srvr Docs Precision Recall F1 Score AUC 

Table 2: Primary evaluation results on the annotated documents 

Macro-averaged results when evaluating only documents for which the system 
reported results (i.e., measuring the average per-document performance only on the 
documents each run produced annotations for). The highest score for each evaluation 
column is show in bold typeface, the lowest in italics. Run/Srvr: RUN=offline run, 
SRVR=online server run via BCMS; Docs: number of documents annotated; AUC 
iP/R: Area under the interpolated precision/recall curve. 
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Team Run/Srvr Precision Recall F1 Score MCC AUC iP/R 
T65 RUN_1 8.77% 84.82% 0.15893 0.23552 0.27588 
T65 RUN_2 2.45% 100.00% 0.04779 0.06259 0.24484 
T65 RUN_3 9.42% 81.78% 0.16892 0.24172 0.27727 
T65 RUN_4 33.48% 42.32% 0.37385 0.36166 0.14169 
T65 RUN_5 2.44% 100.00% 0.04763 0.06193 0.29016 
T69 RUN_1 52.07% 55.03% 0.53506 0.52519 0.34302 
T69 RUN_2 54.34% 53.51% 0.53920 0.52958 0.33824 
T69 RUN_3 57.36% 50.29% 0.53589 0.52796 0.32539 
T69 RUN_4 59.25% 48.01% 0.53040 0.52456 0.31711 
T69 RUN_5 61.33% 43.64% 0.50998 0.50896 0.29373 
T70 RUN_1 48.61% 23.15% 0.31362 0.32617 0.12949 
T70 RUN_2 70.00% 11.95% 0.20421 0.28419 0.08731 
T70 RUN_3 80.65% 4.74% 0.08961 0.19270 0.03826 
T70 RUN_4 31.22% 36.43% 0.33625 0.32216 0.15688 
T70 RUN_5 32.69% 15.94% 0.21429 0.21717 0.05734 
T81 RUN_1 4.54% 66.03% 0.08496 0.11406 0.07716 
T81 RUN_2 8.71% 42.13% 0.14430 0.15560 0.06239 
T81 RUN_3 13.51% 28.46% 0.18326 0.17168 0.04657 
T81 RUN_4 13.20% 27.70% 0.17881 0.16667 0.05601 
T81 RUN_5 21.35% 22.20% 0.21767 0.20090 0.05283 
T88 RUN_1 28.44% 45.16% 0.34897 0.34146 0.20244 
T88 RUN_2 28.17% 45.92% 0.34921 0.34263 0.20069 
T89 RUN_1 52.52% 49.53% 0.50977 0.49997 0.28202 
T89 RUN_2 52.02% 48.96% 0.50440 0.49451 0.28589 
T89 RUN_3 50.78% 49.34% 0.50048 0.49016 0.27238 
T89 RUN_4 52.50% 49.91% 0.51167 0.50181 0.29220 
T89 RUN_5 52.58% 52.18% 0.52381 0.51382 0.29980 
T89 SRVR_4 52.71% 51.61% 0.52157 0.51163 0.29926 
T89 SRVR_5 52.28% 50.10% 0.51163 0.50168 0.30046 
T89 SRVR_6 52.28% 52.18% 0.52232 0.51226 0.30049 
T89 SRVR_7 49.55% 52.56% 0.51013 0.49972 0.29303 
T89 SRVR_8 51.76% 50.29% 0.51011 0.49999 0.29766 
T90 RUN_1 53.33% 47.06% 0.50000 0.49113 0.26805 
T90 RUN_2 52.56% 48.77% 0.50591 0.49625 0.28386 
T90 RUN_3 52.30% 58.25% 0.55117 0.54201 0.35423 
T90 RUN_4 61.09% 38.14% 0.46963 0.47436 0.25209 
T90 RUN_5 64.24% 35.10% 0.45399 0.46707 0.24270 
T100 RUN_1 44.59% 51.61% 0.47845 0.46794 0.26055 
T100 RUN_2 39.86% 54.84% 0.46166 0.45448 0.26982 
T100 RUN_3 35.29% 44.59% 0.39396 0.38240 0.15734 
T100 RUN_4 35.34% 44.59% 0.39430 0.38271 0.15758 
T100 RUN_5 54.86% 18.22% 0.27350 0.30847 0.11109 
Team Run/Srvr Precision Recall F1 Score MCC AUC iP/R 

Table 3: Evaluation of whole document set performance 

Micro-averaged results when evaluating all documents (i.e., measuring the overall 
performance of each run on the whole document set). The highest score for each 
evaluation column is show in bold typeface, the lowest in italics. Run/Srvr: 
RUN=offline run, SRVR=online server run via BCMS; MCC: Matthew’s Correlation 
Coefficient; AUC iP/R: Area under the interpolated precision/recall curve (micro-
averaged by iterating over the precision/recall values of the highest ranked annotation 
of all articles, then all second ranked annotations, etc.).  
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Timing Measures 

By using the BCMS framework for participating online, we were able to measure the 
time it took the systems to report interaction method identifiers for full-text articles. 
However, there was only one team (89) participating online in this task, albeit with 5 
servers and quite competitive results. This team annotated a full-text article on 
average in 3.7 seconds (sd: +/-0.35 sec), achieved a maximum F-Score score of 52% 
with an AUC iP/R of 48% (see Methods for an explanation of these measures). 

Comparing Participating Systems 

The participants were asked to fill in a short questionnaire, and all participants 
responded. Only one team (81) used other sources of training data than what was 
provided through the challenge itself, one team made use of the UMLS (69) and two 
of MeSH terms (90, 100). Most teams relied on the provided text we extracted using 
the UNIX tool “pdftotext”, while two teams (65, 100) made use of the PDFs directly. 
Most teams incorporated lexical analysis of the text (sentence splitting, tokenization 
and/or lemmatization/stemming), quite a few looked at n-gram tokens (teams 81, 89, 
90, 100), but only one also included Part-of-Speech-tagging (team 90), and, 
interestingly, some teams omitted a specialized Named Entity Recognition approach 
(NER; teams 81, 89, 100; instead using regex matching). Team 90 even made use of 
shallow parsing techniques. All teams except 81 and 90 relied on Bag-of-Word 
vectors, and teams 70 and 88 did not use any supervised classifiers. Teams 90 and 69 
were the only teams to use a Logistic Regression classifier trained on each term, team 
90 also applied a Support Vector Machine, and team 69 used MALLET for NER. 
Other than that, no team reported to have made use of existing BioNLP libraries and 
instead they relied on in-house tools. Only teams 90 and 65 applied gene/protein 
mention detection. We also asked teams to evaluate the difficulty of the task (easy, 
medium, hard); No team thought the task was easy, half (70, 89, 90, 100) said is was 
hard, while the other four classified it as “medium”. 

Discussion  
Given the performance, it is possible that humans could make use of the provided 
results in a limited number of ways. Mostly, the short time needed by the servers 
makes it seem reasonable that online, automated systems could be used for this task. 
However, when looking at the overall performance of the best result on the whole set 
(F-Score 55%, AUC iP/R 35%, MCC 0.54), it becomes apparent that automated 
annotation of interaction methods is not yet “solved” and more work in this area is 
required. It seems that there is still much room for improvement in the future. 
However, for the purpose of helping curators or biologist to identify interaction 
methods in an article, the results might be sufficient given that systems are doing an 
acceptable job at articles they identify as relevant (highest AUC iP/R: 53%). This 
could be further the case if the evidence passages the teams were asked to provide for 
their annotations are meaningful – a future evaluation target. 

Conclusions  
In summary, it is likely the future will see significant improvements for this kind of 
nearly novel entity normalization task, and the current results are possibly promising 
enough to aid humans in the annotation process. Performance will hopefully increase 
with the amount of readily available training data and as more interest in this 
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particular area of entity types is raised. On the positive side, the relatively good 
performance (w.r.t. the global results) of the online team (89) combined with their 
very competitive server annotation times (3.7 sec/article) clearly demonstrates that 
online, high-quality BioNLP can be implemented in ways where processing times are 
acceptable to serve end-users on demand. 

Methods 

Result Structure 

For each article, participants had to return zero or more PSI-MI detection method term 
identifiers, and for each term annotation they had to provide a confidence score (in the 
range (0,1]), and an overall (unique) rank for each term annotated on an article, from 
the most to the least relevant. In addition, participants were asked to return the most 
decisive text passage that gave rise to their annotation - data that we will need to 
evaluate manually at a later stage. For each participation methods – offline via e-mail, 
online via the BCMS - teams could submit five runs for a total of ten if they 
participated in both settings. 

Task Data 

Participants were supplied with 2,035 articles as training set, received an additional 
587 articles as development set shortly before the test phase, and were then tested on 
305 unseen publications, 222 of which were annotation-relevant articles. Both the 
training and test set have a highly distorted representation of the 115 possible method 
detection terms found in PSI-MI, with only 4 methods representing roughly half of all 
annotations made on the articles, both in the training and the test set. These 4 high-
frequency terms are (from most to least frequent): “anti bait coimmunoprecipitation”, 
“anti tag coimmunoprecipitation” (these two represent 1/3 of all annotations), “pull 
down”, and “two hybrid”. 

Evaluation 

The evaluation is based on comparing automatically generated PSI-MI IDs (terms) 
with a manual annotated set of 222 full-text publications (“test set”, see Task Data). 
The evaluation functions are the same as already discussed for BioCreative II.5 [11]: 
The overall set performances of the systems are evaluated using the “traditional” F-
Score (using micro-averaging) and the MCC score (Matthew’s Correlation 
Coefficient). Similar to the Article Classification Task evaluation, the primary 
evaluation score is based on the average per-article annotation performance (macro-
averaging) given its ranking; To this end, the area under the (interpolated) 
Precision/Recall curve is measured (AUC iP/R), averaging the AUC from the 
individual scores on each article. Each team was allowed to submit five runs, and 
teams participating online (via the BCMS), could submit another five runs via their 
servers (i.e., independent of the number of “offline” runs), using the same setting as 
for BioCreative II.5. This online setting allowed us to measure how much time it took 
the servers to generate the annotations. 
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Abstract  
Background 
The detection of annotation-relevant articles is a common step required by annotation 
databases. In case of complex biological events such as physical protein-protein 
interactions (PPIs) for which a considerable amount of articles are published each 
month, the use of keyword-based search strategies may not provide satisfactory 
results. Additionally, there exists a general interest in the biological community in 
determining if a given article describes the characterization of interactions. This 
motivates the construction of automated systems able to classify and rank large sets of 
potentially relevant abstracts. To build such systems for detecting PPI-describing 
articles, participating teams were provided with a balanced training set of 2,280 
abstracts in total, a development set of 4,000 abstracts reflecting the same class 
imbalance as the test set (15% positive examples), and a set of 6,000 abstracts were 
used as test set. Domain experts had manually labelled all data collections. 

Results 
We measured the performance of ten participating teams in this task, each of whom 
could submit five runs (offline, all teams) and another five online via the BioCreative 
Meta-Server (only teams 81 and 89 took advantage of this option), for a total of 52 
runs. The highest MCC score measured was 0.55 at an accuracy of 89%, the best 
AUC iP/R was 68%. Most of the participating teams relied on machine learning 
methods, and some of them explored the use of lexical resources such as MeSH terms, 
PSI-MI concepts or particular lists of verbs and nouns. Some integrated NER 
approaches. 

Conclusions 
With the current state-of-the art performance, text-mining tools for article 
classification can be used to report ranked lists of relevant articles for manual 
selection (68% AUC iP/R). To rely purely on automated results would require either 
further improvement of the systems or determining more stringent selection cut-offs, 
as they still return a high number of false positives (1/3 for the best result) and miss 
many relevant articles (43%). This issue may be partially explained by a general 
problem for text classification of biomedical literature, consisting in the considerable 
class imbalance between relevant and non-relevant articles. 

Background  
The selection of relevant articles for further manual inspection to derive biological 
annotations is a common step across almost all biological annotation databases [1]. 
Commonly, relevant articles are defined as a list of PubMed entries, derived from a 
keyword search or a journal of interest. Often, such search strategies are carried out 
periodically to articles that will be examined more carefully during the database 
curation process [2]. However, in case of complex biological events like protein-
protein interactions (PPIs), simple keyword queries are often very inefficient in 
detecting relevant articles [3]. Therefore, promoting the development of article 
classification systems have a long tradition, e.g. the TREC Genomics tracks [4]. 
The aim of the (Interaction) Article Classification Task is to promote the development 
of automated systems that are able to classify articles as relevant for protein-protein 
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interaction (PPI) database curation efforts. The resulting text mining tools should be 
able to simplify the identification of relevant articles [5] for a range of journals known 
to publish protein interaction reports. This task was inspired by former challenges, 
namely BioCreative II [6, 7] and II.5 [8], with specific modifications that address 
practical aspects of the resulting systems. These changes include: 

a) The use of PubMed abstracts as opposed to full text articles, as they are not 
subjected to existing hurdles in case of availability and formatting surrounding 
full text articles. 

b) The use of a large range of journals considered as relevant by biological 
databases to avoid inclusion of journals that have no usefulness in terms of the 
curation process or are not published any longer. 

c) The construction of a large manually classified training, development, and test 
set to enable the implementation of supervised learning methods and a 
statistical sound evaluation. 

d) The use of a publication time range selection criteria to focus on recent articles 
and provide a more coherent data collection. 

e) A sampling of articles in the case of the development and test set that reflects 
the real class imbalance encountered for these journals. 

Participating systems were allowed to use any additional information provided 
through the PubMed abstract, such as the linked publication or the MeSH (Medical 
Subject Heading) terms, but from an evaluation perspective, only content from the 
abstracts was considered for the creation of the (human) Gold Standard annotations. 
The Gold Standard annotations were generated by domain experts through inspection 
of a randomly sampled set of abstracts following classification guidelines which were 
refined during several rounds of classification based on the feedback of the BioGRID 
and MINT database curators. 
 
 
 
 

Team Contact/Leader Organization 
65 Fabio Rinaldi University of Zurich 
70 Sérgio Matos Universidade de Aveiro, IEETA 
73 W John Wilbur NCBI 
81 Luis Rocha Indiana University 
88 Ashish Tendulkar IIT Madras 
89 Shashank Agarwal University of Wisconsin-Milwaukee 
90 Xinglong Wang National Centre for Text Mining 
92 Keith Noto Tufts University 
100 Zhiyong Lu NCBI\NLM\NIH 
104 Jean-Fred Fontaine Max Delbrück Center 

Table 1: ACT Participants 
List of ACT participants by team ID, team leader/main contact and institution. 
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Team Run/Srvr Accuracy Specificity Sensitivity F-Score MCC AUC iP/R 
T65 RUN_1 88.68% 97.64% 38.57% 50.83% 0.48297 63.85% 
T65 RUN_2 87.93% 93.07% 59.23% 59.82% 0.52727 63.89% 
T65 RUN_3 67.05% 64.19% 83.08% 43.34% 0.34244 41.74% 
T65 RUN_4 73.68% 74.13% 71.21% 45.08% 0.34650 41.74% 
T65 RUN_5 88.00% 94.40% 52.20% 56.89% 0.50255 62.39% 
T70 RUN_1 56.45% 49.70% 94.18% 39.62% 0.31789 56.76% 
T70 RUN_2 87.41% 96.11% 38.79% 48.32% 0.43346 56.76% 
T70 RUN_3 81.92% 83.61% 72.53% 54.91% 0.46563 56.76% 
T70 RUN_4 47.77% 39.04% 96.59% 35.95% 0.27060 56.76% 
T70 RUN_5 86.84% 98.62% 20.99% 32.62% 0.34488 56.76% 
T73 RUN_1 87.55% 91.81% 63.74% 60.83% 0.53524 65.91% 
T73 RUN_2 89.15% 94.95% 56.70% 61.32% 0.55306 67.96% 
T73 RUN_3 87.78% 92.61% 60.77% 60.14% 0.52932 65.89% 
T73 RUN_4 88.88% 94.34% 58.35% 61.42% 0.55054 67.98% 
T73 RUN_5 87.62% 92.18% 62.09% 60.33% 0.53031 65.37% 
T81 RUN_1 59.03% 58.76% 60.55% 30.96% 0.13949 19.93% 
T81 RUN_2 58.47% 57.86% 61.87% 31.12% 0.14219 19.69% 
T81 RUN_3 25.37% 14.72% 84.95% 25.66% -0.00344 15.66% 
T81 RUN_4 63.45% 69.16% 31.54% 20.74% 0.00538 16.20% 
T81 RUN_5 69.17% 77.35% 23.41% 18.72% 0.00645 15.63% 
T81 SRVR_10 85.38% 99.61% 5.82% 10.78% 0.17771 50.25% 
T81 SRVR_11 84.73% 99.86% 0.11% 0.22% -0.00272 46.02% 
T81 SRVR_12 84.30% 98.86% 2.86% 5.23% 0.05244 32.11% 
T81 SRVR_13 84.88% 99.92% 0.77% 1.52% 0.05791 18.59% 
T81 SRVR_9 84.88% 99.98% 0.44% 0.88% 0.05220 44.19% 
T88 RUN_1 42.63% 35.11% 84.73% 30.94% 0.15238 21.97% 
T88 RUN_2 56.92% 53.73% 74.73% 34.47% 0.20417 26.04% 
T89 RUN_1 80.02% 80.90% 75.06% 53.26% 0.44911 61.29% 
T89 RUN_2 81.00% 81.75% 76.81% 55.08% 0.47242 62.13% 
T89 RUN_3 82.40% 83.85% 74.29% 56.15% 0.48180 60.48% 
T89 RUN_4 87.73% 94.79% 48.24% 54.40% 0.47967 43.76% 
T89 RUN_5 87.27% 91.81% 61.87% 59.58% 0.52082 48.47% 
T89 SRVR_4 77.80% 77.84% 77.58% 51.46% 0.43152 57.44% 
T89 SRVR_5 78.05% 78.15% 77.47% 51.71% 0.43424 57.56% 
T89 SRVR_6 79.90% 81.00% 73.74% 52.67% 0.44073 54.97% 
T89 SRVR_7 86.25% 92.06% 53.74% 54.24% 0.46156 41.58% 
T89 SRVR_8 86.87% 90.39% 67.14% 60.80% 0.53336 47.40% 
T90 RUN_1 88.73% 95.15% 52.86% 58.73% 0.52736 51.14% 
T90 RUN_2 88.70% 94.97% 53.63% 59.01% 0.52890 51.65% 
T90 RUN_3 88.32% 93.93% 56.92% 59.64% 0.52914 65.24% 
T90 RUN_4 88.93% 96.03% 49.23% 57.44% 0.52237 49.26% 
T90 RUN_5 88.60% 95.05% 52.53% 58.29% 0.52204 50.83% 
T92 RUN_1 86.22% 90.77% 60.77% 57.22% 0.49155 50.99% 
T100 RUN_1 88.77% 96.82% 43.74% 54.15% 0.50005 61.62% 
T100 RUN_2 88.27% 93.89% 56.81% 59.49% 0.52732 61.86% 
T100 RUN_3 81.13% 82.69% 72.42% 53.80% 0.45256 60.25% 
T100 RUN_4 81.85% 82.85% 76.26% 56.04% 0.48270 63.75% 
T104 RUN_1 80.12% 80.69% 76.92% 53.99% 0.45999 53.67% 
T104 RUN_2 80.07% 80.47% 77.80% 54.21% 0.46370 53.67% 
T104 RUN_3 64.93% 59.86% 93.30% 44.66% 0.38161 53.67% 
T104 RUN_4 69.78% 66.25% 89.56% 47.34% 0.40530 53.67% 
T104 RUN_5 86.27% 98.47% 18.02% 28.47% 0.30064 53.67% 
Team Run/Srvr Accuracy Specificity Sensitivity F-Score MCC AUC iP/R 
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Table 2: (previous page) Article Classification Task results 
Preliminary evaluation results based on the unrefined Gold Standard, in terms of 
Accuracy, MCC Score and AUC iP/R. The highest score for each evaluation column 
is show in bold typeface, the lowest in italics. Also, the best offline and online run is 
marked in bold. Legend: Run/Srvr (RUN=offline run/SRVR=online run via the 
BCMS), MCC (Matthew’s Correlation Coefficient), P@full_R (Precision at full 
Recall), AUC iP/R (Area under the interpolated Precion/Recall curve). 

Results  
Overview 
In total, ten teams participated in this task. The individual results of each run are 
shown in Table 2, the team ID associations are show in Table 1. Teams could 
participate offline, sending their results via e-mail, as well as online via the 
BioCreative Meta-Server [9]. For each of these participation methods, teams could 
submit five runs for a total of ten if they participated both offline and online. The 
highest AUC iP/R achieved by any run was 68%, the best MCC score measured was 
0.55 (see Methods for an explanation of these scoring schemas). 

Timing Measures 
By using the BioCreative Meta-Server (BCMS) framework for participating online, 
we were able to measure the time it took the systems to report a classification. There 
were two teams (81 and 89) participating online, each with 5 servers. Team 81 
annotated an article in 20 seconds (average, sd: +/-12 sec) and although the maximum 
MCC score was only 0.11 (see Table 2, Server 10), their best AUC iP/R was a 
respectable 50% (Server 10) (see Methods for an explanation of the evaluation 
measures). The second team, 89, did even better with an average of 1.9 seconds (sd: 
+/- 0.57 sec) per abstract achieving a maximum MCC score of 0.61 (Server 8); their 
best AUC iP/R score was 58% (Server 5). 

Comparing Participant Systems 
The participants were asked to fill in a short questionnaire after the test phase. 
Interestingly, four teams (73, 81, 92, 100) used other sources of training data than 
what was provided through the challenge itself (e.g., data from former BioCreative 
challenges). We also asked teams to evaluate the difficulty of the task (easy, medium, 
hard); No team thought the ACT task was easy, four (73, 81, 100, 104) said is was 
hard, while the others classified it as “medium”. All teams did some amount of lexical 
analysis of the text (sentence splitting, tokenization and/or lemmatization/stemming 
was done by all teams), and many included Part-of-Speech-tagging (teams 65, 73, 89, 
90) or even Named Entity Recognition (teams 65, 70, 73, 81, and 90). Team 73 even 
used dependency parsing on the abstracts. 
For generating their predictions all teams relied on the title and abstract, half used the 
MeSH terms, too, and one teams even was also able to explore full text information 
for some of the articles. For feature selection or weighting purposes, approaches used 
by participating teams include statistical methods like Chi-Square, mutual 
information, frequency cut-off and Bayesian weights as well as other selection criteria 
such as the restriction to particular Part-of-Speech types. Teams 81, 89, 100 and 104 
also used dimensionality reduction techniques on their features. 
A common characteristic of most of the participating teams was the use of machine 
learning techniques in general. Half of them used Support Vector Machines (SVM) 

17



 

for the classification (teams 81, 89, 90, 92, 100), and most of those combined the 
SVM with other supervised methods (81: (their own) Linear VTT classifier, 89: Naïve 
Bayes, 90: Logistic Regression, 100: Nearest Neighbour). Team 70 used Nearest 
Neighbour, 104 Naïve Bayes, 73 Large Margin class./Huber loss function, and team 
65 used a Max. Entropy classifier.  

Discussion  
Given the performance of systems, for example the high-AUC-iP/R servers, it is 
likely that humans could make use of the provided results to quickly identify the most 
relevant articles in a set. Therefore, the time spent by the text mining pipelines should 
be put in contrast to the time a human would need to select relevant articles, a number 
we will establish in future work with the annotators and curators who provided the 
Gold Standard. It gives rise to reasonable belief that online, automated systems could 
have a strong impact on reducing the time required to locate relevant articles. 

Conclusions  
As the best run in terms of MCC score is 0.55, with a Precision of 67% (Precision is 
not shown in Table 2) and at a Sensitivity (recall) of 57%, using automated 
classification results (only relying on the class) without a manual revision would incur 
significant amount of missed (false negative; 43%) and wrong (false positives; 
approx. 1/3, calculated from Precision) articles. However, they do likely perform well 
enough for the envisioned use-cases where a lower performance is sufficient by 
focusing on the ranking (i.e., the rank/confidence that had to be reported for each 
result) of the relevant articles for a human user, such as a biologist or curators (highest 
AUC iP/R: 68%). In summary, current state-of-the-art systems are likely to have a 
significant impact on simplifying (but not completely automating) the manual process 
of article selection. 
Only a small fraction of articles are PPI relevant when selecting a random collection 
from journals known to be annotation relevant in general. Although most participating 
teams did not adapt their systems to class imbalance they nonetheless could obtain 
sufficiently competitive results to make them useful as part of the annotation process. 
Compared to similar, previous tasks, it is possible to observe a tendency to go beyond 
simple bag-of-word approaches by integrating domain specific lexical resources, 
semantic labels and grammatical information to improve the document selection. 

Methods 
Result Structure 
For each article, participants had to return a Boolean value (true/false) regarding its 
relevance for PPI curation (i.e., containing PPI with experimental evidence), a 
confidence score for this classification (in the range (0,1]), and the overall (unique) 
rank of the article in the whole set of articles with respect to its PPI relevance. 

Evaluation 
The evaluation is based on comparing automatically generated results with a manual 
annotated set of 6,000 PubMed records (“test set”), 900 of which were classified as 
“true”. The same setup as for BioCreative II.5 was used: The overall set performances 
of the systems are evaluated using various measures, namely Accuracy, Sensitivity 
(Recall), Specificity, as well as Matthews’ Correlation Coefficient (MCC score; the 
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most stable of these evaluation function on unbalanced sets, as is the case for this 
task) for evaluating the pure classification performance (not taking into account rank 
or confidence). We also added the F-Scores for direct comparison to the BioCreative 
II results. The main utility measure of a system – i.e., the primary evaluation score for 
this task – is based on measuring a system’s ability to provide the best possible ranked 
list of relevant abstracts, sorted from the most relevant (i.e., highest ranked article that 
is classified as true) to the most irrelevant article (i.e., highest ranked article classified 
as false). To this end, the area under the (interpolated) Precision/Recall curve is 
measured (AUC iP/R score) by using the results’ ranking. Each team was allowed to 
submit five runs, and teams participating online (via the BCMS), could submit 
another five runs via their servers (i.e., independent of the number of “offline” runs), 
using the same setup as in BioCreative II.5. Additionally, we measured how much 
time it took to generate automatic predictions by the servers (online runs). 
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Abstract  

Background 
The Gene Normalization (GN) task refers to the identification and linking of gene 

mentions in free text to standard gene database identifiers, an important task 

motivated by many real-world uses such as assisting literature curation for model 

organism databases. Here we report the GN challenge in BioCreative III where 

participating teams are asked to return a ranked list of gene ids of full-text articles. 

For training, we prepared 32 fully annotated articles and 500 partially annotated 

articles. A total of 507 articles were selected as the test set. We developed an EM 

algorithm approach for selecting 50 articles from the test set for obtaining gold-

standard human annotations and used the same algorithm for inferring ground truth 

over the whole set of 507 articles based on team submissions. We report team 

performance by a newly proposed metric for measuring retrieval efficacy called 

Threshold Average Precision (TAP-k).    

Results 
We received a total of 37 runs from 14 different teams for the BioCreative III GN 

task. When evaluated using the gold-standard annotations of the 50 articles, the 

highest TAP-k scores are 0.3248 (k=5), 0.3469 (k=10), and 0.3466 (k=20), 

respectively. Higher TAP-k scores of 0.4581 (k=5, 10) and 0.4684 (k=20) are 

observed when evaluated using the inferred ground truth over the full test set.  

Conclusions 
Overall team results show that this year’s GN task is more challenging than past 

events, which is likely due to the complexity of full text as well as species 

identification. By comparing team rankings with different evaluation data (gold 
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standard vs. inferred ground truth), we demonstrate that our approach succeeds in 

inferring ground truth adequate for effectively detecting good team performance.   

Background  
The gene normalization (GN) task in BioCreative III is similar to past GN tasks in 

BioCreative I and II (1-3) in that the goal is to link genes or gene products mentioned 

in the literature to standard database identifiers. This task has been inspired partly by 

a pressing need to assist model organism database (MOD) literature curation efforts, 

which typically involve identifying and normalizing genes being studied in an article. 

For instance, Mouse Genome Informatics (MGI) recently reported their search and 

evaluation of potential automatic tools for accelerating this gene finding process (4).    

Specifically, this year’s GN task is to have participating systems return a list of gene 

database (Entrez Gene in this case) identifiers for a given article. There are two 

differences from past BioCreative GN challenges: 

 Instead of using abstracts, full-length articles are provided. 

 Instead of being species-specific, no species information is provided. 

Both changes make this  year’s challenge event closer to the real literature curation 

task in MODs where humans are given full text articles without prior knowledge of 

organism information in the article.  

Two additional new aspects of this year’s GN task are the proposed evaluation metrics 

and the use of an EM algorithm for inferring ground truth based on team submissions. 

As many more genes are found in full text than in abstracts, returning genes by 

predicted confidence is preferred to a random order, as the former is more desirable in 

applications. Metrics used in past GN tasks such as Precision, Recall, and F-measure 

do not take ranking into consideration. Thus, we propose to use a new measure called 
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Threshold Average Precision (TAP-k), which is specifically designed for the 

measurement of retrieval efficacy in bioinformatics (13).  

Finally, unlike in previous GN tasks where abstracts in the test set were completely 

hand annotated, the cost of manual curation on full text prevented us from obtaining 

human annotations for all 507 articles in the test set. Thus we resort to using team 

submissions for inferring ground truth. That is, given a labeling task and M  

independent labeling sources, it is possible to use these multiple sources to make 

estimates of the true labels which are generally more accurate than the labels from any 

single source alone.  Perhaps the simplest approach to this is to use majority voting 

(5-7). On the other hand a number of methods have been developed using latent 

variables to represent in some way the quality of the labeling sources and based on the 

EM algorithm (8-12). There is evidence that such an approach can perform better than 

majority voting (8,11). We have chosen the most direct and transparent of the EM 

approaches (11) to apply to the GN task where we have multiple submissions as the 

multiple labeling sources. As far as we are aware this is the first attempt to base an 

evaluation of the performance of multiple computer algorithms on an EM algorithm 

for multiple independent data sources.  

Methods 
Data Preparation 
For the purpose of obtaining full text articles in uniform formats and using them as a 

source for text analytics, all the articles selected for this task are published either by 

BioMed Central (BMC) or by Public Library of Science (PLoS), two PubMed Central 

(PMC) participating Open Access publishers. As a result, the text of each article was 

readily made available in both high-quality XML and PDF from PMC. 
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Participants were given a collection of training data to work with so that they could 

adjust their systems to optimal performance. The training set includes two sets of 

annotated full-length articles:  

 32 fully annotated articles by a group of invited professional MOD curators 

and by a group of bioinformaticians from the NCBI. Both groups were trained 

with detailed annotation guidelines (available as Appendix A) and a small 

number of example articles before producing gold-standard annotations. For 

each article in this set, a list of Entrez Gene ids is provided.  

 A large number (500) of partially annotated articles. That is, not all genes that 

are mentioned in an article are annotated, but only the most important ones 

that within the scope of curation are annotated by human indexers at the 

National Library of Medicine (NLM). It is noted that most of the annotated 

genes are taken from the abstracts, though this is not 100%. This does not 

necessarily mean that the remainder of the text is useless. Presumably the full 

text can help to decide which genes are most important in the paper and 

determine the species to improve the prediction of the gene identifier. 

For evaluating participating systems, we prepared a set of 507 articles as the test set. 

These articles were recently published and did not yet have any curated gene 

annotations. Due to the cost of manual curation, the same groups of curators were 

asked to produce human annotations only for a subset of 50 articles selected by the 

algorithm described below. 

E M algorithm 

In this scheme we assume there are M  labeling sources and associate with the ith 

labeling source two numbers, the sensitivity ias  and the specificity ibs .  For the GN 

task we consider all the gene ids returned by the M  sources as objects to be labeled. 
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Any given source produces a label for any such gene id which is the label “true” if the 

source returned that gene id or “false” if the source did not return that gene id. Then 

the sensitivity ias  is the probability that the ith source labels a correct gene id as true 

and the specificity ibs  is the probability that it labels an incorrect gene id as false.  

Assume there are N  gene ids which require labeling. Then the model assumes a 

probability distribution   1

N
j j

p


 where jp  is the probability that the jth gene id is 

correct. To begin the algorithm we initialize each jp  to be equal to the fraction of the 

M  labels that are true for that gene id.  The maximization step redefines the 
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where we have used typical Laplace smoothing and define ij  to be 1 if the ith source 

labels the jth gene id as true and 0 otherwise.  The jp s are defined for the subsequent 

expectation step by 
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by Bayes’ theorem where for each j,  jpr  is the prior for jp . We initially took prj 

uniformly to be 0.5 and applied the algorithm to choose the 50 documents for hand 

labelling. Once we knew the correct annotations for the 50 document gold standard 

set we observed that only about 1% of gene ids returned by systems were correct. We 

subsequently have taken jpr  equal to 0.01 for all j in applying the algorithm to 

determine ground truth.  
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As mentioned above, our first use of this model was to find 50 documents among the 

507 test documents which had the most variability in their labeling by different 

sources. For this purpose one submission from each team involved in the GN task was 

randomly selected and these submission were the 14 sources for application of the 

algorithm. When the algorithm was run to convergence we computed the entropy for 

the jth gene id by the formula 

 log (1 ) log(1 )j j j j jH p p p p      (0.3) 

Each document was scored by the sum of the entropies for all the gene ids coming 

from that document. Thus a document score is a function of how many gene ids are 

reported for that document and how variably the gene ids are reported by the different 

sources. This sampling, running the model and scoring the documents, was repeated 

100 times and the top 50 documents varied only a small amount from run to run. We 

chose the 50 documents with the highest average scores over the 100 trials for hand 

annotation to provide the gold standard evaluation.  

The second use of the model was to apply it to the best submission from each team. 

The choice of the best submission itself is based on the gold standard, but we made no 

further use of the gold standard. From the converged model using these sources we 

obtained a set of probabilities   1

N
j j

p


 and we accepted as correct all those gene ids 

for which 0.5jp   and considered all other gene ids to be incorrect. This labeling we 

refer to as the silver standard. We used it to evaluate all submissions on the whole set 

of 507 documents. A comparison of results as computed with the gold standard and 

the silver standard is given in Table 3.  
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Evaluation Metrics 
We propose to use a new metric, Threshold Average Precision (TAP-k), for 

evaluating team performance. In short, TAP is Mean Average Precision (MAP) with a 

variable cutoff and terminal cutoff penalty. We refer interested readers to the original 

publication (13) and Appendix B for detailed description of the TAP-k metric. In our 

evaluation, we used three values of k: 5, 10 and 20.  

Results 
GN Annotation Data 
As shown in Table 1, the average numbers (mean and median) of annotated genes per 

article in Set 1 are significantly lower than the ones in Set 2, while remaining 

relatively close to its counterparts in Set 3. This comparison suggests that the 50 

selected articles are not representative of the articles in the training set. Instead, the 

entire test set seems akin to the training set in this respect. 

Table 1: Statistics of annotated gene ids in the different data sets. 

Set Description Min Max Mean Median St.dev. 

1 Training Set (32 articles) 4 147 19 14 24 
2 Test Set (50 articles – gold standard) 0 375 33 19 63 
3 Test Set (507 articles – silver standard) 0 375 18 12 27 

 

Table 2 shows that there are many different species involved in this year’s GN task, 

which suggests that species identification and disambiguation may be critical in the 

process of finding the correct gene ids. We also show that the distributions of species 

among the genes in the three data sets look largely different. This indeed reflects the 

method of selecting the articles for training and evaluation: with some prior 

knowledge of a papers’ species information, we were able to select the 32 articles as 

the training set to match the domain expertise of those invited professional MOD 

curators in order to obtain best possible human annotations. On the other hand, the 
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articles in the test set were selected rather randomly as none was annotated prior to 

the evaluation.     

 Table 2: Statistics of species distribution in the different data sets.  

# T raining Set (32 articles) T est Set (50 articles) T est Set (507 articles)  
1 S. cereviaiae (27%) Enterobacter sp. 638 (23%) H. Sapiens (42%) 
2 H. sapiens (20%) M. musculus (14%) M. musulus (24%) 
3 M. musculus (12%) H. Sapiens (11%) D. melanogaster (6%) 
4 D. melanogaster (10%) S. pneumoniae TIGR4 (9%) S. cerevisiae S228c (6%) 
5 D. rerio (7%) S. scrofa (5%) Enterobacter sp. 638 (4%) 
6 A. thaliana (5%) M. oryzae 70-15 (4%) R. norvegicus (4%) 
7 C. elegans (3%) D. melanogaster (4%) A. thaliana (2%) 
8 X. laevis (3%) R. norvegicus (3%) C. elegans (2%) 
9 R. norvegicus (2%) S. cerevisiae S228c(2%) S. pneumoniae TIGR4 (2%) 

10 G. gallus (2%) E. histolytica HM-1 (2%) S. scrofa (1%) 
11+ Other 18 species (9%) Other 65 species (23%) Other 91 species (7%) 
 

In addition to recognizing various species in free text, participating systems also 

needed to properly link them to the corresponding gene mentions in the articles. As 

shown in Figure 1 most articles (over 70%) in our data sets contain more than one 

species mention. In fact, it is not uncommon to see 5 or more species in an article. In 

cases where more than one species is found in an article, it can be challenging for 

systems to associate a gene mention with its correct species.  

F igure 1: Percentage of articles annotated with different numbers of species in 
various data sets. Training (32) refers to the human annotations on the 32 articles in 
the training set. Test (50) and Test (507) refer to the gold standard and silver standard 
annotations on the 50 and 507 articles in the test set, respectively. 
 

28



 

 

 

Team Results 

Each team was allowed to submit up to 3 runs. Overall, we received a total of 37 runs 

from 14 teams. One team withdrew their late submission (one run) before the results 

were returned to the teams. Thus, per their request we do not report their system 

performance in the tables below. Nevertheless we included their withdrawn run when 

selecting 50 articles and computing the silver standard by our EM algorithm, as we 

believe more team submission data are preferable in this case.   

We assessed each submitted run by comparing it to the gold and silver standard, 

respectively, and report their corresponding TAP scores (k = 5, 10, and 20) in Table 3. 

As highlighted in the table, the two runs from team 83 (T83_R1 and T83_R3) 

achieved highest TAP scores in almost all cases except when evaluated on the silver 

standard with k = 20 where the third run from Team 98 (T98_R3) was the best. 

However, we did not find a statistically significant difference between the results of 

the two teams (T83 and T98) when comparing their respective best runs (with 

different values of k) based on the Wilcoxon signed rank test.   

Table 3: Team evaluation results on the 50 and 507 articles using gold and silver 
standard annotations, respectively. Results are sorted by team numbers.  
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Team_Runs 

Using gold standard 
(50 selected articles) 

Using silver standard 
(All 507 articles) 

TAP 
(K=5) 

TAP 
K=10 

TAP 
(K=20) 

TAP 
(K = 5) 

TAP 
(K = 10) 

TAP 
(K = 20) 

T63_R1  0.0337  0.0484  0.0718  0.1567  0.1939  0.1954 
T63_R2  0.0296  0.0454  0.0638  0.1368  0.1855  0.1942 
T65_R1  0.0628  0.0958  0.1017  0.1487  0.1754  0.1938 
T65_R2  0.0891  0.1073  0.1156  0.1533  0.1817  0.2024 
T68_R1  0.1568  0.1817  0.1987  0.3398  0.3551  0.3516 
T68_R2  0.1255  0.1431  0.1740  0.3257  0.3410  0.3375 
T70_R1  0.0566  0.0566  0.0566  0.1146  0.1146  0.1146 
T70_R2  0.0622  0.0622  0.0622  0.1243  0.1243  0.1243 
T70_R3  0.0718  0.0718  0.0718  0.1512  0.1512  0.1512 
T74_R1  0.2099  0.2447  0.2447  0.4518  0.4518  0.4518 
T74_R2  0.2045  0.2417  0.2417  0.4514  0.4514  0.4514 
T74_R3  0.2061  0.2432  0.2432  0.4555  0.4555  0.4555 
T78_R1  0.0577  0.0726  0.1106  0.1245  0.1527  0.1877 
T78_R2  0.0829  0.1161  0.1662  0.2495  0.2655  0.2655 
T78_R3  0.0830  0.1091  0.1387  0.2219  0.2645  0.2762 
T80_R1  0.1072  0.1556  0.1622  0.3983  0.3983  0.3983 
T80_R2  0.0372  0.0507  0.0578  0.2165  0.2165  0.2165 
T80_R3  0.0324  0.0432  0.0516  0.2224  0.2288  0.2288 
T83_R1  0.3184  0.3469  0.3466  0.4581  0.4581  0.4581 
T83_R2  0.3147  0.3366  0.3366  0.4293  0.4293  0.4293 
T83_R3  0.3228  0.3445  0.3445  0.4303  0.4303  0.4303 
T89_R1  0.1197  0.1197  0.1351  0.2681  0.2989  0.2989 
T89_R2  0.1351  0.1521  0.1620  0.2624  0.2950  0.2950 
T89_R3  0.1275  0.1522  0.1522  0.2873  0.2873  0.2873 
T93_R1  0.1599  0.1842  0.2010  0.3916  0.3916  0.3916 
T93_R2  0.1517  0.1804  0.2000  0.3602  0.3720  0.3720 
T93_R3  0.1611  0.1856  0.2032  0.3946  0.3946  0.3946 
T97_R1  0.0709  0.092  0.1001  0.1369  0.1620  0.1859 
T97_R2  0.0630  0.0849  0.0945  0.1304  0.1563  0.1770 
T97_R3  0.0709  0.092  0.1001  0.1369  0.1620  0.1859 
T98_R1  0.2805  0.2971  0.3064  0.3720  0.3802  0.3779 
T98_R2  0.2850  0.3033  0.3044  0.3682  0.3775  0.3767 
T98_R3  0.2973  0.3125  0.3248  0.4086  0.4511  0.4648 
T101_R1  0.1849  0.2235  0.2331  0.4128  0.4128  0.4128 
T101_R2  0.1649  0.2102  0.2365  0.4097  0.4224  0.4224 
T101_R3  0.1773  0.2096  0.2374  0.4351  0.4351  0.4351 

 

To assess the quality of the silver standard, we show in Table 4 the results of team 

submissions against the silver standard on the 50 selected articles. Although the two 

best runs from Team 83 in Table 3 are still among the ones with the highest TAP 

scores, they no longer are the best runs. Instead, the top positions are replaced by 

T74_R3 (for k=5) and T98_R3 (for k=10 and 20), respectively.  
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Table 4: Team evaluation results on the 50 articles using the sliver standard 
annotations. Results are sorted by team numbers.  

Team_Run  TAP (K=5)  TAP (K=10)  TAP (K=20) 
T63_R1  0.0515  0.1045  0.142 
T63_R2  0.0455  0.0978  0.1335 
T65_R1  0.0996  0.1259  0.1473 
T65_R2  0.109  0.1317  0.1522 
T68_R1  0.2238  0.2719  0.3152 
T68_R2  0.2098  0.2917  0.2917 
T70_R1  0.053  0.053  0.053 
T70_R2  0.0566  0.0566  0.0566 
T70_R3  0.096  0.096  0.096 
T74_R1  0.3677  0.3677  0.3677 
T74_R2  0.3713  0.3713  0.3713 
T74_R3  0.3747  0.3747  0.3747 
T78_R1  0.0589  0.0793  0.1139 
T78_R2  0.1048  0.1548  0.2114 
T78_R3  0.0972  0.1394  0.1949 
T80_R1  0.2464  0.2719  0.2719 
T80_R2  0.0663  0.1107  0.1177 
T80_R3  0.0749  0.1231  0.1291 
T83_R1  0.3498  0.3531  0.3531 
T83_R2  0.3222  0.3222  0.3222 
T83_R3  0.3313  0.3313  0.3313 
T89_R1  0.1714  0.217  0.217 
T89_R2  0.2141  0.2581  0.2949 
T89_R3  0.2054  0.2054  0.2054 
T93_R1  0.2518  0.2979  0.2979 
T93_R2  0.2011  0.2514  0.2854 
T93_R3  0.2487  0.293  0.293 
T97_R1  0.1066  0.1307  0.149 
T97_R2  0.09  0.1126  0.1323 
T97_R3  0.1066  0.1307  0.149 
T98_R1  0.3218  0.3388  0.3494 
T98_R2  0.3217  0.3391  0.3496 
T98_R3  0.3576  0.3953  0.4499 
T101_R1  0.3504  0.374  0.374 
T101_R2  0.3068  0.379  0.3976 
T101_R3  0.3077  0.3942  0.3942 

 

Discussion  
Team Results and Quality of Silver Standard 

Although we are unable to directly compare this year’s GN team results against the 

ones in previous GN challenges due to different evaluation metrics, results in Table 3 
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led us to believe that this year’s GN task is more challenging, potentially due to the 

complexity of full text processing and species identification (14,15).  

Using the silver standard allowed us to assess team submissions on the entire set of 

test articles without having human annotations for all articles. As can be seen from 

results in Tables 3 and 4, TAP scores are consistently higher when evaluated on the 

silver standard compared to the gold standard. Furthermore, individual team rankings 

may be affected. For instance, as mentioned earlier the best performing run was 

T83_R3 using gold standard but T74_R3 using silver standard. Nevertheless, it is 

evident that relative rankings tend to be largely preserved in this comparison. For 

instance, teams 83, 74, 98 and 101 consistently remain as the top tier group in all 

evaluations. This provides some justification for the silver standard and suggests that 

this approach to evaluation has some merit. 

As just noted, TAP scores in Table 3 show that overall team performance is lower on 

the 50 articles than on the entire set of 507 articles. The reasons for this are two fold. 

First, the 50 articles are the most difficult ones for gene normalization (as shown by  

comparing the silver results for the 50 and the 507) and this supports our rationale for 

their choice. Second, by comparing the gold and silver results for the 50 in Tables 3 

and 4, we can see that team results are always higher when evaluated using the silver 

standard. Taken together, this suggests that the true TAP scores on the entire test set 

should be slightly lower than what is currently reported using the silver standard in 

Table 3. 

Team Methods 

Each team was required to submit a system description before receiving the gold 

standard annotations on the 50 articles and their scores. Based on reading those 
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submitted descriptions, we found the general framework for the gene normalization 

task comprises the following major steps:  

1) Identifying gene mentions 

2) Identifying species information and linking such information to gene mentions 

3) Retrieving a list of candidate gene ids for a given gene mention 

4) Selecting gene ids through disambiguation. 

Conclusions  
We have successfully organized a community-wide challenge event for the gene 

normalization task. There were a total of 37 submissions by 14 different teams from 

Asia, Europe, and North America. The highest TAP-k scores obtained on the gold-

standard annotations of the 50 test articles are 0.3248 (k=5), 0.3469 (k=10), and 

0.3466 (k=20), respectively. In addition, TAP-k scores of 0.4581 (k=5, 10) and 

0.4684 (k=20) are observed when using the silver standard of the 507 test articles.  

In comparison with past BioCreative GN tasks, this year’s task bears more 

resemblance to real-world tasks in which curators are given full text without knowing 

species information. As a consequence, this year’s task has proved more difficult than 

the ones in the past, which is evident from the overall lower team performance.  

Finally, we believe the TAP-k metric and EM algorithm proved to be adequate for 

evaluating retrieval efficacy and for inferring ground truth based on team 

submissions. In particular, the proposed pooling method allowed us to effectively 

detect good team performance without having to relying on human annotations.  

Future work should include conducting a more detailed analysis of various techniques 

and tools used by different participating teams, as this may provide valuable direction 

for future research on the GN problem. Also, we plan to combine results from 

different teams as an ensemble system to test maximal aggregate performance, as in 
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various previous studies (1,16,17). Finally, we would like to investigate how systems 

developed for the GN task may be used in real-world applications.  

Additional material 

Additional file 1: GN annotation guidelines 

Additional file 2: Introduction to TAP-k  
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BioCreative GN Task 2010 

Gene/Protein Annotation Guidelines 

What to annotate and normalize:  

1. Find gene/protein mentions in the full-length article including figure and 

table legends and map them to unique Entrez Gene identifiers 

(http://www.ncbi.nlm.nih.gov/gene/). 

2. Entrez Gene Ids are required. (UniProt Ids or Model Organism Database 

Ids are optional). 

3. Annotate all genes mentioned in the article including those genes 

mentioned in passing or only mentioned once in the article. However, there 

is no need to rank or group genes for this assignment. 

4. When there is no explicit mention of a gene’s organism of origin in 

surrounding text, try to use the article context to help determine its species. 

Annotate the gene only when the species information can be determined. 

Some helpful clues for determining species include details in the 

methods/materials section such as cell lines, organism-specific gene 

nomenclature conventions, etc. 

5. You may also use your domain knowledge for determining which organism 

a gene belongs to when no explicit species information is given in the text. 

If there is absolutely no clue about the species, or in situations where the 

species information is ambiguous (e.g. the authors use one gene as a 

representative of its homologs), do not annotate the gene.   

6. When cell lines from different species are used to study a gene, determine 

and use the gene’s species of origin instead of a cell lines’ species of origin 

for annotation.  
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What NOT to annotate: !

"# Do not annotate references sections. But this section may be useful for species 

identification. However, do not go beyond reading reference titles. That is, 

don’t read the referenced articles. !

2. Do not use or annotate supplementary material or supporting information.  

3. Annotate target proteins but do not annotate antibodies/reagents that are used 

to study target proteins.  

4. Do not annotate the Methods/Materials section for genes/proteins. But this 

section may be useful for species identification. (Our reasoning is that the 

Methods/Materials section often contains information about reagents or 

antibodies that are themselves proteins but are not curatable objects; if 

curatable genes/proteins are mentioned in such a section, then they will almost 

certainly be mentioned elsewhere in the article).  

5. Do not annotate genes where no unique ids can be identified in Entrez Gene. 

For example, if you find a gene mention “x-tsk” in a paper and subsequently 

search it in Entrez Gene, you may be presented with two separate Entrez gene 

records (x-tsk-b1 & x-tsk-b2). In this case, if you can’t tell which specific gene 

is used in the paper based on your domain knowledge, do not annotate this 

gene. 

6. Do not annotate a protein complex (e.g. TFTC complex). But if its members 

are explicitly given (NFKB-IKB complex) they should be annotated. 

7. Do not annotate a protein family (e.g. cytokines; ring-h2 finger proteins) 

because no unique Entrez Gene id can be assigned to it.  

8. Do not annotate a gene/protein with only non-species taxonomic information 

(e.g. mammalian p53) for the same reason above.  
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What is TAP-k? 

Here we refer to the measure defined by Carroll, H. D., Kann, M. G., Sheetlin, S. L., and 
Spouge, J. L., Threshold Average Precision (TAP-k): A Measure of Retrieval Designed for 
Bioinformatics, Bioinformatics Advanced Access published on May 26, 2010. 

The Threshold Average Precision (TAP-k) is MAP with a variable cutoff and terminal cutoff 
penalty.  

For a single query the average precision (AP) is computed by summing the precision at each rank 
that contains a true positive item and then dividing this sum by the number of positives for that 
query.  If the retrieval system assigns to each retrieved item a score and the retrieved items are 
ranked in decreasing order of score, then it may be useful to cut off the retrieval at some fixed 
score level x. We can compute the average precision with cutoff x (APCx). This is the sum of the 
precision at each rank with a true positive item and a score >=x, divided by the total number of 
positives for the query. Finally, suppose that y>x and further suppose there are no true positive 
items in the sum for APCx that are below y. Then APCy=APCx. But clearly it would make more 
sense to choose the cutoff y than the cutoff x. To distinguish between these two cases we define 
the average precision with cutoff x and terminal penalty (APCPx). Let Px be the precision at the 
last rank with score  >= x and let P be the total number of positives. Then define 

 * 1*
1

x x
x

TP APC PAPCP
TP




. (1.1) 

APCPx is just the weighted average of APCx and Px with most of the weight applied to APCx, but 
Px supplying the terminal penalty. In our hypothetical case Py will be greater than Px so that 
APCPy is also greater than APCPx and the score rewards the better choice of cutoff or equally 
penalizes the poorer choice. Whereas MAP is the average of AP over all the queries, TAP-k is the 
average of APCPx over all the queries where x is chosen as the largest score that produces a 
median of k false positive retrievals over all the queries. The median is used here instead of the 
mean because it is more robust against noise and outliers.  

There are some practical considerations when applying TAP-k. First, retrieval systems must 
produce scores commensurate with their rankings and these scores must be interpretable across 
different queries. Since most systems generate their retrieval by scoring this should not make the 
task any more difficult than usual. On the other hand some kind of score normalization may be 
necessary for some systems, depending on how the scores are constructed. An ideal score would 
be a probability estimate that the retrieved item is a true positive, but a score need not be a 
probability estimate for good performance. The score that is reported simply has to have the 
same implications for relevance of the item regardless of the query, for the best performance. 
Another important issue is the length of the retrieved lists returned by a system.  If many of the 
retrieved lists are too short to have k false positives appear, then no cutoff score may produce a 
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median number of k false positive retrievals for the set of queries. In that case we will take the 
cutoff score x to be the lowest score over all the retrieval lists for all the queries.  

 

Example 1. Data for five queries, Q1-Q5 are presented in the table. The numbers in parentheses 
following the query numbers are the number of  correct or relevant items for each query. This data 
was generated randomly based on the scores. Each score is the probability that the corresponding 
retrieved item would be relevant (relevance is shown by a 1 in the rel column for each query). The 
scores themselves are parts of  power series which are convenient for generating realistic scores. 
Retrieval is cut off  at 15 items for each query to keep the data easily manageable and as a 
consequence not all relevant items are necessarily retrieved.  

 Q1 (5) Q2 (5) Q3 (5) Q4 (3) Q5 (5) 
 rel score rel score rel score rel score rel score 
1 1 0.900 0 0.500 0 0.500 0 0.2 1 0.980 
2 1 0.738 0 0.475 1 0.475 0 0.187 0 0.788 
3 0 0.605 1 0.451 0 0.451 0 0.174 0 0.633 
4 1 0.496 0 0.429 0 0.429 0 0.163 1 0.509 
5 1 0.407 1 0.407 0 0.407 0 0.152 1 0.409 
6 0 0.334 0 0.387 0 0.387 0 0.142 0 0.329 
7 0 0.274 0 0.367 0 0.367 0 0.132 0 0.265 
8 0 0.224 0 0.349 1 0.349 0 0.123 0 0.213 
9 1 0.184 0 0.332 0 0.332 0 0.115 0 0.171 
10 0 0.151 1 0.315 1 0.315 0 0.107 1 0.138 
11 0 0.124 0 0.299 0 0.299 0 0.100 0 0.111 
12 0 0.101 0 0.284 0 0.284 0 0.094 0 0.089 
13 0 0.083 0 0.270 0 0.270 0 0.087 0 0.071 
14 0 0.068 0 0.257 0 0.257 0 0.082 0 0.057 
15 0 0.056 0 0.244 1 0.244 0 0.076 0 0.046 
Here the score cutoff  for TAP-5 is 0.213 and the values of  APCP5 are 0.675, 0.206, 0.264, 0, 0.413 and the 
average of  these numbers, TAP-5,  is 0.312. The blue background shows what parts of  the retrieval were 
included in the scoring (likewise for subsequent examples). 

Example 2. Example 1 output, but the system has limited its retrieval to the top 4 ranks for each 
query.  

 Q1 (5) Q2 (5) Q3 (5) Q4 (3) Q5 (5) 
 rel score rel score rel score rel score rel score 
1 1 0.900 0 0.500 0 0.500 0 0.2 1 0.980 
2 1 0.738 0 0.475 1 0.475 0 0.187 0 0.788 
3 0 0.605 1 0.451 0 0.451 0 0.174 0 0.633 
4 1 0.496 0 0.429 0 0.429 0 0.163 1 0.509 
5           
6           
7           
8           
9           
10           
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11           
12           
13           
14           
15           
 

Here the cutoff  score is 0.163 (the lowest score possible) and the APCP5 values are 0.583, 0.097, 
0.125, 0, 0.333 and the average, TAP-5, of  these numbers is 0.228. Here the TAP-5 is lower than for 
example 1 because the system cut the retrieval off  prematurely and this decreased the recall and thus 
the TAP -5 score.  

 

Example 3.  Example 1 output again, but scores changed so they only reflect the rank and not the quality 
of  the retrieved material.  

 Q1 (5) Q2 (5) Q3 (5) Q4 (3) Q5 (5) 
 rel score rel score rel score rel score rel score 
1 1 0.9 0 0.9 0 0.9 0 0.9 1 0.9 
2 1 0.85 0 0.85 1 0.85 0 0.85 0 0.85 
3 0 0.8 1 0.8 0 0.8 0 0.8 0 0.8 
4 1 0.75 0 0.75 0 0.75 0 0.75 1 0.75 
5 1 0.7 1 0.7 0 0.7 0 0.7 1 0.7 
6 0 0.65 0 0.65 0 0.65 0 0.65 0 0.65 
7 0 0.6 0 0.6 0 0.6 0 0.6 0 0.6 
8 0 0.55 0 0.55 1 0.55 0 0.55 0 0.55 
9 1 0.5 0 0.5 0 0.5 0 0.5 0 0.5 
10 0 0.45 1 0.45 1 0.45 0 0.45 1 0.45 
11 0 0.4 0 0.4 0 0.4 0 0.4 0 0.4 
12 0 0.35 0 0.35 0 0.35 0 0.35 0 0.35 
13 0 0.3 0 0.3 0 0.3 0 0.3 0 0.3 
14 0 0.25 0 0.25 0 0.25 0 0.25 0 0.25 
15 0 0.2 0 0.2 1 0.2 0 0.2 0 0.2 
 

Here the scores no longer reflect quality and thus they do not give an accurate idea of  where to cut off  
retrieval to obtain maximal efficiency. As a result there is a drop in TAP-5 as compared with example 1. The 
cutoff  score is 0.6 and the APCP5 values are 0.687, 0.170, 0.107, 0, 0.421 and the average, TAP-5, is 
0.277.  
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Abstract

Background: The BioCreative III challenge was conducted to evaluate text mining and information retrieval

applications on three tasks: gene normalization (GN), interactive task (IAT), and protein-protein interaction

(PPI), which comprised two sub-tasks - article classification task (ACT) and interaction methods task (IMT).

We participated in all three tasks.

Methods: We developed machine learning-based approaches to explore diverse textual and non-textual features

for each task. We also explored feature selection strategies to improve performance. We trained our systems on

the training and development data provided by the organizers of BioCreative III and evaluated it on the test

data provided by the organizers.

Results: For the GN Task, evaluation was conducted on the 50 most difficult articles from the test data of 507

articles. Our system obtained TAP-5, TAP-10 and TAP-20 scores of 0.14, 0.15 and 0.16, respectively. For ACT

and IMT, our systems obtained 88% accuracy and 54% F1-score, respectively.
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Gene Normalization Task (GN)

We developed a three-tiered GeneNorm system. GeneNorm first identifies gene mentions in articles and

then searches for candidate Entrez Gene entries. Then, GeneNorm applies a disambiguation module that

was built upon supervised machine learning. To that end, we explored diverse learning features.

Tier 1: Identifying Gene Mentions

In this tier, our strategy was to maximize recall for gene mention identification. We identified gene

mentions using two methods. In the first method, we modified an existing Conditional Random Fields

(CRF) based gene named entity recognizer, BANNER, by adding dictionary lookup as a binary feature.

The gene symbols and synonyms in the Entrez Gene database were used as the dictionary of possible

genes. For each token, we first calculated its frequency inside and outside gene names using the

BioCreative II gene mention training data. If the frequency of the token inside gene names was greater

than or equal to the frequency outside gene names and the token appeared in the gene dictionary as well,

then the lookup feature was assigned as true, otherwise it was assigned as false. We trained a model for

gene named entity recognition using the modified version of BANNER on BioCreative II’s gene mention

training data. On evaluating the performance of this model on BioCreative II’s gene mention test data, we

obtained a precision, recall and f-score of 83.9%, 86.3% and 85.1% respectively. The f-score of the modified

system is similar to the original BANNER system, but the recall is improved (86.3%) compared with the

original system (83.1%).

The second method to identify gene mentions was based on italics markup tags in the document. The data

provided for BioCreative III was in XML format, with italics markup in text available for some articles.

Italics markups are usually used for gene/protein names and species name. Since our goal was to increase

recall, we added the terms marked in italics as gene mentions.

Tier 2: Identifying candidate genes from identified gene mentions

We built an index of all gene symbols and names in the Entrez Gene database and linked them to the

corresponding gene ids using Apache Lucene. We also added synonyms from the corresponding SwissProt

entries to the index. Each identified gene mention in Step 1 was then expanded by a rule-based gene name

variation generator and the expansions were used to query the Entrez Gene index. Top 100 genes returned

as a result to each query were considered as the candidate genes in the article. We ran steps 1 and 2 on the
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training articles for BioCreative III Gene Normalization task. We were provided with a total of 525

articles; 500 of these articles were annotated for important genes only, whereas 32 articles were annotated

for all genes. We obtained a precision, recall and F1-score of 0.02%, 92.08% and 0.05% respectively for

important genes and 0.26%, 87.15% and 0.51% for all genes. The poor precision indicated that there were

a lot of false positive candidate genes at this stage.

Tier 3: Learning framework for disambiguation

We explored and evaluated several learning algorithms for further disambiguation among those candidate

genes. To do that, we identified 26 features for each candidate gene as described in Table 1.

Table 1 - Features used for Gene Normalization Task
Feature
name

Feature type Description

Sequence Binary If the article has a genetic sequence, checks if the genetic sequence
belongs to this gene

BC II.5 Binary If the gene was identified by the GN system developed for BioCre-
ative II.5

GO Score (4
features)

Continuous Similarity* between this gene’s Gene Ontology (GO) annotations’
concatenated names and descriptions, and (1) all the text of the
article, (2) title of the article, (3) abstract of the article and (4)
gene mention containing sentences in the article

GeneRIF
Score (4
features)

Continuous Similarity* between this gene’s GeneRIF annotations, and (1) all
the text of the article, (2) title of the article, (3) abstract of the
article and (4) gene mention containing sentences in the article

Lookup (5
features)

Binary Look up the presence of (1) gene’s species in article (uses LIN-
NAEUS and regular expression), (2) gene’s map location term in
article, (3, 4, 5) gene’s mention in (3) title, (4) abstract and (5)
figure text extracted using an optical character recognition soft-
ware

Count (7 fea-
tures)

Integer Counts the number of (1) gene’s GO annotations, (2) gene’s
GeneRIF annotations, (3) gene’s interacting genes, (4) gene’s in-
teracting genes mentioned in article, (5) times gene was men-
tioned, and (6, 7) gene’s species’ annotation in (6) BioGRID and
(7) GeneRIF

String Simi-
larity (4 fea-
tures)

Continuous Calculates the string similarity between the gene’s mention in arti-
cle and gene’s official symbol and any synonym using edit distance
and Jaro-Winkler measure

* Similarity between texts was calculated using LingPipe

The organizers of BioCreative III released gold annotation for 50 most difficult articles from the 507

articles test data. On these 50 articles, our system obtained a TAP-5, TAP-10 and TAP-20 scores of 0.14,

0.15 and 0.16, respectively.
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Interactive Task (IAT)

We developed a demonstration system-GeneIR, that performs both gene indexing and gene oriented

document retrieval for the IAT in BioCreative III.

Gene Indexing

We first identified and normalized all gene mentions in a given article provided by the user. We used the

gene normalization system we developed for the GN task, GeneNorm, to return all gene IDs (Entrez Gene

ID) mentioned in an article. We extracted the frequency with which the gene was mentioned in the article,

and checked if the gene was mentioned in the title or the abstract of the article.

To score the centrality of each gene, we trained a machine learning classifier. To train this classifier, we

used the important genes in the GN training data as positive instances, and the remaining genes as

negative instances. As features for the classifier, we determined if the gene appears in the title or abstract

of the article, the number of times it appears in the article, the number of Gene Ontology (GO) and

GeneRIF annotations associated with the gene, and the GeneRIF species popularity of the gene (see Table

1 for species popularity).

Retrieving

For the retrieval sub-task, we indexed all articles in the data source. We indexed the title, abstract,

full-text, figure legend and references’ text separately. If the user enters a gene name, it is treated as a

query to search the article index. To account for gene name variations (for example, BRCA1 vs BRCA-1),

a gene name variation generator was implemented to expand the gene name query. If the user enters a gene

id, the system obtains the gene’s symbol, synonyms and their variations as query to retrieve relevant

documents.

User Interface

A user interface for our system is available at http://autumn.ims.uwm.edu:8080/biocreative3iat/. We

provide two search boxes, one to obtain articles based on gene name or gene’s Entrez ID, the other to

obtain all genes normalized for an article of a given PMC ID. From the gene results or article results, one

can view other genes in an article or other articles containing a gene, respectively. When viewing the gene

normalizations for an article, the genes can be sorted by centrality (default), presence in title and abstract,
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or the frequency with which they appear in the article. Users can view all genes or an individual gene

highlighted in the article. Also, genes can be added or deleted for a given article.

Protein-Protein Interaction Task (PPI)
Article Classification Task (ACT)

For ACT we trained supervised machine learning algorithms Support Vector Machines (SVMs) and

multinomial Naive Bayes (NB). All text was normalized by lowercasing, removing punctuations, stemming

words and removing numbers. We used unigrams (individual words) and bigrams (two consecutive words)

as features for the machine learning classifiers. We sorted features by their mutual information score and

trained the classifiers by using either the top 400 or the top 1000 features.

We were provided with a 2280 articles training data and a 4000 articles development data by the

BioCreative III organizers. Positive and negative instances were evenly distributed in the training data

whereas in the development data, there were 682 positive instances and 3318 negative instances. The

distribution of positive and negative instances in the development data was similar to the distribution in

the test data. For our submission, we trained the classifier on development data only or a combination of

training and development data. Our hypothesis was that training on development data would allow the

classifier to learn the distribution of instances in the test data, whereas adding the training data would

provide more instances for learning, albeit at cost of a slightly skewed distribution.

On evaluating our ACT system on the test data, we found that the best accuracy of 88% was obtained by

a SVM classifier trainined on development data only using the top 400 unigrams and bigrams features.

The best AUC value of 62% was attained by a NB classifier trained on the combination of training and

development data using the top 400 unigram and bigram features.

Interaction Methods Task (IMT)

The IMT involved mapping nodes in PSI-MI ontology to articles. For each ontology node, we obtained the

concept name and its synonyms. We manually added synonyms for some ontology nodes, such as “anti bait

immunoprecipitation” for “anti bait coimmunoprecipitation” and “radioligand binding” for “saturation

binding”. A keyword for each ontology node was manually extracted by the first author, for example,

“coimmunoprecipitation” for “anti bait coimmunoprecipitation”. We extracted unigrams and bigrams from

each node’s concept name and synonyms. For each unigram and bigram, we calculated the mutual
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information score and chi-square value using the training data.

We approached IMT as a classification problem, where we try to determine if an article-ontology node pair

is positive or negative. We identified 21 features (as listed in Table 2) and scored those features for each

article-ontology node pair. We then trained machine learning classifiers Random Forest, Random

Committee, Naive Bayes Tree and J48 to predict the label for each article-ontology node pair.

Evaluation on the test data indicated the best F1-score of 54% was attained by a Random Forest classifier.

Table 2 - Features used for IMT
Feature Feature

type
Description

Perfect match (2
features)

Binary For each node, checks if (1) the concept name or (2) any synonym
name appears in the article

Term match (4 fea-
tures)

Binary For each node, checks if any unigram/bigram in the node’s (1, 2)
concept name or (3, 4) synonyms appears in the article

Term match ratio
(4 features)

Continuous For each node, the ratio unigram/bigram in the node’s (1, 2)
concept name or (3, 4) synonyms that appears in the article

Matched terms
mutual information
sum (4 features)

Continuous Sum of mutual information score of each matching uni-
gram/bigram in the node’s (1, 2) concept name or (3, 4) any
synonym.

Matched term chi-
squared sum (4 fea-
tures)

Continuous Sum of chi-squared value of each matching unigram/bigram in the
node’s (1, 2) concept name or (3, 4) any synonym.

Node popularity Integer The number of times this node is annotated in the training data
Regex annotation Binary Checks if the regular expression-based annotator that was pro-

vided by the organizers of BioCreative III annotates the current
article-ontology node pair

Keyword presence Binary Checks if the keyword for the ontology node appears in the article
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Abstract

Background: The interactive demonstration task (IAT) for the BioCreative III Challenge focused on gene indexing
and retrieval using full text articles. The goal of the indexing subtask was to identify the unique identifiers for gene
mentions in selected PMC articles while the goal of the retrieval subtask was to identify relevant PMC documents
for a selected gene.

Results: The IAT task of gene indexing and retrieval using full text articles was based on our BioCreative III
gene normalization system. For the indexing subtask, several features that would assist a curation workflow were
implemented. This includes display of full text highlighted with selected gene and species names, gene names
normalized to single Entrez Gene identifiers, links from identifiers to standard databases and a ranking of genes
based on the frequency of occurrence of a gene mention in a document. For the retrieval subtask a ranked list of
PMCIDs based on the frequency of a selected gene mention in an article is returned.

Conclusions: Evaluations for this task was based on the feedback provided by the BioCreative User Advisory Group
(UAG). The system for the interactive demonstration task for gene indexing and retrieval is available online at:
http://siena.cs.uiowa.edu/∼sbhttcha/.

Background
Previous BioCreative challenges [1,2] included tasks
like gene normalization which represents a simpli-
fication of the real curation task. In the real pro-
cess, the curator generally works from the full text
of the articles, and identifies only particular kinds
of genes of interest (for example, only genes for a
specific organisms or only genes that have experi-
mental evidence in the article). The gene indexing

and retrieval of full-text articles in BioCreative III
challenge [3] was closer to real curation pipeline. Our
IAT system, which was based on our BioCreative III
gene normalization system does cross-species gene
indexing and retrieval. Besides the ambiguity in
gene names, cross-species indexing and retrieval task
is a challenging task as different species follow dif-
ferent naming conventions and are used in varied
ways across the literature. Hence accurate identifi-
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cation and normalization of species names to unique
taxonomy identifiers is pertinent to the cross-species
gene normalization. Species names also have inher-
ent ambiguities when used in abbreviated forms (as
in C. elegans which refers to 41 different species in
the NCBI Taxonomy) and are often referred to indi-
rectly (as in patient or women for human).

Results and Discussion
The IAT task had two subtasks, namely, indexing
and retrieval. The home page of our online system
gives users a choice between these two tasks. For the
Indexing task a user can either enter a PMCID (from
the BioCreative training set) or select from a list of
PMCIDs. For the Retrieval task an user can either
enter a gene name or select from a list of gene names
which are displayed as an alphabetically sorted list.

Indexing

For the indexing subtask we designed an interface
where the full-text of an user-selected article is dis-
played in the left frame of the web page. In the right
frame the gene names, species names, normalized
Taxonomy IDs [4], normalized Entrez Gene IDs [5]
and frequency count of the gene names correspond-
ing to the article are displayed. The frequency count
is based on the count of the gene names as identified
by the gene name taggers. The results are initially
sorted based on the gene mention frequencies. How-
ever, the user can sort the results on individual fields.
Gene and species names are highlighted in yellow
by selecting individual gene and species names from
the right frame. The species identifiers and normal-
ized gene identifiers are linked to the corresponding
records in the NCBI Taxonomy database and Entrez
Gene, respectively. Figure 1 shows a screen-shot of
the indexing system.

Retrieval

For the retrieval subtask we designed an interface
which displays a list of relevant PMCIDs and fre-
quency per article for a selected gene name. The
PMCIDs and frequencies can be sorted in ascending
or descending orders. Clicking on a PMCID displays
the full text of an article. Figure 2 shows a screen-
shot of the retrieval system.

Conclusions
In this paper we have presented an interactive
demonstration task for gene indexing and retrieval.
The system is based on our BioCreative III gene nor-
malization system. Improving the gene normaliza-
tion strategy is inherent to improving the IAT sys-
tem performance. In addition to this, curation pro-
cess can be facilitated by the integration of certain
features to the system like specifying article sections
corresponding to a gene/protein name since curators
are mostly interested in gene mentions appearing in
certain sections of an article where experimental ev-
idence is available.

Methods
The IAT task consisted of a single large dataset of
over 17,000 PMC articles. This served as both the
training and testing set. These file were provided
in XML format. The following steps follow directly
from our BioCreative III gene normalization system.
The XML files were stripped of XML tags and XML
codes for Greek symbols were replaced with corre-
sponding Greek names. Since no species informa-
tion was provided we used LINNAEUS [6], a species
name identification system for biomedical articles.
Modifications were made to the LINNAEUS species
dictionary to include the first names of model organ-
isms (which are often referred to in the literature on
a first name basis) for the respective taxon identifiers
of those organism. For example, Arabidopsis (for
model organism Arabidopsis thaliana) was added to
species identifier 3702, etc. The gene/protein names
were identified using ABNER [7] (trained on NLPBA
corpus) and LingPipe [8] (trained on GENIA cor-
pus) gene name taggers. Gene mentions containing
words like antibody, Ab, antigen, etc. were removed
from the final list. The species taxon identifiers and
gene mention pairs were associated based on their
proximity and these pairs were used to query Entrez
gene database (querying being limited to official gene
name, official symbol and synonyms). The first En-
trez Gene identifier, if found, was considered to be
the unique for that gene mention. Several variations
of window size for proximity and gene-species asso-
ciations were tried to get the optimal results on the
training set.

The input forms were designed in HTML/CSS/Java-
Script and PostgreSQL was used as the backend
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database. Requests from the input form are pro-
cessed on the web server using CGI scripts.
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Figures

Figure 1: IAT Indexing Task — The screen-shot shows a sample output for the indexing task. The full-text
of the selected article is displayed in the left frame while the gene name, species name, species ID, Entrez
Gene ID and Frequency are displayed in the right frame of the web page.

Figure 2: IAT Retrieval Task — The screen-shot shows a sample output for the retrieval task. The
PMCIDs and Frequencies for a selected gene name are displayed in the left frame while the full-text of a
selected PMCID is displayed in the right frame of the web page.
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Abstract

Background: With the increasing availability of full text articles through open access publishing, the scope of
biomedical text mining is no longer limited to the abstracts of research literature. Cross-species gene normalization
using full-text articles is an important step towards the use of full text articles in the area of biomedical text-mining
research. This was one of the goals of the BioCreative III Challenge.

Results: In this paper, we present a gene normalization strategy based on the identification of gene and species
entities in full text articles and their association. ABNER and LingPipe were used as gene name taggers and
LINNAEUS was used for species identification. To associate a species name with a gene name, proximity of
the gene and species names was considered. Various window sizes for character boundaries were chosen for this
proximity-based association. Based on these associations, a unique Entrez gene identifier, if found, was returned
for each gene mentioned in an article.

Conclusions: For the test set, our estimation shows best results with a strategy that considers only the Entrez
Gene identifiers found in common by separate runs using ABNER and LingPipe as gene name taggers. This
strategy used a 1000 character boundary window for gene-species name association. The highest TAP-k (k =
20) score returned by our system was 0.1662 for this strategy (Run 2).

Background

The volume of biomedical literature is expanding
exponentially. Text mining in the biomedical lit-
erature has been widely applied to several biologi-
cal problems including gene mention identification,
gene name normalization, protein-protein interac-
tion, gene-protein interaction, gene-drug interaction
and so on. However, little research is available on
biomedical text-mining using full-text articles as op-

posed to article abstracts [1]. The 3rd Critical As-
sessment for Information Extraction in Biology chal-
lenge, BioCreative III [2] took the research in that di-
rection with the use of full-text articles in the cross-
species gene normalization (GN) task.

The goal of the gene normalization (GN) task is to
determine the unique identifiers like Entrez Gene
IDs [3, 4] of genes and gene products mentioned in
scientific literature. There are several challenges to
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gene normalization. First, genes are often referred to
in descriptive terms instead of precise gene names or
symbols as in ‘v-rel reticuloendotheliosis viral onco-
gene homolog A (avian)’ for the gene name ‘Rela’
(Entrez Gene ID: 19697). This makes the associa-
tion of a gene mention with a correct identifier diffi-
cult. Secondly, gene mentions are highly ambiguous.
For example, the gene name ‘RRM1’ returns 44 re-
sults in Entrez Gene database. Out of these results,
‘RRM1’ gene of Human has an Entrez Gene ID of
6240 while ‘RRM1’ gene of Mouse has an Entrez
Gene ID of 20133. It is to be noted here that the
specific combination of a gene/protein mention and
a species identifier returns an unique identifier. Thus
in an article the choice of correct identifier (Entrez
Gene ID) depends on the context i.e. the species
indicated (sometimes implicitly) when the gene is
discussed. A third problem is that species names
can also be referred to in an article indirectly like
patient, women, etc. which actually refer to the
same species identifier as human (NCBI Taxonomy
ID: 9606). Also shorthand species names like C. el-
egans refer to 41 species in the NCBI Taxonomy.
These problems complicate the challenge of deter-
mining the correct identifier for a given mention of
a gene in an article.

Related Work

Hakenberg et al. [5] proposed the first publicly
available inter-species gene normalization technique
called GNAT. For gene name recognition they used
a set of gene dictionaries for all candidate species
and coupled that with gene name recognition by
BANNER [6], a CRF-based tagger. Species names
were identified either by using AliBaba [7] or from
the cell-line information. Gene and species names
were associated using using various criteria such as
compound nouns or phrases having both gene and
species terms, etc. Background information from
text was used to select a unique identifier from a list
of candidate identifiers. Neves et al. [8] proposed
an open-source Java based gene/protein tagger and
normalization system, Moara, which uses a train-
able CBR-Tagger for gene/protein identification and
ML-Normalization for the normalization task. Re-
cently, a species-based gene normalization strategy
had been proposed by Verspoor et al. [9], which is
similar to our approach. Their system performs a
dictionary-based gene/protein and species recogni-
tion followed by gene/protein name ambiguity res-

olution. Proteins are associated to species using
several strategies for ambiguity resolution. A con-
fidence score is given to these normalized proteins
based on the method used for species association.

Results and Discussion

BioCreative III introduced a new evaluation met-
ric called TAP-k for the GN evaluations. TAP-k is
closely related to the widely used average precision
measure in information retrieval. The idea behind
the method is that, if a retrieval system generates
outputs which are ranked in the descending order of
some confidence score, then it might be useful to cut-
off the retrieval at some fixed threshold score. In case
there are true positives below a certain threshold, a
precision of 0 is assigned while calculating the aver-
age precision over all relevant records. The threshold
is chosen as the largest score that produces a median
of k false positive retrievals over the set of queries. A
more detailed description of the method is available
here [10]. The values of k chosen for BioCreative III
evaluations were 5, 10 and 20.

GN task evaluations

For the GN task we experimented with two widely-
used gene name taggers namely ABNER [11] and
LingPipe [12] while LINNAEUS [13] was used for
species name identification. Various combinations
of these taggers and different confidence scores were
used to set up various experiments. Here we present
a brief description and evaluation of those experi-
ments which were used in our BioCreative test sub-
missions.

Run 1: Conditional assignment of majority species

In this strategy, we consider the count of the species
mentions in an article. A gene is associated with a
species if it is found within the specified character
window. Here LingPipe was used as the gene name
tagger. If an association is not found in the given
window then the species occurring most frequently
is associated with the gene name. Confidence was
calculated using the count of majority species men-
tion divided by the total count of all species names
appearing in that article.
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Run 2: Run 1 strategy with LingPipe/ABNER inter-
section

For this run we executed separate runs using AB-
NER and LingPipe with a similar strategy as in Run
1. An intersection of the associations produced by
these two systems was considered for the test set
submission.

Run 3: ABNER ‘intersection’ LingPipe run

For this run, gene mentions were tagged by ABNER
and LingPipe separately. For each gene name the
system searches for species names within a specified
character window. A confidence score is calculated
based on the proximity of the associated gene and
species names. This confidence can in turn be used
as a cut-off threshold score for the associations. Here
we consider only the gene-species associations that
are identified by both systems. For such overlapping
associations, the higher confidence score of the two
was retained.

According to our estimates, the highest TAP-k (k
= 20) score achieved was 0.166 for the Run 2 strat-
egy. The scores for TAP-k (k = 5, 10) for this run
were 0.0829 and 0.1161 respectively. For the Run 1,
the TAP-k (k = 5, 10, 20) scores were 0.0577, 0.0726
and 0.1106 respectively. For the Run 3 run the
scores were 0.0830, 0.1091 and 0.1387 respectively.
These results are summarized in Table 1. Besides
the strategies described above we experimented with
a some other strategies where ABNER and LingPipe
were used separately or together (union) as gene tag-
gers. However, the performance of these strategies
was worse compared to the three strategies chosen
for test set submission.

Conclusions
In this paper we have presented a cross-species gene
normalization system from full-text PMC articles.
We have experimented with various strategies for
gene name identification and gene-species name as-
sociations under varying conditions. The perfor-
mance of the different strategies suggest that the
idea of identification of gene and species entities and
association of these entities are valuable for gene
name normalization. Our experiments showed that

associations that considered larger character bound-
ary windows proved to be more effective than smaller
character boundary windows. In case of lack of as-
sociation in a smaller window, the assignment of
majority species to gene names also showed per-
formance improvement. Based on the results ob-
tained from our study, we believe that the perfor-
mance of the gene normalization system can be im-
proved further by the inclusion of external knowl-
edge resources. The gene mention step can be bro-
ken down into a two step process – a dictionary
based gene/protein identification followed by gene
mention identification by gene name taggers. This
would most likely improve both the precision and re-
call of our system. Post-submission we found that a
stricter (i.e. field limited) querying of Entrez Gene
for the gene-species associations reduces the number
of false positives. Also, a better selection of terms
for the stop list and filtering of gene names to re-
move potential tagging errors will help in improving
the system performance.

Methods
Data

The training data for BioCreative III gene normal-
ization task consisted of two types of data. One set
consisted of a small number (32) of PubMed Central
(PMC) articles fully annotated by a group of trained
and experienced curators. The second set consisted
of a larger number (500) of partially annotated arti-
cles. For each of these training sets, a list of Entrez
Gene IDs corresponding to each document were pro-
vided. The test set comprised of over 500 full-text
articles, 50 of which were chosen for evaluations.

Conversion of XML files to text files

The full-text XML files provided for the GN task
were stripped off the XML tags and converted to
plain-text articles. Following the annotation guide-
lines from BioCreative III organizers, gene men-
tions from certain sections of the text had to be
omitted from the normalization process. Hence,
sections like References/Bibliography, Supplemen-
tary Materials/Supporting Information and Meth-
ods/Materials sections were removed from the text
used for further processing. Also XML codes for
Greek symbols like alpha, beta, etc. were replaced
with corresponding Greek names. The resulting text
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Strategy Gene Tagger Character Boundary TAP-5 TAP-10 TAP-20

Run 1 LingPipe 1000 0.0577 0.0726 0.1106

Run 2 ABNER/LingPipe 1000 0.0829 0.1161 0.1662

Run 3 ABNER/LingPipe 10000 0.0830 0.1091 0.1387

Table 1: Evaluations of Test Set runs

was used in the subsequent steps.

Gene/Protein identification

In this step we needed to identify the gene/protein
mentions in the text. According to the annotation
guidelines, all gene names including those mentioned
in passing or only once in an article had to be iden-
tified. Two CRF-based taggers, ABNER and Ling-
Pipe were used for this purpose. ABNER (trained on
NLPBA corpus) and LingPipe (trained on GENIA
corpus) have been used extensively for gene men-
tion recognition in previous BioCreative tasks and
have shown consistently high performance. The gene
mentions identified by ABNER and LingPipe were
filtered using a stop list. The stop list is also gov-
erned by the annotation guidelines from BioCreative
organizers. Following the guidelines, we remove the
gene mentions which contains words like antibody,
Ab, antigen, immunoglobulin, IgG, reagent, sub-
strate, enzyme, complex, family, super-family, tran-
scription factors, etc. However, certain condensed
gene names mentioned as a range had to be ex-
panded to include constituent names. For example,
Xnr1-Xnr6 (or Xnr1-6) and Cdk1/2 were expanded
to Xnr1, Xnr2, ....., Xnr6 and Cdk1 and Cdk2, re-
spectively.

Species name identification

Species name identification was very important
for our system. We used an open-source species
name recognition and normalization software sys-
tem, LINNAEUS, for this purpose. LINNAEUS
returns a normalized list of species identifiers for
species names identified in the article. The LIN-
NAEUS species dictionary was modified to include
first names of model organisms. For example we
added Arabidopsis (for model organism Arabidop-
sis thaliana) to species identifier 3702, Xenopus (for
model organism Xenopus laevis ) to species identifier
8355, etc. We also added new entries to the species
dictionary for widely used strains of organisms such

as Escherichia coli K-12, Saccharomyces cerevisiae
S288c, etc.

Gene-species name association
The gene mentions and the species names identified
were associated based on proximity and character
boundary windows were used for their association
(e.g. gene and species mention occurring within 1000
characters of each other in Run1 and Run 2). Three
types of gene-species associations (discussed earlier)
were considered. A confidence score, measured on a
scale of 0.0 – 1.0 based on the distance between the
gene and the species names was calculated depend-
ing on the selected strategy.

Entrez Gene ID retrieval
For each of the gene species associations, we search
Entrez Gene for a unique identifier for that gene
mention. The first Entrez Gene ID retrieved from
this search was returned as the unique identifier for
that gene name. Further analysis after submission
revealed that limiting the search on Entrez Gene to
fields like official gene/protein name, official symbol
and synonyms proved to be beneficial.
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Abstract 
In this paper we present our approaches in identifying protein-protein interaction (PPI) articles 
and specific protein-protein interaction methods in biomedical text articles during our 
participation in the PPI task of BioCreative Challenge 2010. The first PPI task required 
classifying whether a given article contains relevant information for protein-protein interaction 
study purposes. Our approach to this task included exploitation of different textual feature types 
in a wide margin classifier setting. The second PPI task required identifying which protein-
protein interaction methods were relevant for a given article. Our approach to this task included 
manually perfected rules, regular expressions and heuristics, custom trained supervised models, 
and learning to rank methods.  

Article classification task  
The article classification task (ACT) starts with a list of PubMed records, and aims at 
indentifying which records contain descriptions indicating that that article is relevant for protein-
protein interaction curation purposes.   

Data 
Training data for BioCreative III ACT task contained an equal number of positive and negative 
articles, but the development and test datasets were imbalanced. In addition, the negative articles 
provided in the training dataset were not sufficiently representative of the non-PPI relevant 
articles. This was verified when the model learned on the training dataset did not exhibit the 
same performance when tested on the development dataset, and vice-versa. In response to these 
issues, we enriched our training dataset by collecting all data provided for this task from 
BioCreative II and BioCreative II.5 challenges. Furthermore, we used the related articles 
function of PubMed to extract three closest articles to each article labeled as negative in our 
dataset. After removing duplicates, this process provided us with 5,138 positive and 7,754 
negative articles.  

Methods 
As our principal learner, we selected a wide margin classifier similar to a linear support vector 
machine, which have been proven to handle sparse high dimension data, and have been shown to 
work for various text classification tasks [6]. Different from SVM, our learner was based on the 
modified Huber loss function [7]. In comparison, this function is differentiable and the speed of 
optimization is faster. Here we describe the different feature models we explored for classifying 
an article that contained protein-protein interaction mentions.  
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Bag-of-words features model. Each article was represented as a vector of words found in its 
title and abstract. We did not perform stemming, because un-stemmed features provided better 
results for this task. With respect to class imbalance, we bootstrapped the negative documents by 
sampling, with replacement, so that each negative article was counted at least six times.  
Bigram features model. Each article was represented as a vector of two consecutive words 
found in its title and abstract in the same sentence. Stop-words were included.  
Co-occurring features model. Each article was represented as a vector of two co-occurring 
words. This model extended the bigram model to including all the words which co-occurred in 
the same sentence. Word position within the sentence was not taken into consideration. Stop-
words were included.  Stemming was performed in order to reduce the resulting number of 
different features.   
String features model. Each article was represented as a vector of character strings of length 8. 
A sliding window of eight characters within each sentence generated all unique strings.      
K-nearest neighbors method. For a given article in the test set, we computed the similarity to 
articles in the training dataset using a vector space model with TF-IDF scheme [5]. The test 
article was scored based on the 10 nearest neighbors’ classification labels, and their collective 
pair-wise similarity score to the test article. 
String matching rules. This method used a set of hand-crafted rules to check whether any 
signature protein-protein interaction terms could be found in the title or abstract of a given 
article. This method simply counted the number of matched rules.    
Feature selection method. An iterative feature selection algorithm was applied to each set of 
features described above. For each set of features, we trained the wide margin classifier and 
noted their weights. We averaged all the features weights using five-fold cross-validation and 
eliminated 1000 features whose weights were closest to zero. The classifier was trained again on 
the remaining features. After every step of the feature selection process, we applied the learned 
model to the development dataset and noted the performance. Finally, we selected 15,000 
features for the bag-of-words features model, and 10,000 features for each of the bigram, co-
occurring and string feature models, respectively.  
Merging decisions method. Two different decision methods were developed to combine the 
different models applied to the ACT test dataset. First, the strict decision making schema 
assigned an article to the positive class only if all the models participating in the decision making 
had done so. Second, the log-linear classifier schema combined the individual score outputs for 
different models participating the decision making in a weighted fashion. Finally, an article was 
assigned to the positive class, only if the combined score exceeded an empirically decided 
threshold. 

Results  
We submitted four runs to the ACT task based on the methods presented above. Our first run 
consisted of the bag of words model after feature selection. Our second run consisted of merging 
the bigram features model, the co-occurrence features model and the string features model, prior 
to feature selection, using the strict decision making schema. Our third run was produced similar 
to run two, but after feature selection was applied to each of the three models individually.  
Finally, our forth run used the log-linear classifier to combine the bag-of-words, bigram, string 
matching and kNN models. Our results are presented in Table 1 (development dataset) and Table 
2 (test set, as reported by challenge organizers) 
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Table 1 Overall performance of our submitted runs, on the development set 

  TP FP FN Sensitivity Specificity Accuracy Matthew’s AUC iP/R 

Run1 310 95 372 0.455 0.971 0.883 0.531 0.673 
Run2 333 169 349 0.488 0.949 0.871 0.497 0.612 
Run3 646 439 36 0.947 0.868 0.881 0.689 0.887 
Run4 491 880 191 0.720 0.735 0.732 0.360 0.549 

 
 
Table 2  Overall performance of our submitted runs, on the test set, as reported by the challenge organizers 

  TP FP FN Sensitivity Specificity Accuracy Matthew’s AUC iP/R 

Run1 398 162 512 0.437 0.968 0.888 0.500 0.616 
Run2 517 311 393 0.568 0.939 0.883 0.527 0.619 
Run3 659 881 251 0.724 0.827 0.811 0.453 0.603 
Run4 694 873 216 0.763 0.829 0.819 0.483 0.637 

 
 
Interaction method task  
The interaction method task (IMT) aims at determining the PPI technique(s) to support the 
interactions found in the article. Using the standardized terminology, a ranked list of protein-
protein interaction methods taken from the PSI-MI ontology are selected and assigned to 
biomedical articles.  
 
Data 
Results from BioCreative II showed that processing full text articles, in particular Material and 
Method section, was useful for this task [3,4]. In accordance, for each document in the training 
dataset of BioCreative III, we extracted: title, abstract, methods/materials, and figure captions 
sections. Adding the articles of BioCreative II and additional data obtained from the MINT 
database [2] produced a set of 3,765 articles annotated with PSI-MI codes. We refer to this set as 
“the reference collection”. Full text was available for a subset of the articles in the reference 
collection, while title and abstract text was available for all articles. 

Methods 
Problems involving automatic assignment of controlled vocabulary terms to biomedical articles, 
such as MeSH indexing, have been shown to benefit from combination of natural language 
processing and machine learning methods [1]. As such, we focused our efforts on developing 
text analysis and machine learning methods that could be combined for optimal performance. 
Pattern matching method. A pattern matching algorithm relying on PSI-MI terms and 
synonyms was developed and applied to the different types of text obtained for each article: full 
text, material and methods text and figure caption text. Each code was extracted with a score 
based on the number of patterns that were found to identify it.  
K nearest neighbours method. For a given article requiring assignment of PSI-MI codes, we 
computed the similarity to articles in the reference collection using a vector space model with 
TF-IDF scheme [5] and computed a score for each PSI-MI code assigned to at least one of the k 
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nearest neighbours. The optimal value of k and a score threshold for selecting a given PSI-MI 
code were determined by empirical experiments on the BC3 training set. 
Mapping MeSH to PSI-MI method. Biomedical articles of interest for protein-protein 
interaction are usually published in journals indexed in MEDLINE. As such, they are assigned 
MeSH indexing terms. Because there are no direct links between PSI-MI and MeSH, we 
manually reviewed the PSI-MI codes from the training set and developed MeSH to PSI-MI 
mappings. For example, PSI-MI code MI:0114 (x-ray crystallography) was mapped to the main 
heading “Crystallography, X-Ray” and code MI:0077 (nuclear magnetic resonance) was mapped 
to “Magnetic Resonance Spectroscopy”. About 74% of PSI-MI codes did not have any MeSH 
equivalents e.g., MI:0415 (enzymatic study). This method provided a binary indication on 
whether a given code could be obtained from mapping MeSH indexing of the article to PSI-MI.  
Merging methods. The analysis of results yielded by each of the methods described above 
showed that per-code performance varied significantly from code to code within a method and 
from method to method for a given code. As a result, decided to merge methods based on code 
performance on the training set. For instance, pattern matching on full text was used for code 
MI:0071, pattern matching on caption text was used for code MI:0096, k-NN was used for code 
MI:0018, MeSH mapping was used for code MI:0114 and so on. Overall, the results reflected the 
class imbalance observed in the training dataset, so we did not address this issue further.  
Learning-to-rank method. This approach consists of three steps: finding nearest neighbors, 
extracting features for each annotation and scoring each annotation with the ranking model.  
Finding nearest neighbours. First, for each article in the training set, we retrieved 50 
nearest neighboring documents using a different local implementation of the standard algorithm. 
We represented each document with a vector of top 1000 TF-IDF-weighted words per document, 
and used cosine similarity to determine the similarity between documents. We experimented 
with bag-of-words vectors extracted from full text, title and abstract, and methods and materials. 
For each representation, we evaluated the resulting model on the development dataset, and 
decided to use the methods and materials section to represent each document.   
Extracting features. Second, we collected the PSI-MI annotations for each of the 50 neighbor 
documents. This provided us with a list of PSI-MI codes, for which, we extracted these features:  

a) Query-likelihood features: The experiment code name and its synonyms are viewed as 
query. We used BM25 model to compute likelihood scores between query annotation and 
the document. The highest score is chosen as the feature value. 

b) Neighborhood features: There are two neighborhood features. The first counts the 
neighboring documents to which a candidate code was assigned. The second sums up the 
document similarity scores for each neighboring document to which the candidate code 
was attached.  

c) Synonym features: There are two binary features: the first indicates whether the name or 
synonyms of a code can be exactly found in the document; the second notes whether 
there exists a code or synonym whose individual words have all been observed in the 
document. 

d) Tf-idf features: For each code, we chose two lists of signature terms from its name and 
definition text respectively. For each list, we designed two binary features. The two 
features note whether one or more than 1/3 words in a signature term list occur in the 
document.  
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e) Key-imt- signature feature: We manually computed a set of keywords for the most 
frequent 7 codes that cover over 80% all annotations. This binary feature indicates 
whether one word in the keywords can be found in the document 

Ranking Method. Third, we assigned a score to each annotation in this list, using the ranking 
model. We used a list-wise learning-to-rank algorithm to ranking the codes. We choose ListNet 
as our ranking algorithm [9].  We submitted the top N ranked codes for each document and 
performed several experiments to find the best N.  
Extracting Evidence Text 

For each PSI-MI code assigned to the articles, evidence text had to be provided. We used the 
pattern matching method to select the evidence text among the full text sentences that contained 
a relevant pattern for the codes.  
 
Table 3 Overall performance of our submitted runs, on the development set 

  TP FP FN 

Micro 

precision 

Micro 

recall 

Micro f-

measure 

Micro 

AUC 

iP/R 

Macro 

precision 

Macro 

recall 

Macro f-

measure 

Macro 

AUC 

iP/R 

Run1 811 754 568 0.518 0.588 0.551 0.331 0.513 0.619 0.520 0.517 
Run2 691 680 688 0.504 0.501 0.503 0.270 0.458 0.520 0.456 0.447 
Run3  584 907 795 0.392 0.423 0.407 0.185 0.320 0.455 0.351 0.361 
Run4 583 904 796 0.392 0.423 0.407 0.184 0.320 0.455 0.351 0.360 
Run5 460 344 919 0.572 0.334 0.421 0.192 0.370 0.340 0.330 0.293 
 
 
Table 4  Overall performance of our submitted runs, on the test set, as reported by the challenge organizers 

  TP FP FN 

Micro 

precision 

Micro 

recall 

Micro f-

measure 

Micro 

AUC 

iP/R 

Macro 

precision 

Macro 

recall 

Macro f-

measure 

Macro 

AUC 

iP/R 

Run1 272 338 234 0.446 0.538 0.487 0.271 0.473 0.550 0.471 0.433 

Run2 289 436 238 0.399 0.548 0.462 0.270 0.412 0.546 0.442 0.432 

Run3 235 431 292 0.353 0.446 0.394 0.157 0.353 0.455 0.375 0.325 

Run4 235 430 292 0.353 0.446 0.394 0.158 0.353 0.455 0.375 0.325 

Run5 96 79 203 0.549 0.321 0.405 0.196 0.564 0.307 0.370 0.294 

Results 
We submitted five runs to the IMT task based on the methods presented above. Our first run 
consisted of merging text analysis, kNN and Mapping MeSH to PSI-MI. Our second run 
consisted of kNN code assignments selected only if text evidence was available (in this run no 
evidence text was selected randomly). Our third and four runs were produced using the Ranking 
Method. Both of these runs use features extracted from methods/materials sections of the 
documents. The difference between run 3 and run 4 lies in the number of annotations that they 
produced. Run 3 returned the top 3 annotations for each test document. Run 4 instead used a 
score threshold to decide on the number of PSI-MI codes to assign to each test document, and 
returned up to three annotations for each test document. Finally, our run 5 was optimized for 
precision by combining the results of run 2 and run 3. In this setting, for each test document, 
only the PSI-MI codes which were predicted by both methods were reported.  
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Conclusions and Discussion 
Our approaches presented here are applicable to many different text categorization tasks. For the 
ACT task, we presented a collection of feature construction methods which were able to capture 
sufficiently the PPI-relevancy of a given biomedical record. We were surprised by the fact that 
stop words were important features for all the different models, however expressions such as 
“interacts with” or “pull down” may indeed indicate a protein-protein interaction relevant record. 
This reveals that the use of sophisticated hand-crafted string matching rules as well as 
specialized name entity recognition systems should be particularly helpful in increasing the 
accuracy performance of this task. On the other hand, a higher performance can also be obtained 
with the supervised methods that we presented in this work. However, a well-represented, larger 
dataset is required for training. The biggest challenge we encountered was the fact that the 
irrelevant articles were not sufficiently representative for the entire sample space.  
For the IMT task, the problem has other pre-requisites. A specific PPI interaction method is 
generally not the main topic or focus of a research article. As such, those specific terms are 
rarely mentioned in an article’s title and abstract. Rather, these details usually appear in figure 
captions and in methods/materials sections. So full text processing is a must. Another difficulty 
is the fact that the section titles which contain this useful information are not standard among 
different publication venues. Finally, authors often use different terms when describing their 
methods than those found in the compiled controlled vocabulary lists. Mappings between the 
PPI-methods mentions in the text and their definitions in the ontology entries, as a result, require 
further study.  
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Abstract  
Medline Ranker is a fast and accurate generalist document retrieval tool based on a naïve 

Bayesian linear classifier that allows the scan of the biomedical literature for any selected 

topic. We have used this tool to classify scientific abstracts related to protein-protein 

interactions, using nouns as features, from the article classification task of the 

BioCreative 3 challenge. Even if not specialised in this topic, Medline Ranker showed a 

good performance and its outstanding speed allows its use on millions of abstracts within 

a few minutes. Availability: http://cbdm.mdc-berlin.de/tools/medlineranker/. 

Background  
Medline Ranker is a fast document retrieval tool that allows the scan of the recent 

biomedical bibliography for any selected topic. Its algorithm based on naïve Bayesian 

statistics was shown to be very precise in various benchmarks, classifying for instance 

abstracts related to radiology or Alzheimer’s disease [1]. The Medline Ranker web server 

has a simple, flexible and powerful user interface that allows the selection of a training 

set, a background set, and a test set represented as PubMed identifier (PMID) lists. Thus, 

it can be used directly to process BioCreative 3 datasets using default parameters, though 

careful parameter selection would positively impact performance.  

Medline Ranker applies a linear naïve Bayesian classifier (LNBC) using nouns as 

features with a high processing speed (approximately 18000 abstracts per seconds). Even 

if not specialised in the topic of protein-protein interactions (PPIs), for example by 

extracting gene mentions, our tool may be of interest in this task because it can scan the 

ever growing scientific literature, already composed of millions of references, in a few 
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minutes. This article describes our participation using Medline Ranker to the BioCreative 

3 abstract classification task (ACT) on PPI related abstracts (http://www.biocreative.org).  

Results  
Organisers of the BioCreative 3 ACT provided each registered team with a balanced 

training set composed of 2280 labelled abstracts (1140 positives and 1140 negatives), a 

development set of 4000 labelled abstracts (682 positives and 3318 negatives), and a test 

set of 6000 unlabelled abstracts. The training set was used to estimate the parameters, the 

development set for testing, and results of five runs of Medline Ranker on the test set 

were sent to the ACT organisers who evaluated classification performances.  

Parameter estimation 
Two parameters of Medline Ranker are relevant to the ACT: the minimal frequency of a 

selected noun into the training set, and the P-value cutoff to decide positive and negative 

predictions. Parameters were defined by observing classification performance on leave-

one-out cross validations of the training set. Nouns not found often enough may introduce 

noise in the trained statistical model [2]. To be used for classification, a noun was 

required to occur at least 9 times in the training set because this value maximized the area 

under the receiver operating characteristic curve (AROC=0.898). For each of the five 

possible runs on the test set, we selected a P-value cutoff to have a high Matthew’s 

correlation coefficient (MCC), a high recall, or a high specificity (Table 1). Maximal 

values were: MCC=0.644, recall=0.950 and precision=0.940.  

Training and results on the test set 
Five runs were done on the test set by training the algorithm with the defined parameters. 

The training defined 833 nouns including these top discriminative terms: ubiquitination, 
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hybrid, coimmunoprecipitation, and coactivator. We observed that terms related to 

protein post-translational modification (PTM) were highly ranked (ubiquitination, 

phosphorylation and sumoylation had a rank equal to 1, 8, and 48 respectively). From 

preliminary results of the five runs on the test set, the Medline Ranker tool showed a 

maximal MCC of 0.464, a maximal recall of 0.933 and a maximal precision of 0.678 

(Table 2). The mean run total duration was 1.294 seconds with a standard deviation of 

0.08 seconds. 

Discussion  
The Medline Ranker tool was used in the BioCreative 3 ACT to classify abstracts related 

to PPI. The machine learning algorithm was trained with the provided training set only 

and various runs on the test set showed sensitive, precise, or balanced results. On the one 

hand, the training set was composed of an equal number of positive and negative 

abstracts (total=2280); on the other hand, the test set was unbalanced (910 positives and 

5090 negatives). That led to differences in observed classification performances of the 

two sets (Table 1 and Table 2). Medline Ranker applies a class imbalance correction on 

the training set [1, 3], but not on the test set where labels are supposed to be unknown.  

Discriminative words were biased to PTM reflecting involvement of these mechanisms in 

PPI [4]. As the training set was relatively small, it may not properly sample the literature 

of PPI-relevant journals as expected.  

The running time in processing BioCreative 3 datasets was very short (8280 abstracts in 

total for an average duration of 1.294 seconds). This is mostly explained by extensive pre 

processing and storage of the whole MEDLINE. Moreover, even if not as accurate as 
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support vector machine classifiers, training a LNBC is significantly faster [5] and it 

allows our tool to process millions of abstracts with good performance in a practical time.  

Methods 
Data and algorithm for abstract classification were described previously [1]. Briefly, 

MEDLINE XML data are downloaded weekly and stored in a MySQL database. Only 

records having an English abstract are stored. After part-of-speech processing of each 

abstract, nouns are retained and stored in the database as abstract profiles. A stop word 

list is used to remove common and non meaningful terms. For classification, a LNBC is 

trained on abstract profiles and multiple occurrences of nouns in a single abstract are not 

counted [1, 5]. The algorithm returns a P-value representing the confidence in 

classification for an abstract. P-values are extrapolated from a simulation on 10 000 

randomly chosen abstracts in MEDLINE. Two equally scored abstracts are randomly 

assigned consecutive ranks. Scores for BioCreative 3 are obtained by subtracting the P-

value to 1, after truncation of the P-value to ]0,1[.  

Acknowledgements  
This project is funded within the framework of the Medical Genome Research 

Programme NGFN-Plus by the German Ministry of Education and Research (reference 

number: 01GS08170), and by the Helmholtz Alliance in Systems Biology (Germany). 

References 
1. Fontaine J, Barbosa-Silva A, Schaefer M, et al.: MedlineRanker: flexible ranking of 

biomedical literature. Nucleic acids research 2009, 37:W141-6. 

2. Suomela BP, Andrade MA: Ranking the whole MEDLINE database according to a 

large training set using text indexing. BMC bioinformatics 2005, 6:75. 

66



 

3. Poulter GL, Rubin DL, Altman RB, Seoighe C: MScanner: a classifier for retrieving 

Medline citations. BMC bioinformatics 2008, 9:108. 

4. Deribe YL, Pawson T, Dikic I: Post-translational modifications in signal 

integration. Nature Structural & Molecular Biology 2010, 17:666-672. 

5. Wilbur WJ, Kim W: The Ineffectiveness of Within - Document Term Frequency in 

Text Classification. Information retrieval 2009, 12:509-525.  

Tables 
Table 1 – Training set cross validations 
Run Recall Precision MCC P-value cutoff 

1 0.837 0.813 0.644 1.92E-01 

2 0.839 0.808 0.640 1.98E-01 

3 0.950 0.701 0.582 4.05E-01 

4 0.929 0.726 0.603 3.49E-01 

5 0.263 0.940 0.355 1.58E-02 

Table 2 – Preliminary classification results on the test set 
Run Recall Precision MCC 

1 0.769 0.416 0.460 

2 0.778 0.416 0.464 

3 0.933 0.294 0.382 

4 0.896 0.322 0.405 

5 0.180 0.678 0.301 
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Abstract  
Background 
In order to access and utilize the rich biological information in biomedical literatures, 

the recognition and normalization of name entities in literatures are necessary and 

crucial processes. In this paper, we focus on the accuracy improvement of 

normalization task. Cross species gene normalization is an important and difficult 

challenge because of the name ambiguity and variation in biological literatures. 

Results 
We propose a new approach that employs an inference network method to handle 

these issues. The proposed model utilizes the Term Frequency-Inverse Document 

Frequency (TF-IDF) weighting strategy to calculate similarity scores among tagged 

entities and database identifiers.  

Conclusions 
In conducted experiments, the proposed model attains 45.5% in F-measure and 

34.69% in TAP score on the selected 50 articles that received the most different 

results from pooled team submissions and regarded as the most difficult 50 articles. 

Background  
Text mining on biomedical data sources has been noted in the last several years, and 

then scientists dedicated to extract the information automatically and precisely. 

Evaluating the assistance of text mining on biomedical data sources has been reported 

that text mining techniques for biomedical information extraction are not completely 

reliable [1] and remain challenging to increase the assistance in this domain. In the 

biomedical text mining issue, many researchers developed a lot of automatic 

information extraction methods for the biomedical literatures. This is mainly 

consisting of two tasks. Relation extraction (RE) is one of the tasks retrieving the 
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biomedical information that identifies the relationships among biomedical entities in 

the literature. While extracting relations, each biomedical entity such as gene, protein 

or disease, etc. refers to map the biomedical entities to the database identifiers from 

articles. Cross-species gene normalization (GN), are needed in this task. GN has to 

map gene mention entities to identifiers. 

The GN task decides on the correlation species but also normalizes the database 

identifier to the gene mention and produces a list of the EntrezGene [2] identifiers of 

all species including human for all the genes/proteins mentions in full text articles. 

Inter-species gene mention normalization is a particular challenge associated with 

high ambiguity of gene names, particularly with regards to orthologous genes. 

Results  
We evaluate our method with the provided full-text articles in the workshop of 

Biocreative III. The statistics of annotations of full-text articles could help us to 

understand the phenomena of the statistic of the annotations in Table 1. 

We first evaluated our method by Threshold Average Precision (TAP-K) score[3]. As 

shown in Table 2, our proposed method achieves more than thirty percent on the 

Biocreative-III gene normalization task. Then, we presented the best result of the 

TAP-K experiment by F-measure in Table 3, and we obtained 45.53% of F-measure 

(53.85% precision, 39.44% recall). 

Conclusions  
In terms of the efficiency, we spent less than one minute to identify the EntrezIDs of a 

full-text article through the system on 3.4GHz server with 2GB RAM. 

We proposed a gene name normalization system for mapping a biomedical entity to 

the correct EntrezID by applying the similarity-based inference network model. This 

method can be used to solve both the term variation and ambiguity problem. 
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Furthermore, the intersection filtering method is useful for the term ambiguity 

challenge. This method can filter some ambiguous candidate EntrezIDs. Some bag of 

words may not be an obvious gene name or a gene name, but they may be some of the 

same related words of the correct EntrezID. Combining these evidences can enhance 

the inference capability. 

Experimental results show that our method archives a 34.69% TAP score, 53.85% 

precision, 39.44% recall, and 45.53% F-measure by the evaluation data provided by 

Biocreative III GN task. 

Methods 
For this gene normalization task, we develop an inference network model shown as 

the Figure 1. The four modules of this model would be discussed below. 

Name entity recognition module (NER) 
The gene name entity tagging tool used in our system is AIIA-GMT[4]. It is a XML-

RPC client of a web-service server that provides the service to recognize named 

entities in the biomedical articles. 

Due to the varied naming styles of gene names in the biomedical literatures, the 

tagged entity cannot always exactly match a gene name in the dictionary. To address 

this issue, we therefore proposed a post-processing module to enhance the ability of 

general-purpose recognition system. This module includes four translation rules, i.e., 

the number type, conjunctions, enumerations, and parentheses, are applied to tokenize 

gene names. 

 The first rule is the number type. Numbers of different subunit type have to be 

unified, e.g., the Roman, Arabian and Latin.  

 Secondly, entities with conjunctions needed to be split. Sometimes, two or 

more gene names were combined into one mention by several conjunctions.  

 Then, an enumeration entity with the sequential numbers means several gene 

names which belong to the same family. We separated the entity to several 

different gene names by sharing their mutual family name 

 In the last rule, abbreviations in the parentheses after a gene name, e.g., 
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“Hypoxia inducible factor 1 (HIF1)”, should be separately extracted. 

Species name entity normalization module (SNEN) 
We collect three different species name lexicons, such as  NCBI taxonomy, Cell line 

list from Wikipedia and Linnaeus corpus [5] to construct the species name lexicon. 

Every species synonyms of the lexicon are used to detect the species name by the 

dictionary-based matching. To handle two missing cases of the matching result, we 

devise two robust partial matching strategies.  

Firstly, some species entities are genus names. These entities always occur together 

with the original species name in articles, e.g., “Arabidopsis” used for “Arabidopsis 

thaliana” when the same article includes these two entities. Secondly, some species 

entities cannot be extracted exactly, because a species name may has a variety of sub 

types, e.g., “Escherichia coli strain k-12 substrain mg1655” is same to “E. coli str. k-

12 substr. mg1655”, “E. coli mg1655” and “E. coli k-12 mg1655”. These synonyms 

are too highly varied to match. For this case, the leaf type, i.e., the last subtype of the 

species, is oriented to a key identifier of this species. After the species entity 

recognition is finished, the mention species entities are used to extract all candidate 

species sub types of this one. For example, “Escherichia coli” can find 45 key 

identifiers and “mg1655” indicates to Tax_id:511145.  

Species assignation module (SA) 
After the NER and SNEN modules, each gene entity is assigned the suitable species 

ID. We applied four species ID assignment rules for Species assignation. The design 

of these rules was originated from [6], and modified in this module. The detail is as 

the following: 

 Previous species entity: the species ID assigned to a gene entity if the species 

entity appears front the gene entity. 

 Previous species letter: The first letter of the name also can be an abbreviation 

of its species, like “hZIP 2” when the original name of a human gene was 

“ZIP2”. The gene entities “ZIP2” and “hZIP2” would be assigned the same 
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species ID. 

 Species and gene entities in the same sentence: the species ID assigned to gene 

entity if the species entity appears in the same sentence of the gene entity. 

 Majority voting: the most frequently mention species ID assigned to the gene 

entity if it cannot be assigned by previous rules. 

Fast inferring module for gene name entity normalization module (NEN) 
After species assignation, the proposed fast inferring module utilized to calculate the 

inference scores for candidate EntrezIDs from articles. The design of this method was 

inspired by our previous work[7]. We used two inference estimations, i.e., the entity 

inference and the bag-of-word inference to measure the inference confidence scores. 

The gene name entities are divided to two lists, Entity list and Bag of word list. Entity 

list is collected by SR output and Bag of word list is collected by all bag of word from 

Entity list. Each record of these two lists is used to obtain candidate EntrezID (Cid). 

Before inference estimations, the Cid would be filtered by our proposed intersection 

filtering method. The two inference estimations applied TF-IDF based inference 

network to determine the possible EntrezIDs for each article. 
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Figures 
Figure 1 - Architecture of the gene name normalization method 
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Tables 
Table 1 - Statistics of annotations of full-text articles 

Number of total full-text articles 507  

Number of annotation released articles 50 

Total Gene IDs of articles of annotation released articles 1666 

Avg. Gene IDs of articles of annotation released articles 33.32 

 

Table 2. Statistical of the TAP-K 
 TAP_5 (%) TAP_10 (%) TAP_20 (%) 

1st run 31.84 34.69 34.66 

2rd run 31.47 33.66 33.66 

3nd run 32.28 34.45 34.45 

 

Table 3. Statistical of the F-measure 
Total EntrezIDs TP FP FN Precision(%) Recall(%) F-measure(%) 

1666 657 563 1009 53.85 39.44 45.53 
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Abstract

Background: Protein-protein interactions (PPIs) are important for understanding fundamental biological pro-
cesses. However, most of the information still remains in research papers. To capture the hidden PPIs, statistical
or machine learning (ML) approaches have been proposed so far. Each approach has pros and cons, and previous
work has suggested that there are certain patterns in PPI sentences.

Results: We present a PPI article classification method that automatically learns grammatical patterns on the
training corpus, and predicts unknown text based on the data-driven model. More specifically, a dependency
parser with gene mention tagging is utilized along with common term-based features. A large margin classifier
with Huber loss function is used for the core learning system. The experimental results show that our approach
outperforms ML methods using a bag-of-words (BOW) representation. Moreover, the performance changes by
selected features are analyzed.

Conclusions: We found that PPI and non-PPI articles can be more easily distinguished by using their grammatical
patterns. Also, heuristic knowledge such as gene mention detection can help improve system performance with a
limited training corpus. The proposed method stands out among ML-based methods because it shows a way of
using grammatical relations for PPI article filtering, not words- nor fixed rule-matching only.
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Table 1: The corpus information used in our experiments.

Corpus Name Positive Examples Negative Examples Total Examples
BioCreative II 3874 2298 6172
BioCreative II.5 124 1066 1190
BioCreative III Training Set 1140 1140 2280
Total Training Set 5138 4504 9642
BioCreative III Development Set 682 3318 4000

Background
A plethora of biomedical literature that describes protein-protein interaction experiments by specifying
individual interacting proteins and the corresponding interaction types exists. While many efforts have
been made to create protein interaction databases such as MINT, IntAct, and DIP, several constraints
such as the problems of manual curation of a database, the rapid growth of biomedical literature, and
newly discovered proteins make it difficult for database curators to keep up with the published information [1].

Among various approaches to mine protein-protein interaction (PPI) information, machine learning (ML)
techniques have gained popularity in recent years. In contrast to rule-based approaches, ML methods can
discover new patterns not captured in a known trigger word list. Several natural language processing (NLP)
approaches also have been proposed for PPI extraction [2–5], where PPI sentences are assumed to have
unique grammatical structures. However, the effectiveness of using parsing information has been hardly
investigated at the article classification level.

In this paper, we present a PPI article filtering method, which combines NLP strategies with ML techniques.
Our approach uses a dependency parser [6] and a gene mention detection method [7] to extract additional
features along with the word-based feature set. A large margin classifier with Huber loss function [8] is
used to learn a selected feature set from training data. When applied to BioCreative corpora, our method
outperforms ML approaches using the bag-of-words (BOW) representation. In addition, we explore the au-
tomatic induction approach for high-order features [9]. According to the experimental results, we found that
the performance of PPI article classification can be improved by utilizing grammar relations between words.
Gene mention tagging can be used to decrease the data sparseness problem and also increase classification
performance.

Methods
Dataset
The training data used in the present work is based on the examples of all BioCreative PPI article classifica-
tion tasks (Table 1). BioCreative II (6,172 abstracts), Biocreative II.5 (1,190 abstracts), and BioCreative III
training data (2,280 abstracts) were combined for training. The BioCreative III development set was used
for testing. As a result, the final training set consists of 5,138 positive and 4,504 negative examples. The
development set includes 682 positive and 3,318 negative examples.

PPI Article Filtering Procedure
Figure 1 depicts the overview of the proposed method. Input articles are first evaluated whether there
are gene/protein names in text, where a gene mention tagger trained with SemCat [7] and Entrez Gene
data is used. After gene mention detection, feature generation is performed in three different ways. One is
word-based features including multi-words, strings, and MeSH terms. The second is relation-based features,
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Figure 1: Overview of the proposed PPI article classification method.

which extracts grammar relations between words. The third is to extract meta-information by evaluating a
combination of different features.

After all feature extraction procedures, a large margin classifier with Huber loss function [8] is utilized for
learning and classifying given examples. The Huber classifier learns examples by minimizing modified Huber
loss L, where given p and y, L(p, y) = max(0, 1 − py)2 when py ≥ −1 and −4py otherwise. p is the system
output and y is the label of a data point x. A gradient descent method is used for optimizing the classifier.
Output of the classifier is the score indicating how likely an article would contain PPI information. More
detail regarding the features is explained in the following subsection.

Feature Set
Feature generation is the most important part when it comes to machine learning real-world problems. In
this paper, we investigate six feature sets added to a simple BOW representation. ‘Multi-word features’ are
bigrams and trigrams of words. ‘String features’ are strings with n characters. Huang et al. [10] suggested
this feature set to reduce the difference between distributions on training and test sets. In the experiments,
four through seven characters were tested as string features, and 6-consecutive characters produced the
best classification performance for the current dataset. ‘MeSH terms’ are also considered as one candidate
feature set. MeSH is a thesaurus for indexing and searching biomedical literature, hence this controlled
vocabulary set might be helpful for PPI article detection.

‘Grammar relation features’ indicate dependency relationships between words. Since we detect gene/protein
names beforehand, each gene or protein name can be handled as a word. Our assumption here is that PPI
information can be revealed by analyzing word-to-word relationships. The C&C CCG parser [6] is used to
obtain dependency relations in the proposed method. ‘Gene tagging’ is a further step in utilizing grammar
relation features. The purpose of PPI article classification is to identify whether an article contains PPI
information, not a gene/protein name itself. Therefore, in a dependency relationship, the particular protein
named is not important. The gene tagging strategy simply exchanges a detected gene/protein word for a
special tag, called ‘PTNWORD’. By doing this, the complexity of relationship features is decreased, while
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… ATRAP interacts with the angiotensin II type 1 receptor. …
gene mention

Grammar Relations (dobj with the angiotensin ii type 1 receptor) (iobj interact with) (ncsubj interact atrap)

MeSH Terms (enzyme) (activation) (protein) (binding) … (enzyme activation) (activation protein) …
String Features (atrap ) (trap i) (rap in) (ap int) (p inte) (intera) (nterac) (teract) (eracts) …
Multi-word Features (atrap interacts) (interacts with) … (atrap interacts with) (interacts with the) …
Gene Tagging (dobj with            PTNWORD            ) (iobj interact with) (ncsubj interact PTNWORD)

relation head dependent

Figure 2: An example of feature generation. Feature values are extracted based on gene mention detection.
Grammar relations and gene tagging are relation-based features. Multi-word, string, and MeSH term features
are word-based features.

Table 2: Average precision rate for Näıve Bayes, SVM and Huber approaches. The best score is obtained
when using both BOW (bag-of-word representation) and GR (grammar relations).

Feature Set Näıve Bayes SVM Huber
BOW 0.616935 0.659952 0.664582
GR 0.628117 0.639090 0.641717
BOW + GR 0.653827 0.672551 0.677123

the relationship information remains the same. Figure 2 shows an example sentence and its word-based and
relation-based feature sets used in our approach.

‘Meta features’ are higher-order features automatically extracted by evaluating a set of feature combinations.
When system prediction is incorrect, each feature combination is evaluated by a sum of partial derivatives
of loss function terms on data points [9]. For experiments, bigram meta features were evaluated, and the
top-scoring 784 bigrams were used as meta-features in the Huber classifier.

Results
Table 2 shows the average precision rates for the BioCreative III (BC3) development set when single words
and their dependency relationships are used. ‘BOW’ means unigram features. ‘GR’ means word-relationship
features. All classifiers were optimized for giving the best scores on both training and development sets.
‘SVM’ and ‘Huber’ are the support vector machine classifier with linear kernel and the proposed large
margin classifier, respectively. As shown in the table, adding word dependencies to single word features
boosts up the performance by 3.7% in näıve Bayes classifiers. However, our Huber approach produces the
best average precision overall.

For the BioCreative ACT task, possible feature candidates were tested and analyzed. As a result, five
feature sets were further selected for better classification. Table 3 presents the performance changes by
adding those five feature types, gene tagging, multi-word features, string features, MeSH terms, and meta
features. A row shows the evaluation results when all of its above features and the feature presented in the
row are used. Our system is originally designed to give ranked results, rather than labels. However, the
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Table 3: Performance changes by adding additional features. All features contribute to the performance
in some way. However, using gene tagging and MeSH terms are more effective than using other features.
‘Word features’ are bigrams and trigrams of words. ‘String features’ are strings with six characters. ‘Meta
features’ are automatically induced meta bi-gram features.

Used Features Avg. Prec. Precision Recall F1
Baseline (BOW + GR) 0.677123 0.594005 0.639296 0.615819
+ Gene Tagging 0.689493 0.586842 0.653959 0.618585
+ Multi-word Features 0.694726 0.616379 0.629032 0.622641
+ String Features 0.696727 0.633577 0.636364 0.634967
+ MeSH Terms 0.707015 0.620739 0.640762 0.630592
+ Meta Features 0.704403 0.632737 0.674487 0.652945

system output can be binarized by using signs of the Huber classifier output. Precision, recall, and F1 scores
in the table were evaluated on these binarized results. While all features contribute to the performance in
some way, the biggest improvement is made when gene tagging and MeSH term features are introduced. In
particular, ‘Meta features’ does not improve the average precision, but it increases F1 score to 65.29%.

The proposed approach produced good scores for training and other balanced data sets, whereas it was less
successful for imbalanced data sets such as the BC3 development and test sets. Our ACT system on the
BC3 test set obtained 89.15% accuracy and 61.32% F1 score, where only some of the feature types in Tables
2 and 3 were used, i.e., grammar relations with gene tagging, bigrams of words, string features, and MeSH
terms.

Conclusions
We presented a machine learning approach combined with natural language processing techniques to classify
protein-protein interaction articles. A large margin classifier with Huber loss function is used to identify
PPI-relevant abstracts. The experimental results show that grammar relations between words help improve
the classification performance, and other features such as gene mention tagging, MeSH terms, and automatic
meta-feature selection can be effective for the PPI article filtering task. However, the imbalanced nature of
PPI vs. non-PPI articles in PubMed makes this problem much harder. Hence, exploring additional feature
sets and controlling the number of positive/negative examples for better classification remain as future work.
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The goal of gene normalization (GN) task is to link the names of gene or gene products mentioned in the

literature to standard database identifiers [1]. In the BioCreative II GN task, we realized that finding out

gene mention candidates as many as possible may be a key to implement a GN system with high recall.

We propose to use bi-directional parsing models of Conditional Random Fields (CRFs) to tag gene

mentions (any possible composition of tokens likely to be a gene mention) in a region of text. It is useful to

alleviate the requirement to manually create rule sets which may change with time. The GM module [2],

which was ranked second among twenty-one participants in BioCreative II challenge, was built on

BioCreative II gene mention tagging (GM) training corpus. In order to finding all candidates of gene

mentions, we collected twenty prediction sequences from two parsing models and transform each sequence

to one set of gene mentions from a sentence. That is, there are at most fourty sets of gene mentions that

might be produced from a single input sentence. We merged them into one set, tested on BioCreative II

GM test corpus and achieved a recall of 0.9419 in the internal test. The resulting fourty sets of gene

mentions were merged as input to the GN system.

We used BIOADI [3] to identify all pairs of abbreviation and its long form in the article. If the long form

of an abbreviation is not tagged as a gene mention in the sentence where the abbreviation pair is extracted,

the abbreviation is marked as an invalid gene mention, then has to be removed from gene mentions

extracted in GM step. We took advantage of contextual information among sentences to remove mentions

which are not referred to gene or gene products. For example, ”NAA” is a candidate gene mention tagged

from a text of “...metabolites in 5 patients: N-acetyl-aspartate (NAA), creatine...”. We can link the

definition of “NAA” to “N-acetyl-asparate” and know that “N-acetyl-asparate” is not been tagged as a

gene mention, we can ignore all ”NAA”s tagged in the sentences of the same article. It is useful to improve
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GM performance by reducing false-positives.

The rest of gene mentions will be resolved into its species and assigned a taxonomy identifier (taxid) of

NCBI Taxonomy database. We combined the Taxonomy database and LINNAEUS species dictionary [4] to

a taxid-name dictionary. We used the dictionary to resolve species word to unique taxonomy identifier of

Taxonomy database by applying a heuristic approach described in [5]. There are three rules for species

assignment. Firstly, assign the nearset taxid which is precending the gene mention. Secondly, assign the

taxid which locates in the same sentence. Lastly, assign the taxid which has the highest occurrence of the

literature.

After taxid assignment, we obtain a list of gene mentions with its taxid of each input sentence which will

be used to query Entrez Gene database to know whether there is a similar text in Entrez Gene. If no

record is found, the gene mention will be removed from the list. This step can remove most of non-gene

mention records. As a rule, we choose the longest gene mention of any region where gene mentions were

found by the GM system. This can avoid mention overlapping which might reduce the precision of GN

module. After the process, we took an expensive matching process to resolve each gene mention for its

Entrez Gene identifier candidates. We applied Lucene, with a customized tokenizer and analyzer, to speed

up the matching process. Each name of retrieved Entrez Gene record will be compiled to a regular

expression pattern for fuzzy match to the query text of gene mention. If the gene mention matches the

pattern, the gene mention is assigned to the identifier. If more than one identifier are assigned to a gene

mention, we set a heuristic rule to select one as the output.

We propose a system that can evaluate the quality of gene mention. Each GN result is assigned a

confidence score. The system is built based on logistic regression and trained on BioCreative II GM

training and test data. Each GN result will be pass to the model to evaluate the quality of its gene

mention. The logisitic regression model will return a decision value between 0 and 1. We directly used the

output value as a significance for the GN result. In the training stage, we achieved a precision of 0.643

with 0.588 recall (F-score = 0.614) on BioCreative III GN 32 full annotated articles. TAP-5, TAP-10 and

TAP-15 scores on the training articles are shown in Table 1. Table 2 is the results for three submitted runs

on the most difficult 50 articles selected by the task organizers.
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Table 1: TAP-5, -10 and -20 on 32 training articles in inside test

Run
Unweighted Average TAP
TAP-5 TAP-10 TAP-20

1 0.3123 0.4151 0.4151

Table 2: TAP-5, -10 and -20 of three submitted runs on 50 test articles

Run
Unweighted Average TAP
TAP-5 TAP-10 TAP-20

1 0.2099 0.2447 0.2447
2 0.2048 0.2420 0.2420
3 0.2061 0.2432 0.2432
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Figures
Figure 1 - System flowchart
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Background  
The goal of Gene Normalization (GN) is to link gene or gene products mentioned in 

the literature to standard database identifiers. Three main subtasks are involved in the 

GN task: gene mention recognition (GMR), dictionary matching, and disambiguation 

processing. The Intelligent Information Services Research (IISR) team (team 

identifier: #101) employed several machine learning (ML) techniques and natural 

language processing (NLP) techniques to deal with the three subtasks.  

Methods 
GMR is handled by two taggers. The first is a conditional random field (CRF)-based 

gene mention tagger, NERBio [1], which is trained on the BioCreAtIvE II gene 

mention dataset [2] with a set of features selected by a sequential forward search 

algorithm. The GMR problem is formulated as a word-by-word sequence labeling 

task, where the assigned tags delimit the boundaries of any gene names. The second 

gene mention tagger is a rule-based gene mention tagger that is developed to 

recognize genes mentioned in regular formats. For example, locus_tags are identifiers 

that are systematically applied to every gene in a genome. These tags have become 

surrogate gene names by the biological community. The prefix of a locus_tag should 

start with a letter and can contain only alpha-numeric characters. It must be at least 

three characters long. Numerals can be in the second position or later in the string (e.g. 

A1C.) The rule-based tagger use regular expressions to recognize these terms. After 

GMR, we employ several post-processing rules to identify more gene mentions [3]. 

For instance, if a parenthesized phrase follows an identified gene mention, we also 

regard the contents of the parentheses as a gene mention. The recognized gene names 

are finally examined against a blacklist to filter out false positives. 
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Dictionary-matching is able to assign candidate identifiers to each recognized gene 

mention. We use a lexicon compiled from collected gene names from Entrezgene and 

their orthographical variants. We collect gene names from the following fields: 

“official symbol”, “official full name”, “all also known as”, “names of general protein 

information”, and “prefer names of general protein information.” In addition, we have 

observed that, the identifiers of the 22 common organisms recorded in the NCBI 

Entrez Taxonomy account for 91.44% of those in the training test. Therefore, we only 

compiled gene identifiers and corresponding names from those organisms. Each 

recognized gene mention is looked up in the lexicon. If a gene mention is assigned 

two or more gene identifiers, we must determine which is more appropriate through 

disambiguation processing.  

We have constructed several rule-based classifiers which use context information, 

such as chromosome location, sequence length and so on, to determine the given 

identifier’s label. Each classification rule consists of a conjunction of attribute tests 

and a weighted score. The final disambiguation process is based on the linear 

combination of the weighted scores of the various classifiers’ predictions. 

The dataset of BioCreAtIvE III GN is assembled by full-length articles. Several 

studies have shown that scientific authors do, in the majority of cases, follow the basic 

principles of the research article structure and assign information accurately to each 

section. Each section has different characteristics which we can use to guide GN. We 

employed a multi-stage processing framework developed by the IASL-IISR interactor 

normalization task (INT) system [4] to process the articles. The following sections are 

separately processed by our GN system: title, abstract, introduction/background, 

methods, materials, result, discussion, conclusion, figure/table captions, abbreviation 

definitions, and gene names described in the tables. 
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The final step is ranking all normalized identifiers in a paper. We formulate the 

ranking problem as a classification problem, and incorporate the confidence of the 

normalized identifiers and context information as features. For an article, the 

normalized identifiers that match/miss the gold standard identifiers are treated as true 

positive (TP) and false negative (TN) instances respectively. However, training set 1 

(32 articles), which contains full annotated identifiers, contains only limited numbers 

of TP and TN instances. To increase the generality of our classification model, we use 

the training set 2 (493 articles), released by BioCreAtIvE III GN challenge, as another 

resource to bootstrap our model. We employ our GN system to process training set 2. 

The identifiers that match the gold answers are extracted as TP instances. Ambiguous 

partners of each extracted identifier are treated as TN instances. 

Table 1 summarizes all resources used by our system. 
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 Tables 
Table 1  - Resources used by Team 101. 
Team Identifier 101 
Machine Learning Technique Maximum entropy 

Conditional random field 
Support vector machine 

NLP Components GeniaTagger 
NERBio 
IASL-IISR Multi-stage Processing Framework 

External Lexical Resources NCBI Entrezgene set 
NCBI Taxonomy 
UniProt 
Cell Bank 
HyperCLDB 
Invitrogen 
HPRD 

Relevant Resources BioCreAtIvE II Gene Mention corpus 
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Abstract

Background: The experimental methods used to detect protein interactions are an essential part of the evidence
for the interaction. The BioCreative 3 PPI-IMT task consists of determining which interaction detection methods
were used to detect protein interactions in a given full text article.

Results: We created a machine-learning based system where each interaction detection method was modeled by
one classifier. The classifiers were trained and applied at the document level to provide the overall determination
of whether a given method was used in the document. However, we also apply the same classifiers at the sentence
level to determine which sentence from the document best supports the interaction detection method. The highest
macro-averaged f-measure we achieved in our cross-validation experiments was 0.6278, and the highest AUC iP/R
we achieved was 0.6217.

Background
The experimental methods used to verify protein interactions are an important factor in weighing their
reliability [1]. Determining the interaction detection methods used in an article is a term recognition task
that is therefore of strong interest to database curators. The BioCreative 3 PPI-IMT task asks the biomedical
text mining community to address this need. The task organizers provided a training set consisting of 2,035
full-text articles and a development set consisting of 587 full-text articles, all annotated at the document
level with interaction detection method concepts from the PSI-MI ontology [2]. In this paper we describe our
machine learning-based system for determining the interaction detection methods used within a document.

Methods
Our initial analysis of the IMT data suggested that a lexical approach would be difficult for several reasons.
First, interaction detection methods are often implied rather than mentioned directly. Second, even when
the method is mentioned, the mention is usually not sufficiently specific to determine the exact method used.
However, we noted some correlations between interaction detection methods and words that are unrelated
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to any of the names for the method. For example, “ultracentrifuge” is a strong indicator for MI:0028,
“cosedimentation in solution.” We also found that the average number of times each interaction detection
method appears in the training data is about 50, implying that if an interaction detection method appeared
at all, there were typically several examples of it.

We therefore hypothesized that this task might be productively modeled as a document-level classification
problem. Given the availability of sufficient document-level training data, we decided to implement and
evaluate a machine learning approach for finding interaction detection methods. As our method is based
on document-level classification, this approach is inspired more by techniques for problems such as topic
classification than by standard term and named entity recognition.

Document preprocessing
For our initial input, we utilized the text format distributed by the organizers, rather than extracting text
from the PDF files ourselves. We broke each document into sentences using the Java sentence breaker, and
each sentence was then tokenized by splitting at whitespace and punctuation. Each token was converted to
lower case and Unicode characters such as ligatures were normalized. Stop words were then removed [3] and
the remaining tokens were stemmed using the Snowball implementation of the Porter2 stemmer [4].

Machine learning setup
Our system creates one classification model for each interaction detection method. Each document anno-
tated with the given method is considered a positive instance of that method, and all other documents are
considered negative instances of the method. Each interaction detection method is modeled on its own,
without regard for any subtypes or supertypes of the method.

We use the same feature set for all classifiers, which consists of two feature types. One feature type
is binary-valued and indicates the presence or absence of a single stemmed token. The other feature type
indicates the presence or absence of a name from a single interaction detection method concept. This type
comes in two variants: strict and fuzzy. Strict lexicon membership features are binary-valued and will be
true if there is a sentence in the document that contains all of the tokens in any of the names of the detection
method being located. Fuzzy lexicon membership features are similar to strict lexicon membership except
that they are real-valued and represent the proportion of the tokens of the interaction detection method
name that the sentence contains.

The lexicon used for the lexicon membership features consisted primarily of the name, synonyms and
unique identifiers (e.g. “MI:0006”) from the PSI-MI ontology. We added additional synonyms by locating
concepts in the UMLS Metathesaurus [5] of the semantic types listed in table 1 which share a name with
a concept in the PSI-MI ontology. Once a synonymous concept was found, we added all of the names for
the UMLS concept as synonyms for the PSI-MI concept. Each name in the lexicon was preprocessed in the
same manner as the document text prior to use (i.e. stop words removed from each name, tokens converted
to lower case and stemmed).

Classification and training
We chose logistic regression as the classification model since it tends to give reasonable probability estimates.
The classifiers were trained using L1 regularization, which has been the subject of considerable interest in
recent years, largely due to the tendency it has of setting the weight of most parameters to 0. This is in
contrast to L2 regularization, which usually learns many weights that approach 0 asymptotically. Setting
most feature weights to 0 has the same effect as feature selection, and results in models that are more
compact, more interpretable, and execute faster. They should also be more robust to irrelevant features,
since the amount of training data needed rises only logarithmically in the number of irrelevant features
provided [6]. The standard L-BFGS optimization cannot handle weights with a zero value, however, and
thus cannot be used to train an L1 regularized model. Instead, we use the orthant-wise limited memory
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Table 1: UMLS Semantic Types searched for synonyms to concepts in the PSI-MI ontology, along with their
unique identifier (TUI) and the number of terms of that type in the final lexicon.

TUI Semantic Type Name Count

T059 Laboratory Procedure 23

T070 Natural Phenomenon or Process 5

T116 Amino Acid, Peptide, or Protein 4

T060 Diagnostic Procedure 4

T063 Molecular Biology Research Technique 2

T067 Phenomenon or Process 1

T121 Pharmacologic Substance 1

T074 Medical Device 1

T169 Functional Concept 1

quasi-Newton algorithm (OWL-QT) [7]. Our system uses the MALLET implementation of both logistic
regression and L1 regularized training with OWL-QT [8].

System output
We use the probability output by each classifier as the confidence for the associated interaction detection
method in the system output. This allows for easy tuning towards higher recall or higher precision by
thresholding the results. In our submitted runs, we chose the thresholds to approximate the maximum
possible value for the following measurements:

• Area under the interpolated precision / recall curve (AUC iP/R)

• F-measure, balanced

• F-measure β = 0.5, meaning that precision is weighted twice as heavily as recall

To find support statements, we used the trained classifiers by applying them to each sentence in the
document. The sentence from the document with the highest probability output by the classifier is used
as support for the corresponding interaction detection method. We found that while these classifiers were
trained at the document level, applying them at the sentence level still resulted in inferences of reasonable
quality. Objectively quantifying their accuracy was not possible, however, due to a lack of data.

System Variants
In addition to the system described to this point, which we shall call version 1, we evaluated two additional
versions. Version 2 uses L2 regularization rather than L1 regularization. Version 3 replaces the binary
features representing the presence or absence of individual tokens with the TF-IDF values for the token,
normalized so that the TF-IDF values for the document sum to one.

Evaluation
We used a variation of 10-fold cross validation for evaluation. Since the organizers stated that the test
set would more closely match the development set than the training set, we did not use any part of the
training set for evaluation. Instead, we split the development set into 10 folds, and then repeatedly trained
on the entire training set plus 9 folds of the development set, and evaluated on the remaining fold from the
development set. The results were then averaged across all 10 folds.
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Figure 1: Precision vs. Recall curves for system versions 1, 2, and 3

Table 2: Results of the cross-validation experiments. Each value is macro-averaged and represents the
maximum value achievable by selecting a cutoff threshold.

Version AUC iP/R F-measure (balanced) F-measure β = 0.5

1 0.6217 0.6278 0.6783

2 0.5730 0.5946 0.6349

3 0.6684 0.4548 0.3666

Results and Discussion
The results of the cross validation experiments can be seen in figure 1 and in table 2. Figure 1 plots the
points for the macro-averaged and interpolated precision and recall of all three system versions. Table 2 lists
the maximum performance each system version could achieve by choosing and applying a threshold to the
output.

We see that system version 1 outperforms version 2 on all measurements and at nearly all points on the
precision/recall curve. Since these versions are the same except for the choice of L1 regularization or L2

regularization, this result is empirical evidence that L1 regularization returns a better classifier. We also
see that version 1 outperforms version 3 at all points on the precision/recall curve except that the highest
recall version 1 achieves is just under 0.69, while the highest recall for version 3 is over 0.83. We conclude
that the binary representation has better overall performance, but that TF-IDF representation is better at
emphasizing high recall.
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Conclusions
The highest macro-averaged f-measure we achieved in our cross-validation experiments was 0.6278, and the
highest AUC iP/R we achieved was 0.6217. While the results are not directly comparable since different
datasets were used, we note that the best f-measure reported at the BioCreative 2 PPI-IMS task was 0.4836
[1]. We believe that document-level classification is a promising approach for finding interaction detection
methods and that it may be applicable to other term recognition problems where sufficient document-level
training data is available.

In future work we intend to explore the improvements to be gained by feature combinations, for example,
using the presence or absence of a pairs of tokens as a feature. We also intend to make better use of
the interaction method hierarchy by creating classifiers trained to determine the presence of an interaction
detection method or any of its children, rather than looking for a single method as we have done here.
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Abstract  
Identification of gene and protein names in literature and their mapping to corresponding 
gene/protein database records are critical for biomedical literature mining applications. In 
this paper, we report our gene/protein name normalization system in BioCreAtive III. We 
become aware of inherent challenge in the current normalization task and propose to 
define a sense inventory for the normalization task in the future.  

Background  
One crucial requirement for biomedical literature mining applications is the ability to 
identify gene/protein entities discussed in the text. 1-4 In general, this task can be divided 
into several steps: 1) identifying gene/protein mentions in the text, ii) associating the 
mentions to one or more potential gene/protein database records, iii) selecting the correct 
record in case of ambiguity, and iv) assembling the final list of genes/proteins in the 
document3, 5.  In the first and second BioCreAtive workshops, the gene/protein 
normalization task was defined and evaluated for single species (i.e., yeast, mouse, and 
fly for the first workshop and human for the second workshop). Generally, the first step 
of identifying gene/protein mentions in text can be classified into two groups: i) matching 
against a gene/protein terminology resource 6, 7, and ii) using a rule-based or machine 
learning name tagger. After associating gene/protein mentions to potential gene/protein 
database records, the methods to select the correct record fell into two categories: i) 
pruning the gene/protein terminology resource by removing ambiguous name entries, and 
ii) performing word sense disambiguation. Most systems assign confidence scores in this 
step and set a threshold to derive the final list of genes/proteins. Machine learning 
classifiers such as Support Vector Machine or Maximum Entropy methods can be used to 
remove likely false positives.  

For the first BioCreAtive workshop, we used a flexible dictionary-lookup method where 
the dictionary consists of synonyms obtained from online resources of genes/proteins. 
The system achieved the best recalls among the participating systems for yeast and 
mouse but the precisions were very low. We found that using an extensive list of 
synonyms could improve recall, while word sense disambiguation would be critical to 
improve the precision as also indicated by Hirschman 5. 

For the second BioCreAtive workshop, we assembled a dictionary of gene/protein 
synonyms from online resources, such as BioThesaurus and HUGO, conducted flexible 
dictionary lookup, and obtained a list of mapping pairs (Term, GeneID), where Term is a 
term in text and GeneID is the gene identifier. We then applied machine learning to 
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classify each mapping pair as positive or negative, where positives were those considered 
as appropriate mappings.  

The gene normalization task in BioCreAtive III is different from the previous workshops 
in that full-length articles, instead abstracts, are used and no species information is 
provided. This setting is rather practical for model organism database curation. 

Implementation  
Our gene/protein name normalization system is based on the existing systems and 
resources developed previously in this domain. The following describes the 
normalization process we employed.   

Preprocessing – We extracted sentences in full-length articles that were dynamically 
retrieved from PubMed Central (PMC) according to article identifiers. For each sentence, 
gene/protein mentions were detected using BioTagger-GM8a, BANNER9, and ABNER10.   

Taxonomy assignment –We sampled a collection of sentences from GeneRIF using the 
following criteria: i) at most one sentence per gene, ii) at most 5000 sentences per 
taxonomy identifier for those among the top 30 species ranked according to the number 
of genes with GeneRIF records. An SVM classifier was then constructed and used to 
assign taxonomy identifier for each sentence.  

Gene normalization – We applied the same dictionary lookup method as the one we used 
in the previous BioCreAtive workshops. The latest release of gene-centric BioThesaurusb 
was used as the dictionary. For each pair (Term, GeneID), we derived a descriptive 
feature vector to represent i) ambiguity and systematic ambiguity features of Term based 
on onto-BioThesaurus and GeneRIF, ii) document-level taxonomy assignment counts, iii) 
counts of GeneID in the document, iv) number of synonyms representing GeneID, and v) 
whether Term detected by gene mention systems or not.  Failing to obtain acceptable 
performance using the similar machine learning approach as the one used for gene 
normalization in BioCreAtive II, we assigned weight to each feature type and ranked 
each pair (Term, GeneID) according to the sum of the weight of the present features. 
Heuristic rules were used to avoid the return of too many homologous genes/proteins in 
the result. 

Discussion and Conclusions  
The current normalization task is very challenging due to the high systematic ambiguity 
associated with gene/protein names. From a practical point of view, however, we feel that 
mapping gene/protein names in text to the species-specific gene/protein database records 
may not be a well-defined task to suit the needs of biologists, who often describe or glean 
biological knowledge about genes/proteins in text without much emphasis on the species 
information. Thus, a sense inventory defining the meanings of gene/protein names in text 
is urgently needed.  
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Abstract  
Gene normalization is one of the most challenging tasks in bio-literature mining. In 
this paper, we present a novel ranking based gene normalization system. Our system 
has four modules: (1) a gene mention recognition module which combines results 
from a CRF-based NER procedure, a dictionary-based NER procedure, and the 
ABNER system; (2) a candidate gene ID generation module using Lucene indexing 
and search APIs; (3) a disambiguation module based on a learning-to-rank algorithm; 
and (4) a confidence score generation module which outputs a list of final gene IDs 
and corresponding scores for each gene ID. Evaluation results on the most difficult 50 
articles provided by BioCreAtIvE III show that our system is very competitive. 

Introduction  
Gene Normalization (GN), which maps a gene mention in the literature to a unique 
database identifier, is a quite challenging task. The task has been addressed by 
BioCreAtIvE challenge I, II and III. The following issues, which will be addressed in 
our system, have made the task very difficult: 

(1) Gene mentions, recognized from upstream NER components, are not always 
necessary or suitable for gene normalization. Particular examples are gene families 
and protein complexes, which should be recognized as gene mentions but should not 
be normalized. However, most GN systems used Gene Mention Recognition 
components  as a black box. The NER results were used as input of the GN systems 
directly. In our system, as inspired by reference 1, we filter those gene mentions that 
are not suitable for normalization, such as some gene families and complexes. 

(2) Genes are often mentioned in the text with non-canonical names, rather than 
referred by the names defined in the database [2]. For example: ‘p65 subunit of NF-
kappaB’ and ‘light chain-3 of microtubule-associated proteins’. Exact matching for 
such cases is hard so that it’s difficult to normalize such genes.  

(3) Some gene names are highly ambiguous [2] and it’s hard to decide to which 
species a gene belongs. Homologous genes share same or similar name. Even in the 
same species, different genes can share one same name.  

Most systems participating in the BioCreAtIvE II GN task and some follow-up 
studies used rule-based methods to deal with these problems [1][2]. Some systems 
obtained good performance by making great efforts to compile lexicon and to refine 
rules. The rule based method requires specific domain knowledge and makes the 
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system inflexible. In this work, we aim to leverage statistical machine learning 
technologies to reduce the system’s dependence on specific domain lexicons and rules.  

System Description  
Our system has a cascade framework consisting four major modules, as shown in 
Figure 1. The details of each module are described in the following subsections. 

Figure 1  - The cascade framework of our system 

 

 

Gene Mention Recognition 

The first module of our system recognized gene mentions (GM) in the text by 
combining four independent NER components. We have four NER components, 
including (1) a component extracting the text labeled by the <itac> tag from full-texts, 
with species names removed; (2) a gene mention recognition module based on a CRF 
that was trained on the corpus from the BioCreAtIvE II Gene Mention Recognition 
task; (3) a dictionary-based gene mention recognition module, where the lexicon was 
compiled from Etrenz Gene; (4) the ABNER system[3], which is an open source NER 
system for biomedical text. The recognized GMs from different components were 
merged by retaining those GMs that come from at least two components out of the 
last three components, while the results from <itac> tag was always kept due to its 
high precision. The overlapping part of mentions from different components was 
taken as the final mention if individually recognized boundaries are different. 

Gene ID Candidates Generation 

The second module generated gene ID candidates for each recognized GM. Lucene 
was used to index the gene entries in Entrez Gene. Each GM was searched by Lucene 
to get the top 50 gene IDs as its ID candidates. During indexing and search, the gene 
names from Entrez Gene and the GMs from text were processed by a set of rules: (1) 
removing all special characters such as dashes and underscores; (2) removing stop 
words; (3) inserting a white space at where lowercase changes to uppercase or vice 
versa, such as ‘hBCL’ into ‘h BCL’; (4) separating digits, Greek letters (alpha, beta 
etc.), Roman numbers from other alphabet letters; (5) changing to lowercases. 

Disambiguation using Learning-to-Rank 

The third module ranked the ID candidates for each GM using a learning-to -rank 
algorithm: ListNet [4]. The training data was built from the 32 training articles with 
full annotation. For each gene mention recognized in the training article, the gene ID 
candidates were compared with the gold standard. If a gene ID is in the gold standard, 
it is marked as a positive example; otherwise it is a negative example. For each gene 
ID, its detailed information was found in Entrez Gene. A feature vector was then built 
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for each gene ID. Features are described in Table 1. We tried to rank the correct gene 
ID to the top one position of the candidate list. 

Table 1  - Features for disambiguation using learning-to-rank 

Feature Name Description 
Species In GM Whether the species of the gene ID is implied by GM (gene 

mention) like hBCL. 
Species In 
Document 

Whether the species of the gene ID appears in the document. 

Species In Title Whether the species of the gene ID appears in the title. 
Nearest species Whether the species of the gene is the nearest species from the 

GM in the context. 
Type of gene Whether the value of type_of_gene attribute (in the EntrezGene 

database) appears in the nearby context. For example, if the 
type of the gene ID is protein encoding, the appearance of the 
word protein nearby might be useful evidence. 

Symbol Edit 
Distance 

The Edit Distance between GM and the symbol of the Gene ID. 

Synonyms Edit 
Distance 

The minimum Edit Distance between the GM and all the 
synonyms of the gene ID. 

Number 
similarity 

The number of same ‘numbers’ between GM and the symbol of 
the gene ID. The ‘numbers’ here includes the digitals, the 
Roman numbers, the Greek letters and single English letters. 

GM Lucene 
Score 

The score returned by Lucene using the GM as the query. 

Extended GM 
Lucene Score 

Extend the GM by 3 words before and after it, and then get the 
Lucene score using the extended GM as the query. 

Full Name or 
Abbreviate 

If the GM has full or abbreviated name in the context, compute 
the Edit Distance between the full or abbreviated name and the 
synonyms of the gene ID and then use the minimum value as 
the feature. 

Synonyms In 
Sentence 

Find the words in the synonyms indicating the gene’s function 
(death, binding, interacting etc) then check whether such 
signature words appear in the context. 

 

Confidence Score Generation 

The last module was used to output the final gene ID set and to associate a confidence 
score with each gene ID. Two strategies were attempted to generating the output gene 
ID set. The first run (denoted as TOP1) was only keeping the top 1 gene ID candidate 
of each gene mention, and the second run (TOP10) was obtained as follows: firstly 
find the top 10 gene IDs from each gene mention, and then only maintain one gene ID 
with the highest rank for every species. Then we used a supervised classification 
method to decide the confidence score for each gene ID. The training data was built 
similarly as mentioned before: the system was run on the 32 fully annotated articles to 
get the gene ID set, and then positive and negative examples were labeled according 
to the gold standard. A feature vector was built for each gene ID, as described in 
Table 2. We experimented with two classification models: Logistic Regression and 
Support Vector Machine. The probability of a gene ID being positive, given by the 
classification model, was used as the gene ID’s confidence score in the final output. 
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Table 2  - Features for confidence score generation 

Feature Name Description 
Best values of the 
Ranking Features

Reuse the features in the Disambiguation using Learning-to-
Rank module. As one gene ID may be mapped from several 
gene mentions and each mention has a feature vector, only the 
‘best’ value of each feature from different mentions is used 
here. For instance, the maximal value for GM Lucene Score 
feature and the minimal value for Symbol Edit Distance feature.

GM amount The number of GMs containing the gene ID 
GM sources Whether the gene ID has GM recognized by a specific NER 

component described in Gene Mention Recognition section. 
For example, if the gene ID has a GM recognized by the CRF 
component, then the value is 1 for the GM source feature of 
CRF. This feature was built for each NER component. 

Highest Rank The highest rank of the gene ID among all the GMs containing 
the ID. 

Min Word 
Number 

The minimum word number of the GMs containing this ID. 

Uppercase or 
digital 

Whether one of the GMs containing the ID has Uppercase 
letters or digits. 

Results  
We tested our system on the most difficult 50 articles provided by BioCreAtIvE III. 
The results were evaluated by TAP-5, TAP-10 and TAP-20[6]. The test results of our 3 
submissions are shown in Table 3. The 3 Runs differ in the strategies to generating the 
output gene ID set:  TOP1 and TOP10 described in the previous section, and in the 
classification model to generate the confidence score: Logistic Regression (LR) and 
Support Vector Machine (SVM). In addition to the official evaluation of BioCreAtIvE 
III, we also evaluated our submissions by Precision At different ranks, as shown in 
Figure 2. From the evaluation results, we can conclude that the TOP10 strategy and 
SVM are more suitable for this task. 

Table 3  - Test results of 3 submissions 

Run 
Gene ID set 

strategy 
Classification Model TAP-5 TAP-10 TAP-20 

Run 1 TOP1 LR 0.2805 0.2971 0.3064 

Run 2 TOP10 LR 0.2850 0.3033 0.3044 

Run 3 TOP10 SVM 0.2973 0.3125 0.3248 
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Figure 2  - The curve of  Precision At Ranks for 3 submissions 
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Abstract

We participated (as Team 81) in the Article Classification (ACT) and Interaction Method (IMT) subtasks
of the Protein-Protein Interaction task of the Biocreative III Challenge. For the ACT we pursued an extensive
testing of available Named Entity Recognition (NER) tools, and used the most promising ones to extend our
the Variable Trigonometric Threshold (VTT) linear classifier we successfully used in BioCreative II and II.5. Our
main goal was to exploit the power of available NER tools to aid in the document classification of documents
relevant for Protein-Protein Interaction. We also used a Support Vector Machine Classifier on NER features for
comparison purposes. For the IMT, we experimented with a primarily statistical approach, as opposed to a deeper
natural language processing strategy; in a nutshell, we exploited classifiers, simple pattern matching, and ranking
of candidate matches using statistical considerations. We will also report on our efforts to integrate our IMT
method sentence classifier into our ACT pipeline.

Article Classification Task

We participated in both the online submission
with our own annotation server implementing the
VTT algorithm via the BioCreative MetaServer
platform, as well as the offline component of the
Challenge. We used three distinct classifiers: (1)
the lightweight Variable Trigonometric Threshold

(VTT) linear classifier that employs word-pair tex-
tual features and protein counts extracted using the
ABNER tool [1], and which we successfully intro-
duced in the abstract classification task of BioCre-
ative II [2] as well as on the full-text scenario of
Biocreative II.5 [3], (2) a novel version of VTT that
includes various NER features as well as various
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sources of textual features, and (3) a Suport Vec-
tor Machine (using SVM light) that takes as features
various entity count features from the NER tools we
tested.

In the novel version of VTT that included vari-
ous NER features, a document d is considered to be
relevant if:

M.
F∑
f=1

Pf (d)

Nf (d)
≥ λ0 +

EP∑
π=1

βπ − nπ(d)

βπ
−

EN∑
ν=1

βν − nν(d)

βν

(1)
where λ0 is a constant threshold for deciding
whether a document is positive/relevant or nega-
tive/irrelevant. Pf (d) and Nf (d) are occurrence
counts of discriminative features (see [3] for details)
for feature set f . These features can be textual fea-
tures (such as bigrams) or features from entity recog-
nition tools. EP is the number of entity count fea-
tures, π, correlated with relevant documents, and
EN is the number of entity count features, ν, corre-
lated with irrelevant documents; M = EN + EP .

In addition to testing the power of available NER
tools to aid in the document classification of docu-
ments relevant for Protein-Protein Interaction, we
were interested in answering a few other questions:
(1) is there a benefit to using word bigrams as textual
features, in comparison to the simpler word-pairs we
previously employed [2, 3]? (2) Is it advantageous
to use additional PPI classification data from previ-
ous Biocreative challenges, or is it best to use only
Biocreative III data? (3) how much, if at all, does
full-text data help on the classification? Given the
time limitations of the challenge, the submitted runs
will only allow us to respond to our main question
(the utility of existing NER tools) and additional
question (1) above. We intend to test questions (2)
and (3) post-challenge.

Towards responding to our main question, we
utilized the following NER tools and dictionaries:
ABNER [1], NLProt, Oscar 3, CHEBI (Chemical
names), PSI-MI, MeSH terms, and BRENDA en-
zyme names. With each one of these tools, we ex-
tracted various types of features in abstracts and in
figure and table captions. We then computed oc-
currence counts of the various feature types, for in-
stance: Number of protein mentions in an abstract
identified by ABNER, or PSI-MI method mentions
in figure captions. Finally, we selected those entity
feature counts that best discriminated relevant and
irrelevant documents in the training and develop-

ment data. This was done via the analysis of charts
such as those described in Figure 1, which depicts a
comparison of the counts of ABNER protein men-
tions in abstracts and BRENDA enzyme names in
figure captions on Biocreative III training data (ex-
cluding development data). As can be seen, the
counts of BRENDA enzyme name mentions in fig-
ure captions of documents in the training data does
not discriminate well between relevant and irrelevant
documents. In contrast, counts of ABNER protein
mentions in abstracts are distinct for relevant and
irrelevant documents. We used this type of plot to
identify which features from NER tools and which
document portions behaved differently for relevant
and irrelevant documents. For our extended VTT
classifier, we used the following five entity feature
counts: ABNER protein mentions in abstracts, NL-
Prot protein mentions in abstracts, PSI-MI meth-
ods in abstracts, ABNER protein mentions in fig-
ure captions, and Oscar compound names in fig-
ure captions—which were all positively correlated
with relevant documents (therefore EN = 0 and
M = EN = 5 in equation 1) We rejected many
other entity feature counts, but provide the commu-
nity with our feasibility study of the various NER
Tools as aids for PPI-relevance article classification.
Moreover, we used all entity count features to a SVM
classifier to understand the performance of those fea-
tures alone in classifying PPI-relevant documents.

The Interaction Method Task

We note that the BioCreative training set consisted
of full-text articles along with the identifiers of the
PPI detection methods that were judged to be dis-
cussed in them, without any tagging of the sentences
that formed the actual evidence for the method.
Hence the training corpus could not be used to di-
rectly train a classifier to identify PPI method sen-
tences. To make up for this shortcoming, we used a
corpus that was developed independently and used
in a previous work by Shatkay et al [4]. In that work,
Support Vector Machine (SVM) and Maximum En-
tropy classifiers were trained using a corpus of 10,000
sentences from full-text biomedical articles, which
were tagged at the sentence-fragment level, along
five dimensions: focus (methodological, scientific or
generic), type of evidence (experimental, reference,
and a few other types), level of confidence (from 0
- no confidence, to 3 - absolute certainty), polar-
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ity (affirmative or negative statement), and direction
(e.g. up-regulation vs. down-regulation). Notably,
that corpus had little or nothing to do with protein-
protein interaction, but a classifier trained on the
Focus dimension showed high sensitivity and speci-
ficity in identifying Methods sentences, and as such
we have used it without any retraining. We also
used classifiers trained to tag text along the other
dimensions, but as almost all sentences were of affir-
mative polarity and high confidence, we decided to
use only the Focus classifier (particularly, whether or
not a sentence was classified as a Methodology sen-
tence). Using the converted text files provided by
BioCreative, we applied a simple strategy for break-
ing the corpus into sentences based on a modified
version of the Lingua-EN-Sentence Perl module [5]),
and eliminated any text segment that looked like
a bibliographic reference using a simple rule-based
strategy. The remaining sentences were converted
into a simple binary term-vector representation, for
the purpose of classifying each sentence by Focus,
utilizing a SVM classifier [4]. This classification step
did not identify which method is discussed; rather, it
only identifies candidate sentences that may discuss
methods.

The specific Method Identifiers (MIs) were
then associated with sentences by simple pattern-
matching to PSI-MI ontology terms (the primary
name and synonyms characterizing each concept)),
loaded using the OBO::Parser::OBOParser Perl
module (part of ONTO-Per l package [6]). To al-
low, to some extent, partial matches, and shuffling
of word-order in matches we used two Perl modules:
Text::Ngramize [7], and Text::RewriteRules [8]. The
module Lingua::StopWords was used to avoid the
matching of common English words [9]. As such
simple pattern matching can lead to many spuri-
ous matches, we scored matches such that exact
matches are scored higher than partial ones and
longer matches score higher than shorter ones.

Each sentence was thus tentatively associated
with all the MIs whose terms hit the sentence. Sta-
tistical considerations were used to post-process this
many-to-many mapping, selecting one MI among
multiple MIS that hit the same sentence, while
selecting a single sentence as evidence for each
matched MI. Employing several scoring schemes sim-
ilar in spirit to TF*IDF, we scored each sentence
for each candidate MI, based on the length of the
match (the higher the better), how rare or frequent
the matched terms were in the corpus, in the sen-

tence, and in the methods ontology (rare terms score
higher, frequent - lower), and increasing the score for
sentences that were classified as Methodology in the
classification step described earlier. The MIs that
scored the highest were reported, and the sentence
that gave rise to the score was provided as evidence.
The different runs we have submitted varied in the
scoring methods used, and in the thresholds placed
over the scores to select the MIs that were actually
reported.

Integrating the ACT and IMT pipelines
While we were unable to integrate both pipelines for
an ACT submission, we are working post-challenge
to utilize the output of our IMT pipeline as addi-
tional entity features in our ACT pipeline. We will
report on this development at the Biocreative III
workshop.
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Figure 1: Comparison of the counts of protein mentions as identified by ABNER in abstracts of the articles
(top), and BRENDA enzyme names in figure captions (bottom). Results shown for iocreative III training
data (excluding development data). The horizontal axis represents the number of mentions x, and the
vertical axis the probability p(x) of documents with at least x mentions. The blue lines denote documents
labeled relevant, while the green lines denote documents labeled irrelevant; the red lines denote the difference
between blue and red lines.
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Abstract 

Background

This article presents the results of the participation in the BioCreative III tasks: Gene 
Normalization (GN); Protein-Protein Interaction (PPI) - Article Classification Task 
(ACT); and Protein-Protein Interaction - Interaction Method Task (IMT).

Results

We obtained a TAP score of 0.2790 on the training set of the GN task. On the PPI-ACT 
task, we obtained an AUC iP/R of 0.568 on the test set. The highest accuracy obtained 
was 0.874, and the highest MCC value was 0.466. For the PPI-IMT task, we submitted 
three runs with AUC iP/R above 0.3, and one run with AUC iP/R above 0.4 (although 
this run only returned results for 30 documents).

Conclusions

We participated on two tasks of the BioCreative III challenge, with encouraging results 
on both PPI subtasks. Further work is required in order to improve our approach for gene 
normalization.

Methods and Results 

Gene normalization task

We used a disambiguation approach based on gene-profiles and obtained an average 
Threshold Average Precision (TAP) score of 0.2790 on the training set. The workflow is 
composed of five modules, described below:

A. Pre-processing
This module is responsible for parsing the input XML to plain text and for splitting this 
into sections (title, abstract, etc.) and into sentences. 

- 1 -
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B. NER
This module is based on a Conditional Random Fields (CRF) model trained in Mallet [1] 
using the BioCreative II Gene Mention corpus. The set of features used includes: word 
stemming (Snowball stemmer), part-of-speech tagging (OpenNLP [2]), orthographic and 
morphological features; roman numbers and greek letters; dictionary-matching of 
gene/protein names (BioThesaurus [3]), dictionary-matching of relevant verbs 
(BioLexicon [4]); dictionary-matching of other biological concepts, such as nucleobases, 
amino acids and nucleic acids. For tokenization we used the OpenNLP tokenizer. In the 
end, a {-1,1} window of features is used to model local context. Post-processing 
techniques were not used in this implementation.

C. Dictionary matching
Each mention returned by the NER module is mapped to possible identifiers through 
dictionary-lookup. We implemented a Lucene [5] index of the BioThesaurus resource for 
efficient approximate string search. To create the index, each entry of the  BioThesaurus 
dictionary was first pre-processed using various string-editing rules, in order to create 
lexical variations of the name. These string-editing rules include: removing dashes; 
replacing dashes by spaces; inserting a dash on a letter-digit sequence; replacing arabic 
numerals by roman numerals (and vice-versa); replacing greek letter names by their 
initial (e.g. alpha → a). All variations were added to the index, together with the 
corresponding UniProt accession number and Entrez Gene identifiers. Entrez Gene IDs 
were obtained from the mappings file available from UniProt [6].
We tested the coverage of our dictionary using the gene mentions from the GN training 
data and obtained a recall rate of 93.7%.

D.  Context matching
This module compares the local context of each mention to previously computed 
biological knowledge profiles. In this implementation, the sentence was used as local 
context. The gene/protein profiles were implemented as a Lucene index (separate from 
the dictionary index). To create this index, we parsed the UniProt data file and retrieved 
Gene Ontology terms and descriptive fields. We also obtained the descriptive fields from 
mapped entries in Entrez Gene and OMIM. All these text fields were added to the index 
as free text. To obtain the scores for context matching, the sentence where the mention 
occurs is used to search this index. The resulting identifiers are then cross-matched to the 
candidate identifiers returned from the dictionary matching step.

E. Rule-based decision
All possible identifiers obtained after context matching, for the complete article, are 
assembled and the most likely identifiers are selected, according to some empirically 
created rules. The rules select identifiers matched with more than five mentions in text, or 
matched to at least three mentions and with an average context-matching score equal to 
or higher than a preset threshold (0.8). Other identifiers matched to the same text 
mentions but with lower scores are rejected.
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PPI Article Classification Task

Our approach in the ACT task is based on vector-space similarity. Documents in the 
training set are represented as vectors of the biologically relevant words occurring in the 
text. The underlying lexicon includes a list of interaction methods from the Interaction 
Method Ontology (PSI-MI) [7], distributed by the organizers for the PPI-IMT task, and 
biological verbs and their nominalizations, obtained from the BioLexicon term 
repository. Before creating the index, each document is pre-processed in order to identify 
occurrences of these terms. For each term found, we add to the document vector both the 
textual occurrence and its corresponding lemma. This index also contains the class of 
each document (1 for relevant, or 0 for non-relevant).
During the classification of a new document, the same pre-processing stage is performed 
and each occurrence of a lexicon term is added to the query string that is then used to 
search the index. From this search we retrieve the top M documents, together with the 
corresponding scores and classes. The class probability for the new document is then 
calculated as the sum of the Lucene scores for each class, normalized by the total scores 
for the M documents. A threshold is then used to select the class for that document. 
Figure 1 illustrates these classification steps.

Figure 1  - Document classification

We compared the use of lemmas to the use of the textual occurrence of the lexicon terms, 
and observed improvements in AUC iP/R between 3% (for M=50) and 6% (for M=500). 
Figure 2 shows the iP/R curves for M=500 when using the textual occurrence of 
BioLexicon terms, the lemmas of these terms, and the lemmas plus PSI-MI terms.
Using training and development data, with 5-fold cross-validation, we obtained an 
average AUC iP/R of 0.5947, using M=500 documents. 
On the test set, we obtained a AUC iP/R of 0.56760. The full test set results are shown in 
Table 1. 
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Figure 2  - Use of different vocabularies

Table 1  - PPI-ACT test results

Results on the ACT test data (M=500). For all runs: AUC iP/R=0.56760; P at full 
R=0.15744. MCC=Matthew's correlation coefficient
Run Sensitivity Specificity Accuracy MCC Precision F-score

1 0.94176 0.49695 0.56445 0.31789 0.25088 0.39621

2 0.38791 0.96108 0.87410 0.43346 0.64065 0.48323

3 0.72527 0.83605 0.81924 0.46563 0.44177 0.54908

4 0.96593 0.39041 0.47774 0.27060 0.22085 0.35951

5 0.20989 0.98624 0.86843 0.34488 0.73180 0.32622

PPI Interaction Method Task

For the IMT task our approach was to find mentions of methods names and synonyms in 
the texts and apply a very simple heuristic to validate and rank the classifications. We 
used the list of valid names provided by the organizers.
To facilitate approximate string searches, we also used Lucene in this task. All 
documents in the test set were added to an index, using Lucene's standard analyzer. We 
then search this index for each entry in the dictionary of methods names and retrieve the 
top 100 documents for each search. For synonyms of the same method (same PSI-MI 
identifier), the document scores are added together. Finally, a method ID is assigned to a 
document if that document/method score is above a threshold.
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This method could possibly be improved by introducing relevant keywords that are 
specific to particular interaction methods. This could be achieved, at a first stage, through 
a simple co-occurrence analysis in the training and development sets. However, due to 
time constraints, this was not performed.

Table 2  - PPI-IMT test results

Results on the IMT test data. N is the number of documents with results for each run. 
Precision, Recall and F-Score are macro-averaged.
Run N Precision Recall F-Score AUC iP/R 

(macro)
AUC iP/R 
(micro)

1 143 0.51783 0.35012 0.37838 0.31402 0.18053

2 72 0.71759 0.36806 0.45608 0.36215 0.24091

3 30 0.80000 0.41500 0.51508 0.41500 0.27245

4 205 0.31648 0.38715 0.31747 0.32295 0.16436

5 159 0.36363 0.21258 0.24754 0.18976 0.07689

Discussion and Conclusions
The use of domain terminologies and vector-space models for classification of PPI 
relevant documents provided positive and encouraging results. The use of other lexical 
resources (e.g. Gene Ontology terms) may help improve the results obtained. Comparing 
to the use of classification models such as SVMs, our approach has the advantage that to 
add more classified documents as new information to the classifier only involves adding 
those documents, with the corresponding classification, to the index.
Our work on the GN task, based on knowledge profiles, show that this is a valid 
approach. From our inspection of the results, the main shortcomings of our 
implementation are in matching the local context of the entity mention in the text with the 
stored profiles, and in the final decision stage.
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Abstract

This paper presents our systems of gene normalization (GN) and interactive demonstration (IAT) tasks in the

BioCreative III challenge. The GN system is based on various NLP modules including the GENIA sentence

splitter, tokenizer and POS tagger, the NERsuite system and a species mention recognizer. For each gene

mention in a given article, the system enumerates candidate Gene-IDs that can be assigned to that gene

mention, and scores each candidate Gene-ID by using logistic regression. Gene-IDs found in the article are

ranked by the sum of the mention-level scores. The results of gene normalization are integrated into the IAT

system, together with results from the MEDIE system. The user interface consists of one tab for each source of

input to the system (MEDIE, GNsuite and Linnaeus), and a table-tab that summarizes and ranks genes based

on the combined input. The gene table can be manipulated both manually and automatic, and can be stored to

a local file on the users computer. The whole IAT system is completely web based, but it currently relies on

preprocessed input from the underlying systems. As more underlying systems become available as web-services,

the IAT system will be able to process the data on-the-fly.
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Results and Discussion
Gene normalization

We submitted three runs with the following configurations: 1) Gene-ID candidates without species filtering;

2) Gene-ID candidates with species filtering; and 3) the configuration 2 but Gene-IDs appearing only in the

experimental section are removed. Table 1 reports the evaluation results on the test data. The top-x

precision (P), recall (R), and F1 scores are micro-averages of those computed for each article; we compute

top-x P, R, and F1 scores for each article, where x is the number of gold-standard Gene-IDs for the article.

Interactive Demonstration (IAT)

The Web-page for visualizing all the results from our system shows PMC and PubMed identifiers for the

available full text articles. The number of normalized gene mentions in the title/abstract/full-text for each

given paper is also shown. The user can click on, or type in, one of the identifiers to show the full text. All

the recognized gene names are highlighted in the text, and on the top of each paper’s visualization page is

a summary of all the genes in the paper. The user can click on any gene symbol to look up the

corresponding gene entry in Entrez Gene.

In the overview, each gene symbol and the number of mentions in the current paper is listed (Figure 1 (b)).

The user can jump from one occurrence to the next by clicking.

The gene normalization results are integrated with the genes found in the abstract by the MEDIE system

(http://www-tsujii.is.s.u-tokyo.ac.jp/medie/). MEDIE uses the GENA dictionary with entries normalized

to both Entrez Gene, Swiss-Prot, TrEMBL, Fly-base and several other major DBs. To map the names for

a specific gene entry into the text we use a fast web service providing cached information from Entrez Gene

(http://entrezajax.appspot.com/). The same web-service is also used to find alternative names for the

species for each gene, and to highlight these species names in the text as well. 18 000 full text papers (from

BioCreative III) are currently indexed. The list of genes for each paper can be sorted by relevance scores

based on frequency, confidence etc. The list can also be edited by authorized users, and the results can be

stored in individual user-accounts.

Method

Figure 1 (a) illustrates the outline of the system for gene normalization. The system recognizes gene

mentions in source articles. For each gene mention, the system enumerates candidate gene identifiers

(Gene-IDs), and computes the confidence score of each Gene-ID. Gene-IDs found in the article are ranked

2
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Run TAP-5 TAP-10 TAP-20 Top-x P R F1
1 (without species filtering) 0.1599 0.1842 0.2010 0.3337 0.1617 0.2178
2 (with species filtering) 0.1517 0.1804 0.2000 0.2981 0.1520 0.2014
3 (2 exc. experimental section) 0.1611 0.1856 0.2032 0.3400 0.1641 0.2213

Table 1: Results of gene normalization

Text extraction

Result
(GeneIDs with confidence scores)

A full-length article
(PubMed Central XML)

ASCII conversion

Tokenization

POS tagging

Shallow parsing

Gene mention recognition

Candidate filtering

Candidate retrieval

Candidate aggregator

Candidate scoring

Multiple gene mentions
in the article

GeneIDs

GeneIDs with scores

(a) The workflow of GN (b) Visualization of IAT

Figure 1: The workflow of gene normalization and visualization of interactive system

by the sum of the mention-level scores.

Resource

We converted the ASN.1 version of the Entrez Gene database into XML format by using the gene2xml1

tool. In order to locate information described in Entrez Gene XML records, we defined shorthands for

XPaths from the root node to content nodes. For example, we introduced a shorthand gene/locus as

/Entrezgene-Set/Entrezgene/Entrezgene gene/Gene-ref/Gene-ref locus to access a gene locus. We

defined 47 shorthands in this task (we omit the exact XPaths in this paper): 7 name fields (gene/locus,

gene/desc, gene/syn, prot/name, prot/desc, nomenclature/symbol, nomenclature/fullname), 4

organism fields (org/taxname, org/common, org/taxid, org/linage), 26 descriptive fields (e.g., summary,

generif/text, comment/text), and 10 PMID fields (e.g., generif/pmid, comment/pmid).

1gene2xml: http://www.ncbi.nlm.nih.gov/IEB/ToolBox/C
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Preprocessing

We extracted texts from contents of <article-title>, <title>, and <p> elements in the PubMed Central

XML files. We replaced non-ASCII characters into ASCII, e.g., α into alpha, by using a conversion table

because existing NLP tools (e.g., POS tagger and NER tagger) have not been trained with non-ASCII

characters. Then, we applied various NLP modules to the texts: GENIA sentence splitter2, tokenizer,

GENIA POS tagger3 [1], NERsuite4, and species mention recognizer5.

Gene mention recognition

We employed NERsuite for gene mention recognition. NERsuite is a toolkit for named entity recognition

based on Conditional Random Fields (CRFs). The toolkit also provides functionalities for training a model

from an annotated text with gazetteers as external dictionaries. We used the training corpus of the

BioCreative II Gene Mention Recognition task and gazetteers extracted from UMLS (135 categories -

“Gene or Genome”, “Enzyme”, “Chemicals”, ...) and Entrez Gene (one category). We applied the

tokenizer and the GENIA tagger which are bundled in NERsuite to obtain tokens, lemmas, POS tags and

chunk tags. To increase the coverage of gazetteers, dictionary entries are normalized as follows: alphabets

are lowercased; all consecutive numbers are converted into a single zero; and all consecutive

non-alphanumeric characters excluding whitespaces are converted into a single under-bar symbol.

Gene normalization

Gene normalization assigns an Entrez Gene-ID for a gene mention. This is performed by two subtasks:

candidate retrieval and candidate scoring. Candidate retrieval enumerates Gene-IDs that can be assigned

to a given gene mention. Candidate scoring assesses a score of each candidate Gene-ID being referred to by

the gene mention. Because the Gene Normalization task of BioCreative III requires a list of Gene-IDs and

their confidence scores at article level, we introduce an additional component candidate aggregation, which

computes article-level confidence scores from mention-level scores of Gene-IDs.

Candidate retrieval

Candidate retrieval is a specialization of information retrieval in which queries correspond to gene mentions

and documents correspond to Entrez Gene records. We built inverted indices that associate the contents of
2GENIA sentence splitter: http://www-tsujii.is.s.u-tokyo.ac.jp/∼y-matsu/geniass/
3GENIA POS tagger: http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA/tagger/
4NERsuite: http://www-tsujii.is.s.u-tokyo.ac.jp/nersuite/
5LINNAEUS 1.5: http://linnaeus.sourceforge.net/
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Feature category Feature value Text region Entrez Gene fields
mention-name exact, approximate,

token, token-subset,
n-gram cosine simi-
larity, n-gram over-
lap similarity

mention gene/locus, gene/desc, gene/syn,
prot/name, prot/desc, nomenclature/symbol,
nomenclature/fullname

context uni-gram cosine sim-
ilarity

abstract, title, titles of refer-
ences, paragraph, sentence,
preceding five words, subse-
quent five words

summary, generif/text, other/text,
other/anchor, other/post-text, phenotype/text,
phenotype/anchor, phenotype/post-text,
peptide/text, peptide/anchor, peptide/post-text,
comment/text, comment/anchor, comment/post-text,
function/text, function/anchor,
function/post-text, process/anchor,
process/post-text, component/anchor,
component/post-text, mRNA/peptide/anchor,
mRNA/peptide/post-text

PMID identity [binary] PMID of the paper, PMID of
the reference papers

generif/pmid, other/pmid, phenotype/pmid,
peptide/pmid, comment/pmid, function/pmid,
process/pmid, component/pmid, refseq,
mRNA.peptide/pmid

Organisms identity [binary] abstract, title, titles of refer-
ences, paragraph, sentence,
preceding five words, subse-
quent five words

org/taxname, org/common, org/taxid, org/lineage

Table 2: Features for candidate scoring

name fields (e.g., gene/syn, prot/name, nomenclature/symbol) and some descriptive fields (summary and

generif/text) with Gene-IDs. We used the reductive tokenization method [2] and Porter stemmer [3] for

both queries (gene mentions) and record contents.

When designing this component, we prioritize recall over precision because the subsequent components

(candidate scoring and aggregation) cannot recover from misses (false negatives) of candidate retrieval. At

the same time, it might be difficult for candidate scoring to choose a true (positive) Gene-ID from a large

number of irrelevant (negative) Gene-IDs. Therefore, we introduced some heuristics to reduce the number

of candidate Gene-IDs. We discard Gene-IDs that satisfy none of the following conditions:

1. the Gene record includes the gene mention somewhere in its name fields;

2. the matching score (Okapi’s BM25) of the Gene record is within the top 20 for the mention;

3. the species of the Gene record is mentioned somewhere in the source article.

Candidate scoring

We score each candidate Gene-ID by using a logistic regression model. Features for the scorer are

categorized into four types: mention-name features, context features, PMID features, and organism

features. A mention-name feature captures orthographic similarity between a gene mention and the name

fields. We prepared a mention-name feature for every combination of fields (e.g., gene/syn, prot/name,

nomenclature/symbol) and matching methods (e.g., exact match, approximate match, letter n-gram

5
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similarity). Context features compute the cosine similarity between the surrounding expressions (context)

of a gene mention and descriptions in a candidate Gene record. We designed a context feature for each

window of context (abstract, title, titles of references, paragraph, sentence, preceding five words, and

succeeding five words) and for each descriptive field. A PMID feature indicates whether the Gene record

includes the PMID(s) related to the target paper (the PMID of the paper and PMIDs of the related work)

in the reference fields (e.g., generif/pmid and function/pmid). An organism feature examines whether

the species of the Gene record appear in a context window of the mention. Here, we use the results of the

species mention recognizer to link taxonomy identifiers (TaxIDs) and context expressions (e.g., TaxID

#9606 and the expression patients).

In order to train the logistic regression model, we manually annotated the gold-standard mention(s) for

each Gene-ID in the training sets 1 and 2. In Gene-IDs enumerated by the candidate generator for each

gold-standard mention, the Gene-ID in the training sets presents a positive instance, and the rest presents

negative instances. We used Classias6 as a tool-kit for training the logistic regression model. The score of a

Gene-ID is defined to be the probability estimate when the instance is classified into positive.

Candidate aggregation

A paper usually contains multiple mentions of the same gene. In order to obtain confidence scores of

Gene-IDs at article level, we compute the sum of scores of Gene-IDs appearing in the paper. After

removing Gene-IDs that have score sums lower than 0.1, we compiled and submitted the list of Gene-IDs

for the articles.
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Abstract

Background: The BioCreative series of competitive evaluations of text mining systems provide a major test bed for
novel techniques in biomedical text mining. Results from the previous and current competition are of fundamental
importance for further development in the area.

Results: The OntoGene group participated in all tasks of the current edition. Preliminary results seem satisfactory,
however a detailed analysis cannot be performed without a comparison with the results of the other participants.

Background
OntoGene is a research project based at the Institute for Computational Linguistics of the University of
Zurich, focusing on the usage of advanced natural language processing techniques for the purpose of biomed-
ical text mining. Since the beginning of our activities in this domain (2005), our core focus has been on
relation extraction [1], rather than on entity extraction.

We participated in the previous two editions of the BioCreative shared evaluation. In BioCreative II
(2006) we had the best reported results in the extraction of experimental methods task (PPI-IMT) and
very competitive results in the extraction of protein interactions (PPI-IPT) [2]. In BioCreative II.5 (2009)
we obtained the best results (according to the ‘raw’ AUC metric) in the IPT task (extraction of protein
interactions) [3, 4].

Due to very recently obtained additional research funding, we decided to increase our effort in the current
competition, and participate in all of the tasks on offer. In the rest of this research report we describe in
detail our approach to each of the tasks.
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RUN 1 RUN 2
Positives: 15101 Positives: 17973
Relevant: 1670 Relevant: 1670
TP: 451 TP: 467
FN: 1219 FN: 1203
FP: 14650 FP: 17506
Recall: 0.2701 Recall: 0.2796
Precision: 0.0299 Precision: 0.0260
Averaged-TAP-5: 0.0718 Averaged-TAP-5: 0.0891
Averaged-TAP-10: 0.0992 Averaged-TAP-10: 0.1073
Averaged-TAP-20: 0.1077 Averaged-TAP-20: 0.1156

Table 1: GN results on the 50-articles evaluation set

Results and Discussion
GN Task
In the GN task we used a variant of the OntoGene text mining system which was previously developed for
the detection of protein-protein interactions. While the full OntoGene system includes modules for syntactic
parsing and relation extraction, the version used for the GN task included only part of the complete pipeline.
The following processing steps are performed: (1) XML cleanup and transformation into our own basic
XML format; (2) preprocessing with Lingpipe [5] (sentence splitting, tokenization, tagging); (3) terminology
recognition; (4) detection of ‘focus organisms’; (5) terminology filtering and scoring.

The terminology recognition module is based on an efficient lexical lookup approach, with the contribution
of a ‘normalization’ module (rule based) which can take into account the most frequent surface variants of a
term. The lookup uses an internal terminological resource built using terms extracted from UniProt, Entrez
Gene, NCBI Taxonomy, Cell Line Knowledge Base (CLKB). An additional aim of our participation was to
test an extensive gene resource provided by TMS (Text Mining Services, Novartis AG, Basel).

One characteristic of our approach is the usage of a specific module for the detection of the ‘focus
organism’, i.e. the core specie(s) discussed in the paper. This information is later used for the disambiguation
of gene and protein mentions. This module was originally optimized for disambiguation of protein mentions
over the set of IntAct ‘snippets’.1 No further adaptation for the GN task in BC III was performed

We use a terminology filtering and scoring approach, which is based on the one hand on textual features,
on the other hand on the detected organism. It functions as follows: for each term for which a focus
organism above a probability threshold filter has been identified, and which is not in a stop word list, a
score based on frequency of the term, the zone (title, abstract, main text), and organism-related keywords
is calculated. Organism-related keywords express e.g. that the presence of the word ‘murine’ gives increased
scores to terms related to mouse. The scores and the organism-related keywords were manually adapted to
the training documents. Broadly speaking, for each term candidate SCORE = f ∗ org, where

f : frequency of term in text (an occurrence in the title has a weight of 200, an occurrence in the abstract
a weight of 8; additionally terms in italics are weighted 3 times higher).

org : organism score from “focus organism” detection module (rebalanced through some specific additional
organism-related keywords).

The difference between our two submitted runs is mainly in the terminological resources. RUN 1 does
not use EntrezGene or UniProt, but instead used an extensive terminological resources provided by TMS
(Text Mining Services, Novartis AG), which however covers only the five most important species (human,
mouse, rat, yeast and drosophila). Additionally, we included organism resources extracted from the NCBI
taxonomy and terms from the CLKB. The TMS resource contains 670,000 term senses. Our own organism
and CLKB resource contains 49,000 term senses. This resulted in 520,000 normalized terms, and 172,000
different gene IDs from 5 different organisms.

RUN 2 additionally used 2,203,000 terms from UniProt (version from June 2010) and 1,021,000 terms
from EntrezGene (only 20 topmost organisms from the training data, for efficiency reasons). This resulted
in 1,856,000 normalized terms and 833,000 different gene IDs from 2,113 different organisms.

1A snippet is a short textual reference provided by the IntAct curators.
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ACT RUN 1 RUN 2 RUN 3 RUN 4 RUN 5
TP 351 539 756 648 475
FP 120 353 1823 1317 285
FN 559 371 154 262 435
TN 4970 4737 3267 3773 4805
sensv. 0.38571 0.59231 0.83077 0.71209 0.52198
specf. 0.97642 0.93065 0.64185 0.74126 0.94401
accur. 0.88683 0.87933 0.67050 0.73683 0.88000
Matthew 0.48297 0.52727 0.34244 0.34650 0.50255
P at full R 0.16189 0.16189 0.15182 0.15182 0.15660
AUC iP/R 0.63847 0.63890 0.41741 0.41740 0.62394

Table 2: PPI-ACT Performance: specf (specificity), sensv (sensitivity), accur (accuracy).

The results obtained on the 50-articles set released by the organizers after the end of the competition
are shown in table 1. Not having seen the results by other teams, the only conclusion which we can draw
at present is that the resource used for RUN 1 appears to be sufficiently complete, in comparison with the
subset of EntrezGene used for RUN 2. In fact, in RUN 2 we have an increase of only 16 TP (+3.5%),
which is small compared with the increase of 2,856 FP (+19.5%). Unexpectedly, the TAP-k measures are
definitely better for RUN 2. This would suggest that RUN 2 produced a better ranking than RUN 1. A
possible explanation for this difference is that the contribution of the “focus organism” detection module is
better in RUN 2 than in RUN 1 (therefore genes belonging to the selected organisms are ranked higher).
Our “focus organism” module [6] was initially developed for PPI detection. In order to derive an organism
ranking it uses all relevant terminology in the article: in particular terms from NCBI and CLKB, but also
proteins mentions. Crucially however, it does not use gene mentions to the same extent as protein mentions
(in retrospect, we should have adapted it to the nature of the competition). Therefore the lack of sufficient
protein mentions in RUN 1 produced a lower quality ranking of organism, which in turn resulted in a worse
ranking for genes.

On the set of the 50 most difficult articles, we reached an unweighted average TAP-20 of 0.07 for RUN
1. On the training data we had reached an unweighted TAP-20 of 0.3453. The low results for the 50 articles
set are mostly due to the fact that only 103 gene IDs out of 1,219 false negatives were available in this
resource. For RUN 2, we had 1,203 false negatives. However also here, only 335 gene IDs were available in
our resource. On the training data we had reached an unweighted TAP-20 of 0.3751.

PPI-ACT Task
Three of the runs were generated applying Maximum Entropy optimization (specifically the software package
‘MEGAM’ [7]). Features considered include lexical items in the document (+Bow),2 MeSH annotations
(+Mesh),3 and a score delivered by our PPI detection pipeline (+PPIscore)4 . Two runs (RUN 3 and RUN
4) used only the result of the PPI pipeline. The development set proved to be representative for the testset.

The feature weights used for the test set were drawn from the development set only. Including the
balanced (but therefore biased) training set (which was released earlier in the shared task) proved to detoriate
the results in a 10-fold cross-validation experiment on the development set. Using the bow and mesh features,
we get a huge number of features. In order to keep the training efficient, and to prevent over-training, each

2All words of the articles were stemmed. Than all counts of a stem were used as a feature. E.g, if the word ”protein”
was found 3 times, we produced the features ”protein 1”, ”protein 2”, ”protein 3”. This produced for instance 70886 different
features for the development set.

3Every MeSH descriptor, with and also without every qualifier, was used as a feature. E.g., for the MeSH term ”-Signal
Transduction (-drug effects; +physiology)” as it appeared in the textual format, we produced the descriptor features ”sig-
nal/transduction/drug/effects”, ”signal/transduction/physiology”. For multi word terms, we added also all descriptor terms
produced by iteratively removing the first word, for instance ”transduction”. Additionally, all MeSH qualifiers as ”-drug/effects”
and ”+physiology” were added.

4This feature is computed using the full pipeline for detection of PPI as used in the BioCreative II.5 challenge. The original
system is used to detect candidate interactions, and deliver each of them, together with a numerical score. This value was
discretized in order to form few large classes and then used as a feature set.
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IMT RUN 1 RUN 2 RUN 3 RUN 4 RUN 5
Evaluated Results 5098 21529 4576 666 21600
TP 447 527 431 223 527
FP 4651 21002 4145 443 21073
FN 80 0 96 304 0
Micro P 0.08768 0.02448 0.09419 0.33483 0.02440
Micro R 0.84820 1.00000 0.81784 0.42315 1.00000
Micro F 0.15893 0.04779 0.16892 0.37385 0.04763
Micro AUC iP/R 0.27588 0.24484 0.27727 0.14169 0.29016
Macro P 0.09346 0.02448 0.09992 0.33483 0.02440
Macro R 0.83206 1.00000 0.79377 0.42883 1.00000
Macro F 0.16322 0.04750 0.17163 0.35403 0.04735
Macro AUC iP/R 0.47884 0.44034 0.47650 0.30927 0.50111

Table 3: PPI-IMT Performance

feature had to appear at least 3 times in the development set, and additionally, the feature selection limitation
of MEGAM was used to allow not more than 20,000 features. The resulting features are distributed as follows:
69% bow, 31% mesh.

RUN 1, as expected was the run with the highest accuracy (see table 2). Specificity was deliberately
maximized at the cost of sensitivity because of the class imbalance. The features used were +PPIscore,
+Mesh, +Bow with standard class binarization of MEGAM at 0.5 between classes 0 and 1. RUN 2 was
aimed at maximizing Matthew’s correlation coefficient. It is also the run with the highest AUC. The features
used were +PPIscore, +Mesh, +Bow with lowered binarization threshold of MEGAM at 0.2 between classes
0 and 1, in order to boost the positive class (the threshold was determined heuristically on the basis of the
development set). RUN 3 was aimed at maximizing recall (without using maximum entropy optimization).
The ‘raw PPIscore’ was discretized as follows: if PPIscore > 0.2 then class=1 else class=0. RUN 4 was
aimed at a balanced specificity / sensitivity result. It did not use the maximum entropy approach, but only
the raw PPIscore with the following decision rule: if PPIscore > 1.1 then class=1 else class=0. RUN 5
used only the +Bow and +Mesh features, with lowered binarization of MEGAM at 0.25 between classes 0
and 1, in order to obtain the best Matthew’s coefficient (threshold determined by experimentation on the
development set). The comparison with RUN 2 is particularly interesting because it shows the impact of
the +PPIscore feature: we gain 64 TP, but also get 68 more FP.

We have made the following observations. First, the class imbalance negatively affects the recall of the
smaller class (1), because the classifier optimizes for overall accuracy. One way to improve the high recall
results might be to use the several subscores that make up PPIscore (for example syntactic path, word at
the top of the path, protein pair salience, zoning information, etc.) as fine-grained individual features, whose
weights can also be optimized individually.

PPI-IMT Task
For the PPI-IMT detection task, we have developed two statistical systems (called system A and system B
in this document). Both are based on a naive Bayes approach but use different optimizations and heuristics.
The submitted runs correspond to the following:

RUN 1: full output of system A
RUN 2: full output of system B
RUN 3: optimized output of system A
RUN 4: optimized output of system B
RUN 5: combined output (average scores of RUN 1 and RUN 2)
The full outputs were aimed at maximizing R and AUC, the optimized outputs at maximizing F-score.

We have avoided sending runs which optimize precision, because these can always be obtained by picking
for each article only the best prediction (i.e. the method which is ranked first). [8] reports that the curators
preferred a high recall setting to a high precision setting, because it is much easier and less time-consuming to
reject suggestions (false positives, low precision) than to add new information from scratch (false negatives,
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p(method|word)
Probability Word Method
0.490056 L1 MI:0006
0.470270 LT MI:0019
0.447269 ERK1/2 MI:0006
0.443877 hydrogen-bonding MI:0114
0.441441 omit MI:0114
0.438765 synapses MI:0006
0.436363 tumours MI:0006
0.435114 REFMAC MI:0114

Table 4: Statistical association of methods with specific words (examples)

low recall). A good ranking, coupled with good recall, allows the user to decide where to stop examining
the results, rather than leaving the decision to the system.

RUN 5 was a blind experiment - due to lack of time we did not try this combination on development
and training sets. It is interesting to notice that this RUN achieves the best AUC (50%), while maintaining
full recall (like RUN 2). The preliminary conclusion appears to be that system A produces a better ranking,
which, when combined with the more complete output of system B, results in a better AUC. While system
A has been specifically optimized for the IMT task with task-specific heuristics, system B provides a fairly
generic implementation of a naive Bayes multiclass classifier, which therefore does not need a very detailed
description. In the rest of this section we provide more information about System A.

As a first approach, we used a pattern matcher giving high scores to every occurrence of an exact match,
and lower scores to every occurrence of a word-submatch, using the PSI-MI dictionary of experimental
methods [9] as our standard. No ‘stop word’ list was used, except for removing the prepositions of and in
which occur in many terms and synonyms. The inclusion of submatches led to overgeneration (increased
recall but low precision). Using only full matches led to very low recall. As an intermediate level between full
match and word-based submatch, we also used a subset approach: if more than three words of a term or a
synonym from the PSI-OBO dictionary appear in a ten word observation window, a mid-range score is given
for each occurrence. We observed that some submatch words are contained in many different experimental
methods (they do not discriminate well) and at the same time many submatch words very often do not
indicate a method mention. For example, method 0231 has the term name mammalian protein interaction
trap, which means that every occurrence of the word protein assigns a score to this method.

To respond to these observations, a statistical method can be used. We use, on the one hand conditional
probabilities for the method given a word p(method | term word) and, on the other hand the conditional
probability that a given submatch word occurs in a document where the corresponding term identifier has
been effectively assigned by the annotator: p(term word = yes | word, document). We informally refer to
the latter probability as termness. We first use the statistical model, p(method | word) ∗ termness(word)
for all words that are matches or submatches of the terms given in the PSI-MI dictionary, and further
for all words, irrespective of whether they appear in the PSI dictionary, whenever p(method|word) and
termness(word) are above 10%, and whenever the word is used in at least 5 training documents. We have
obtained considerably better results when using the statistical model also on all words, including non-term
words. The lists containing words which have a high probabilities to be associated with a given method are
not obviously interpretable by the non-expert, although some of the inherent knowledge they contain are
clear hints. An excerpt of frequent words indicating experimental methods at high probability is given in
table 4.

IAT Task
The ODIN system is being developed within the scope of the OntoGene project, as a collaboration between
the OntoGene group at the University of Zurich and the NITAS/TMS group (Text Mining Services) of
Novartis Pharma AG. The purpose of the system is to allow a human annotator/curator to leverage upon
the result of a text mining system in order to enhance the speed and effectiveness of the annotation process.

5

126



The OntoGene system takes as input a document in plain text or a number of supported xml-based
formats (including PubMed Central) and processes it with a custom NLP pipeline, which includes Named
Entity recognition and relation extraction. Entities which are currently supported include proteins, genes,
experimental methods, cell lines, species. Entities detected in the input document are disambiguated with
respect to a reference database (UniProt, EntrezGene, NCBI taxonomy, PSI-MI ontology).

The annotated documents are handed back to the ODIN interface (as pure XML documents), which
allows multiple display modalities, plus various selection and modification options. The curator/annotator
can view the whole document with in-line annotations highlighted, or can browse the extracted entities
and be pointed back to the mentions of the entities within the original document. All entity mentions
are entirely editable: the curator can easily add or delete any of them, and also change its extent (i.e.
add/remove words to its right or left) with a simple click of the mouse. Different entity views are supported,
with sorting capabilities according to different criteria (entity type, entity mention, confidence score, etc.).
Selective highlighting of text units (e.g. sentences) containing desired entities (terms or gene identifiers)
is supported. Rapid disambiguation can be achieved through manual organism selection. Additionally,
extensive logging functionalities are provided. The curation interface is mainly developed as a JavaScript-
based web application using the extjs framework. This allows rapid prototyping of views (tables, highlighting,
creation of hyperlinks). Visualization is very flexible through CSS and DOM manipulation.
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Abstract

Background: Life scientists spend a great amount of time searching for gene-specific information. It is widely
acknowledged that research results are primarily published in scientific literature and current curation efforts can
not keep up with the fast increase of such literature. It can therefore be estimated that the plethora of gene-specific
knowledge is still hidden in large text repositories like MEDLINE. Searching text data sources is difficult, as user
queries are usually ambiguous and lead to hundreds of results. Faced with such a number of relevant publications,
an appropriate article ranking is important. PubMed, for example, ranks articles per default by indexing date,
making it difficult to find seminal papers about a specific topic. In this paper, we introduce GeneView, a gene-
centric text mining application capable of searching, ranking, and visualizing biomedical publications.

Results: Our ranking algorithm relies on the assumption that the relevance of a gene for a specific article depends
on the frequency with which it is mentioned and on the sections it appears in. For ranking we introduce a simple
evaluation strategy by using the NCBI Gene2Pubmed mapping as gold-standard. This strategy is used to evaluate
different section specific rankers, where the best one achieves on average a precision of 75.5 %.The evaluation
further confirms our expectations, that sections like title, abstract and result are more relevant for gene specific
ranking than others. Surprisingly, incorporation of figure- and table-captions decreased the quality of ranking
results.

Background
Life scientists spend a great amount of time search-
ing for gene-specific information. As current ap-
proaches for gene function annotations are clearly
not keeping up with the double-exponential increase
of biomedical literature [1, 2], such a search cannot
be restricted to structured databases, but must also
include scientific publications, either using abstract
repositories such as MEDLINE or directly accessing

full text articles from publishers web sites.

Searching for biological concepts like genes in full
text is difficult for various reasons. First, genes usu-
ally have many synonyms. Thus, a simple query
with a single gene name will return only a subset
of all relevant articles. Second, homologous genes
often share the same name across different species.
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Also, even non-homologous genes might share names
among each other, and genes might also have names
that have additional, totally unrelated meanings.
For example, the human EGFR gene has several
aliases, like ERBB or HER1. But the gene EGFR
also exists, under the same name, in other species
like rat, mouse or fruit fly. Finally, EGFR also is
an abbreviation for ”estimated glomerular filtration
rate”. Thus, a simple PubMed query for “EGFR”
leads to rather unspecific results. Even if a re-
searcher manages to define an appropriate query, e.g.
by incorporating synonyms and excluding non-gene
related keywords, often hundreds of papers are re-
ported. Faced with such result sizes, an appropriate
article ranking is important. PubMed, for example,
ranks articles per default by indexing date, making it
difficult to find seminal papers about a specific topic.
Such ranking is especially important for database cu-
rators to decide which articles to read first to find
authoratative and comprehensive information about
a given concept.

In this paper, we introduce GeneView, a gene-
centric text mining application capable of search-
ing, ranking, and visualizing biomedical publica-
tions. Some of its salient features include the possi-
bility to personalize the behavior of the ranking, the
pre-tagging of gene mentions using a state-of-the-art
gene name tagger, and the application of species-
dependent disambiguation. GeneView takes part
in the “Interactive Demonstration Task for Gene
Indexing and Retrieval” (IAT) of BioCreative III
(BC3).

Methods
GeneView consists of several inter-operating com-
ponents: 1.) named entity recognition modules for
genes, mutations, diseases, and drugs 2.) an inverted
index for efficient searching 3.) a customized rank-
ing algorithm taking gene-centric information into
account, and 4.) a web frontend for querying and vi-
sualization. These components are further described
in this section.

Preprocessing of Data

GeneView in its application for BC3 searches a
full text corpus of 17,780 PubMed-Central (PMC)
articles provided as XML files. These files con-

tain, among other things, information about au-
thors, publishing journal, full text, and figure and
table captions. Parsed full texts are stored in an in-
verted index using the open source system Lucene1,
serving as storage, query and ranking engine. Per-
forming text queries is no requirement for the IAT
task, but it proved to be useful in executing more
detailed queries than just gene names. Further, it is
required for our ranking algorithm (see below).

After extracting plain text from the PMC XML
files, gene names are identified and grounded to En-
trez Gene-Id’s using the latest version of GNAT [3].
This version of GNAT has been improved to more
efficiently deal with full texts and to allow for a
more general species-specific disambiguation of gene
names. We further tag single nucleotide polymor-
phisms (SNP), using a slightly modified version of
MutationFinder [4]; improvements encompass ad-
ditional rules for mutation recognition and an ex-
panded amino acid dictionary, which allows detec-
tion of ambiguous amino acid descriptions. For rec-
ognizing diseases and drug names, we generate dic-
tionaries from UMLS [5], DrugBank [6] and Phar-
mGKB [7] and perform tagging with a simple dic-
tionary lookup.

All recognized entities are associated with the re-
spective section they were found in, allowing us to
base the ranking on different weights for occurrences
depending on the section. Such a feature was proven
useful in several previous works [8,9]. As most jour-
nals have their own guidelines about section naming,
we normalize sections to common section names. For
example, the section name background is normalized
to introduction. Sections like author contributions
or funding are normalized to the “catch all” section
type others. For section names not in the dictionary
we employ a fuzzy matching, by searching the dic-
tionary for the entry with smallest edit distance. If
the ratio between distance and length of the term
is below a certain threshold, the term is normalized
to the corresponding section. Section names failing
this procedure again are normalized to the section
others.

Entities (genes, SNPs, etc.) are added to the
Lucene index, together with their common section
name and their entity type, allowing for a very quick
search. The index is also used by the section specific
ranker for the retrieval task and for full text visual-
ization in the indexing task.

1http://lucene.apache.org/; accessed 09/01/2010
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Indexing

The indexing task of BC3 addresses the visualiza-
tion of one selected full text article and the subse-
quent ranking of all genes it contains. As the im-
portance of a gene for ranking depends on a specific
user’s needs, GeneView allows users to personalize
the ranking to some degree. Per default, genes are
ranked by total occurrence in the article, but users
have the possibility to exclude sections from this cal-
culation. Figure 1 shows a GeneView screen-shot for
a full text article with default gene ranking on the
left hand side. Rankings can be modified using the
“adjust ranking” function. Found entities are high-
lighted using different colors and entity-specific in-
formation integrated from a number of public data
sources is provided on mouse-click. In future work,
we also plan to open further ranking information for
personalization (see Conclusions).

Retrieval and Ranking

Goal of the retrieval task is the proper ranking of
articles providing information for one specific gene.
It has been previously supposed that the relevance
of a gene for a specific article depends, among other
things, on the frequency with which it is mentioned
and on the sections it appears in [10]. For example,
articles mentioning a gene in title or abstract are
often considered to be more relevant than articles
describing the gene only in methods or discussion.
To emphasize relevant sections we employ a section
specific boosting. The so-ranked list of articles is
presented to the user in return for their query. Each
entry can then be selected for full text viewing.

GeneView also computes and displays associated
genes. To this end, the system identifies all genes
co-occurring with a given query gene in any of the
articles in the corpus. Each such gene is tested for
positive association using a single sided χ2-test. The
five most significantly associated entities are than
displayed in GeneView at the top of the search re-
sults page. Although several tools like LitMiner [11],
EBIMed [12], SciMiner [13], or FACTA [14] are ca-
pable of determining query associated entities, only
few are able to perform such a query in near real
time [14]. Our current implementation processes
such a query in approximately 1 second. Applica-
tion on the whole of PubMed, with more than 20
million citations, takes approximately 7 seconds.

Results and Discussion
The total number of entities found in the BC3 corpus
are depicted in Table 1. Almost all articles contain
at least one gene, and, on average, an article contains
72 gene mentions. The results of section mapping in
Table 2 show that our approach is able to normal-
ize 111,695/114,204 = 97.80 % of all section names.
Note that about 20 % of all provided XML files con-
tained only title and abstract. These publications
are only available as PDF or image and the full text
has not been transcribed into the XML files.

Entity Type Articles Entities

Genes 16,013 1,294,875
Drugs 15,102 535,707
Diseases 12,166 940,225
SNPs 4,846 91,410

Table 1: Number of articles containing a specific
type of entity and the number of entity occurrence

in the IAT corpus (17,780 articles).

Normalized Section Number

Title 17,780
Abstract 17,780
Results 13,879
Methods 13,650
Introduction 13,140
Discussion 12,255
Other 12,228
Conclusion 5,063
Supplement 3,836
Not normalized 2,503
abbreviations 2,088

Table 2: Frequency of normalized section headers.

Both IAT subtasks are intended as groundwork
for the future evaluation of interactive systems in
BioCreative IV. No gold-standard data was provided
for any of the tasks. However, we were curious about
the impact of our ranking algorithm and therefore
defined our own simple (yet quite fuzzy) evaluation
strategy by using the NCBI Gene2Pubmed 2 map-
ping as gold-standard. This mapping provides links
between PubMed articles and Entrez-Gene Id’s for

2ftp://ftp.ncbi.nih.gov/gene/GeneRIF/generifs basic.gz; accessed 09/01/2010
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Figure 1: Screen-shot of GeneView presenting PubMed-Central article 60969. A ranked list of all recognized
genes is shown in the left-hand panel. On the right, the full text is displayed with colored markup for
recognized entities. The tool-tip shows details on a specific gene and provides links to sources of further
information on this gene.
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articles being considered as relevant by describing
the gene. We performed an evaluation on a subset
of 10 randomly selected genes, where each gene on
average had 49 associated articles in Gene2Pubmed.
For each gene the top 20-results were computed us-
ing our system and compared to the complete set of
associated articles. Retrieved articles among these
top-20 with a corresponding entry in Gene2Pubmed
are counted as true positives, all others as false pos-
itives. As we investigate only the top 20 results, cal-
culation of false negatives is not applicable. We also
used this evaluation to search for optimal section-
specific boosts.

Finally, we selected the best combination from
approximately 2,000 different settings. This set-
ting has, on average, a precision of 75.5 %, whereas
queries without section boosts achieves 72.0 %. The
best setting, as shown in Table 3, reflects our ex-
pectations, that sections like title, abstract and re-
sult are more relevant for gene specific ranking than
others. Surprisingly, incorporation of captions de-
creased ranking results.

Section Boost

Title 3.0
Abstract 2.0
Introduction 1.0
Result 2.0

Table 3: Section boosts yielding the best results in
our evaluation. Sections not mentioned were

excluded from the query.

We also tested the quality of associated genes
using the full text query “colorectal cancer”. For
four of the five reported genes, the association to
the query is well known in the literature. The fifth
gene (Scrib/Entrez-Id: 105782, p = 5 · 10−20) re-
veals a mistake of GNAT, which commonly identifies
“CRC” as a synonym for this gene. But in fact, CRC
is also often used as an abbreviation for “colorectal
cancer”; thus, the token is positively associated with
the query, but not the gene reported.

Conclusions
We described and evaluated GeneView, a tool for
gene-centric searching, ranking, and visualizing sci-
entific full text articles. We also reported on a

very preliminary evaluation which seem to con-
firm our expectation that section-specific boosting
is beneficial for relevance ranking. We are currently
also exploring other ways of improving the ranking
by concept-based query expansion with associated
terms [15]. This query expansion currently focuses
on Gene Ontology terms [16], as such terms are asso-
ciated with the function of genes/proteins. However,
a first and naive implementation, using all associated
GO terms as query phrases, lead to a minimal de-
cline of 1 % in article ranking. We therefore plan to
deeper investigate this expansion approach; further-
more, we think about including centrality of a gene
in the document-specific gene network into the rank-
ing. All these features should be turnable by each
user.
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Abstract  
Gene mention normalization (GN) refers to the automated mapping of gene names to a 
unique identifier, such as an NCBI Entrez Gene ID. Such knowledge helps in indexing 
and retrieval, linkage to additional information (such as sequences), database curation, 
and data integration. We present here an ensemble system encompassing LINNAEUS for 
recognizing organism names and GNAT for recognition and normalization of gene 
mentions, taking into account the species information provided by LINNAEUS. 
Candidate identifiers are filtered through a series of steps that take the local context of a 
given mention into account. On the BioCreative III high-quality training data, our system 
achieves TAP-5 and TAP-20 scores of 0.36 and 0.41, respectively. On the evaluation set 
of 50 documents that were provided to participants, we achieve scores of 0.16 and 0.20 
for TAP-5 and TAP-20, respectively. Our analysis of the evaluation results suggests that 
the lower scores primarily are due to significant differences in species composition, and 
partly due to the method for selecting the evaluation data. 

Background 
BioCreative is a repeated community challenge addressing various tasks in biomedical 
text mining, such as named entity recognition (NER) of gene and protein names, 
extraction of protein-protein interactions, or protein interaction detection methods. In the 
fourth installment in 2010, one of the tasks addressed the recognition and normalization 
of gene and protein names in full text publications. Participants of this task had to provide 
a system capable of finding all mentions of genes or proteins in a full text article and of 
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mapping these mentions to their respective Entrez Gene identifiers. Challenges arise from 
both synonymity and homonymity. Genes frequently have multiple synonyms, usage of 
which differs not only between authors and journals [1], but also over time. Names often 
also are used for several different genes (including orthologs, paralogs or unrelated 
genes) or even for concepts belonging to completely different semantic classes. 
Developing systems that overcome these challenges is critical for advancing the 
application of gene mention normalization in biomedical text mining. 

Methods 
System overview 
Our processing pipeline begins by loading the collection of texts that should be 
annotated, after which we perform NER of species, Gene Ontology (GO) 
[http://www.geneontology.org/] and MeSH [http://www.nlm.nih.gov/mesh/] terms. We 
then use species-specific GNAT [2] gene NER modules to find gene name matches in the 
texts. These modules consist of combined Entrez Gene and UniProt gene name 
dictionaries, expanded with typical patterns of gene name variations [5]. The recognized 
gene mentions are assigned candidate identifiers according to the dictionary. The gene 
mentions are processed by a set of rule-based methods designed to filter out and score 
candidate identifiers, based on their syntactic and semantic context [2]. Species 
disambiguation of gene mentions is done by considering the local findings of species 
NER. Finally, gene mentions with confidence scores above a threshold are reported. 

Using LINNAEUS for species NER 
In order to identify the species that are discussed in a paper (which in turn determines 
what genes to search for), we utilize LINNAEUS [3]. LINNAEUS uses a dictionary of 
expanded species terms from the NCBI taxonomy, together with a variety of rule-based 
methods and distributional statistics to disambiguate ambiguous species mentions and 
reduce the number of false positives and negatives. Compared against a corpus of 100 
full-text articles manually annotated for species names, LINNAEUS achieves 94% 
precision and 97% recall [3]. It has previously been shown  that for articles linked to 
genes in Entrez Gene, LINNAEUS can find the species of the referenced gene in 94% 
(9,662/10,290) of cases where full-text was available [3]. 

In order to further increase the utility of LINNAEUS for detecting focus organisms of 
articles, even if they are not mentioned directly, we have included additional “proxy” 
dictionaries that link cell-lines and genera to corresponding species. The cell-line 
dictionary was created from the database of [4]. Genera are also tagged and linked to the 
member species that is most commonly mentioned in MEDLINE (for example, 
“Drosophila” is linked to Drosophila melanogaster). 

Some technical re-linking of species identifiers was also necessary due to recent 
changes in species associations in Entrez Gene. For example, all genes that previously 
were linked to Saccharomyces cerevisiae (NCBI Taxonomy ID 4932) were instead linked 
to a specific strain, S. cer. S288c (ID 850287). This was performed for all species where 
we could determine that such changes had occurred in Entrez Gene. 
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Filtering gene names and candidate identifiers 
Dictionary-based matching allows direct assignment of candidate identifiers to 
recognized gene mentions, based on what dictionary entries a mention matches. In a 
series of filtering steps, the set of mention candidate identifiers is narrowed down 
successively by removing false positive gene IDs and species IDs (see Table 1 for the full 
list, and [5] for further details). Filtering includes:  

1. Use of the sentence and paragraph context surrounding the mention. The context 
is matched against pre-computed gene profiles and scanned for clues indicating 
the presence of false positives. 

2. Use of species name mentions located close to the gene mention, that are used to 
perform cross-species disambiguation. 

3. String similarity searches of the located term against the original (not expanded) 
terms for the candidate identifiers, which are used to determine the closest (and 
most distant) matches. 

 
Table 1. List of processing filters. Filtering steps are used to expand and reduce 
candidate ID lists for each gene mention. Also see Figure 1. 
Filter Filtering method 
MDRER Species-dependent gene NER 
REU Joins overlapping or adjacent gene names 
LRCF Match the text surrounding the mention against context models of FPs 
ICF Filter false positives by immediate context 
loadGR Load the gene profile for each candidate gene 
UNF Filter names that refer to gene families and other un-specific mentions 
NVF Restore names removed during UNF where a synonym is used elsewhere 
AF Score mentions by string similarity against unexpanded gene synonyms 
SVF Verify ambiguous species names (“cancer”) 
UMF Mark genes that are unambiguous throughout the text as identified 
MSDF Gene mention disambiguation by context profile 
ITF Adjust mention scores based on whether the terms have been found italicized in 

other PubMed Central articles 
SCSA Assign relative scores to candidates per text 
SCSF Adjust scores to fit the TAP scoring scheme 

Scoring candidate identifiers using context profiles for disambiguation 
Gene mention disambiguation in our system is handled by an adaptation of GNAT [2]. 
Adjustments include: (i) more localized reliability scoring of candidate identifiers using 
paragraph contexts; (ii) keeping annotations consistent across paragraphs; and (iii) text-
wide search for the best evidence to map a gene mention to a species. 

Selecting the set of species-specific dictionaries 
Due to memory constraints, the gene name dictionaries used by GNAT are restricted to a 
set of model organisms. The selection of what species to include is critical since it 
determines the species for which GNAT can recognize gene names. The species were 
chosen based on mention frequencies in MEDLINE and PubMed Central, to cover the 
majority of articles discussing particular species. In total, we used gene name dictionaries 
with genes from 32 species (see Table 2), covering 69% of all species mentions in 
MEDLINE and PubMed Central. 
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Table 2. List of species-specific dictionaries. 
List of species for which we built and used gene name dictionaries. Column two and 
three give occurrence statistics in the training and test sets (species with no associated 
genes in both the training or test sets were omitted due to space constraints). The 
frequencies represent the number of genes associated to each species. 
Species Training frequency Test frequency 

Homo sapiens 121 (19.9%) 181 (10.8%) 
Mus musculus 75 (12.3%) 235 (14%) 
Rattus norvegicus 14 (2.3%) 41 (2.4%) 
Gallus gallus 10 (1.6%) 4 (0.2%) 
Saccharomyces cerevisiae S288c 166 (27.3%) 36 (2.1%) 
Escherichia coli str. K-12 substr. MG1655 4 (0.6%) 1 (0%) 
Arabidopsis thaliana 30 (4.9%) 9 (0.5%) 
Drosophila melanogaster 58 (9.5%) 59 (3.5%) 
Bos taurus 9 (1.4%) 3 (0.1%) 
Caenorhabditis elegans 19 (3.1%) 9 (0.5%) 
Xenopus laevis 17 (2.8%) 3 (0.1%) 
Danio rerio 42 (6.9%) 7 (0.4%) 
Hepatitis C virus 0 1 (0%) 
Magnaporthe oryzae 70-15 0 68 (4%) 
Neurospora crassa OR74A 0 2 (0.1%) 
Schizosaccharomyces pombe 3 (0.4%) 5 (0.2%) 
Zea mays 2 (0.3%) 0 
Human immunodeficiency virus 1 0 1 (0%) 
Sus scrofa 7 (1.1%) 76 (4.5%) 
Triticum aestivum 2 (0.3%) 2 (0.1%) 
Xenopus (Silurana) tropicalis 1 (0.1%) 0 
Macaca mulatta 2 (0.3%) 0 
Total 582 (95.1%) 743 (43.5%) 

Results and discussion 
TAP, F1-score, recall and precision on the training and test corpora 
The TAP-5 scores [6] of our system on the training and test data are 0.363 and 0.157, 
respectively; the corresponding TAP-20 scores are 0.408 and 0.199. Per the construction 
of the test set, these data were considered more difficult than the training data (see 
overview paper). On the high-quality part of the training set, we achieved precision, 
recall, and F1-score of 0.536, 0.474, and 0.503, respectively. 

Species recognition results 
By applying LINNAEUS to the training and test corpora and comparing the identified 
species against the manually annotated gene identifiers, we evaluated to what extent 
LINNAEUS was able to find mentions belonging to the species that are associated with 
genes in particular papers. For the fully annotated subset of the training corpus (32 
documents), the original version of LINNAEUS could find species mentions for 87% 
(528/607) of the annotated gene entries. When also incorporating the additional 
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dictionaries produced as part of this work (using cell-lines as proxies for species and 
linking genus names to commonly mentioned species), this rate increased to 94% 
(571/607). The species identifier “re-linking” was performed in both cases. Performance 
was lower for the manually annotated subset of the test set (50 documents), where the 
software was able to locate only 74% (1,242/1,670) and 80% (1,341/1,670) of gene-
associated species using the original and extended dictionaries, respectively.  

For both the training and test set, a preliminary inspection of a subset of false 
negatives suggests that the main reason for false negatives is that articles simply do not 
contain the  appropriate species name. While it may be possible to reduce this problem by 
adding additional “proxy” dictionaries, it is probably not possible to completely solve it. 

Analysis of filtering steps 
To assess the impact of the individual components used by GNAT, we performed 
accuracy evaluations of the predicted gene mentions throughout the GNAT pipeline. We 
evaluated each filtering step, from initial species-dependent gene NER to the final 
disambiguation and scoring, on the high-quality portions of the BC III training set (see 
Table 1 and Figure 1). This analysis show that the pipeline methods that contributed the 
most to the increase in accuracy were the context-based filters (LRCF and ICF), the string 
similarity search filter (AF), the species disambiguation filter (SVF) and the gene re-
classification filter (UMF). 

 
Figure 1. TAP scores after individual filtering steps on the training data. TAP-5, TAP-10, 
and TAP-20 scores as observed after each individual step of our processing pipeline. 
Table 1 describes each filtering step. 

Differences between the training and test set 
Our analysis of the results on the test set suggests that the primary reason for the 
difference in accuracy seen between the test and training set is the difference in species 
composition. Our species-specific gene dictionaries covered the species associated to 
95% of the annotated gene entries in the training set, but only 43% of the genes in the test 
set (see Table 2), causing a large number of false negatives. Model organisms were much 
more common in the training set than in the test set, where species discussed less 
frequently have a more important role. For instance, 22% of the gene entries in the test 
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data are from Enterobacter sp. 638, a species mentioned extremely rarely in MEDLINE. 
It is clear that while the common model species are heavily over-represented in research 
[3], the species-specific gene dictionaries used by GNAT represent a limitation for 
articles that discuss less-frequently mentioned species. 

Conclusions and availability 
Here, we presented a system for recognizing and normalizing gene mentions in full texts 
used in the BioCreative III challenge’s Gene Normalization (GN) task. We demonstrate 
the utility for species NER for guiding gene name dictionary recognition, and for gene 
context profiles used when performing gene normalization. Our training and test set 
performances differ widely, with TAP-20 scores ranging from 0.4 to 0.2. This difference 
can primarily be attributed to differences in species composition that could not be 
handled using the species-restricted approach used by our system, and to some extent the 
method used for the selection of test data used for evaluation (see overview article). 
Future work will concentrate on making the initial dictionary NER method less 
dependent on species-specific dictionaries in order to overcome this problem. 

GNAT will be made available at http://gnat.sourceforge.net shortly after the 
BioCreative III workshop. LINNAEUS and the additional genus and cell-line dictionaries 
are available at http://linnaeus.sourceforge.net. 
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1 Introduction

Team 63 from the Colorado Center for Computational Pharmacology prepared a system for tackling the gene
normalization task using a novel approach to gene normalization. Our strategy is based on state of the art
research in knowledge-based word sense disambiguation from the natural language processing community,
and represents the first system to tackle gene normalization through the primary use of relational background
knowledge. We call this approach KNoGM, for Knowledge-based Normalization of Gene Mentions.

Our system includes the basic stages of (1) gene mention tagging, (2) mapping of gene mentions to
candidate gene identifiers, an (3) selection of a candidate gene identifier for each mention. We describe each
in turn.

2 Gene Mention Tagging

For the gene mention tagging step of the system, we used mentions detected by the AIIA-GMT system [1],
above a threshold of 0.4.

3 Mapping to Gene Identifiers

3.1 Dictionary matching

Each mention detected by the gene mention tagging system was matched against the names in the full
BioThesaurus [2]. We utilized version 6.0. For matching, we regularized the gene mention names in the
original text and matched against regularized versions of the thesaurus names. The regularization performed
involved removing punctuation and whitespace, and transforming greek and roman characters. All Uniprot
identifiers matched by the regularized string were retrieved as candidate mappings.

3.2 Abbreviation detection

We perform abbreviation detection in order to reduce the ambiguity in the gene mention candidate sets. We
apply the Schwartz and Hearst algorithm [3] to recognize explicit short form-long form pairs. Any occurrence
of a detected short form in the document is associated with the candidate set for the long form, rather than
the (generally more ambiguous) candidate set for the short form.

4 Gene Identifier disambiguation

The strategy that we pursue for disambiguating a gene/protein mention to the appropriate identifier is to
make use of known relationships among proteins. We build on research on word sense disambiguation (WSD)
of general English nouns and verbs that demonstrates good performance by taking advantage of the graph
structure of a semantic graph connecting word senses [4]. The analogy between the general English case and
the gene normalization case is that gene names (words) correspond to multiple gene identifiers (senses).

Graph-based WSD is performed over a graph composed by senses (nodes) and relations between pairs of
senses (edges). There may be several types of relations in a single graph and these may have some weight
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attached to them. The disambiguation is typically performed by applying a ranking algorithm over the
graph, and then assigning the concepts with highest rank to the corresponding words.

4.1 Knowledge graph

To support a knowledge-graph-based methodology for gene normalization, we must first construct a knowl-
edge graph. We built a graph combining knowledge from the following sources:

• iRefWeb: protein-protein interactions

• UniProt GOA: gene ontology annotations for proteins

• NCBI Taxonomy: the association between a protein and an organism

• Homologene: relations among genes based on homology

In this graph, nodes represent biological entities and concepts – proteins (represented as UniProt identifiers),
genes (represented by Entrez Gene identifiers), organisms (represented as NCBI Taxonomy identifiers), and
the three types of concepts in the Gene Ontology (cellular components, molecular functions, and biological
processes; represented as GO identifiers). Edges among them represent a connection between them. For
instance, an edge directly connecting two proteins indicates that there is a known interaction among them
based on iRefWeb, and a link between a protein and a gene ontology identifier indicates that the protein has
been annotated to that gene ontology term.

4.2 Word sense disambiguation system

To perform the graph-based gene mention disambiguation, we employed the UKB word sense disambiguation
system of Agirre and Soroa [4]. Their system is available on-line at http://ixa2.si.ehu.es/ukb/.

The UKB system employs the well-known PageRank algorithm, as well as providing several variations
on this core algorithm that introduce use of local document context for disambiguation. The main idea of
PageRank is that whenever a link from vi to vj exists in a graph, a vote from node i to node j is produced,
and hence the rank of node j increases. For the submitted results, we only made use of the static PageRank
algorithm but we continue to experiment with this approach.
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Abstract

This paper proposes and compares several classification based methods for the BioCreative III ACT and IMT tasks,

which respectively address users’ requirements for automatically selecting documents relevant to the curation of protein

interactions, and for detecting the experimental techniques used in discovering the interactions. For both tasks, we

experimented with various classification methods, employing rich contextual and dictionary features. Evaluation on the

IMT development data shows that, a new method that classifies pair-wise relations between text phrases and candidate

interaction names achieved promising results.

Background
The BioCreative III Interaction Method Task (IMT) concerns automatically detecting experimental tech-
niques used in research articles that support given protein protein interactions (PPIs). For each document,
terms describing interaction methods should be recognised and also grounded to unique concept identifiers
(MI IDs) as defined in the PSI-MI ontology.1 The allowed subset of PSI-MI ontology contains 115 interaction
methods and each document may be associate with zero or more methods. Therefore, the task can also be
cast as a multi-label document classification problem.2 In addition, full-text documents are provided because
descriptions of experimental techniques are not usually found in abstracts.

The Article Classification Task (ACT), on the other hand, requires categorising each document as being
relevant or irrelevant to PPI curation. According to the task definition, only documents reporting PPIs are
deemed relevant, while those describing interactions between genes or other non-protein biological entities
are considered irrelevant. We cast ACT as a binary document classification task.

1http://www.ebi.ac.uk/ontology-lookup/browse.do?ontName=MI
2Strictly speaking IMT is a multi-class, multi-label classification task but throughout this paper we’ll use multi-label for

simplicity.
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Table 1: Macro-averaged results on IMT development dataset with 10 best models selected by cross-validation
on training data (%)

System Precision Recall F1
m-LR 41.36 53.81 46.37
m-SVM 72.12 51.31 59.96
b-SVM 68.35 61.05 64.49
union(m-SVM,b-SVM) 65.62 63.11 64.33
intersect(m-LR,b-SVM) 75.24 54.96 63.52
intersect(m-LR,m-SVM,b-SVM) 78.22 50.17 61.13

Table 2: Macro-averaged 10-fold cross-validation results on ACT training and development datasets (%)
System Specificity Sensitivity Accuracy MatthewsCoef AUCiP/R
SVM (C-value=0.25) 70.75 94.19 87.39 68.38 75.96
SVM (C-value=0.50) 69.65 93.99 86.93 67.17 74.99
LR 72.66 93.54 87.48 68.77 86.41

Results and Discussion
This paper describes 3 IMT systems: two follow the multi-label document classification framework and the
other uses a binary classifier classifying pairs of synonyms in the PSI-MI ontology and text phrases in target
documents. Cross-validation was performed on the training dataset, based on which the best models were
selected and tested on the development set. Results are shown in Table 1, where m-LR and m-SVM are
multi-label document classification systems, with the former using Logistic Regression (LR), and the latter
support vector machines (SVM), and b-SVM is the binary classification system. The features used in b-SVM
are different from those in m-SVM and m-LR. For each document, we also took union and intersection of sets
of MI IDs obtained from the aforementioned approaches. The three highest performing ensemble systems
are also shown in Table 1: as expected, the union of results improved recall and the intersection improved
precision.

For ACT, we extracted a rich set of features and then used two machine learning paradigms: LR and
SVM. Table 2 shows 10-fold cross validation results as tested on a combined ACT training and development
datasets.

Conclusions
We compared several approaches to the BioCreative III IMT and ACT tasks. For IMT, we proposed a
new method that first searches candidate interaction method text strings in documents, and then classifies
pair-wise relations between the candidates and their matching interaction method names, as defined in PSI-
MI. This method utilises a rich set of features extracted from the candidates’ surrounding context, together
with the definitions and synonyms in PSI-MI. Evaluation results on the development dataset show that,
overall, this method is promising and outperformed the more conventional multi-label document classification
using the “one-vs-all” strategy. We also tested simple ensemble systems using heuristic rules of union and
intersection, which achieved good overall performance, and are especially competitive in recall or precision.

For ACT we tested LR and SVM classifiers exploiting features that are commonly used in PPI classifi-
cation tasks. It appears that protein entities identified by our named entity recogniser, together with MeSH
headings, provided much distinguishing power.
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Methods
Document Pre-processing
The IMT documents were provided in various formats and we used PDF-converted plain text. The quality of
the text was not satisfactory but we did not find a quick solution to address it. Nevertheless, we normalised
typographic ligatures (e.g., ffi → ffi), some Unicode punctuation, such as different white space, dashes, single
and double quotes, and also removed control characters. By contrast, the ACT documents were of good
quality and therefore we did not apply the above text-cleaning steps.

The IMT and ACT documents were then pre-processed using a number of linguistic processors [1],
including tokenisation, lemmatisation, part-of-speech tagging and chunking, and processed with a named
entity recogniser (NER). The NER is the same as used in our semantic search engine KLEIO3, which is
based on the method described in [2]. It consists of two components: the first finds entity candidates by
searching a dictionary; and if a manually annotated corpus is available, the second component trains a
conditional random fields model, which is then used to tag unseen text. We applied both components for
annotating genes and proteins, and only the first for annotating the following types of entities: metabolite,
organ, drug, bacteria, diseases, symptoms, diagnostic/therapeutic procedure and phenomenon. Please refer
to [3] for more details regarding the NER.

In addition, for each IMT or ACT document, we retrieved its MeSH headings and information associated
with the headings from MeSH ontology. Information of our interest includes descriptor names and identifiers,
in both their atomic and hierarchically ordered form (i.e., tree ID), with the latter more closely representing
the underlying structure of MeSH ontology. This information was used as a feature in training machine
learning models. For IMT, we also manually constructed a mapping from the 10 most frequent MI IDs (as
found in the training data), to their corresponding MeSH descriptors.

IMT
Classifying Pairs of Text Chunks and Method Names

This approach first searches every text chunk in a full-text document and collects the chunks that are
approximately similar to an interaction method name in the PSI-MI ontology, where the strength of similarity
was determined by a string similarity measure. In our work, the text chunks were noun phrases (NP) or
verb phrases (VP), and a pair was deemed similar if its text chunk and MI name had a SoftTFIDF [4]
similarity score above 0.50. The second-level similarity measure used in SoftTFIDF was JaroWinkler [5],
with threshold 0.85. After such pairs were gathered, we classified each pair, where a positive label indicates
the text chunk in question entails its pairing interaction method. All interaction method IDs appearing in
the positive pairs were then assigned to the document.

In more detail, suppose document D contains n NP or VP chunks; we compare each chunk to every name
in PSI-MI, and gather all pairs whose similarity scores are above 0.50. For example, if pair p consists of an
NP chunk, “anti-His tag antibodies”, and a method name “anti tag coimmunoprecipitation” (MI:0007), and
their similarity is 0.834, then the model would classify p to determine whether the chunk bears the ID of
MI:0007. If p is positive, MI:0007 would be assigned to document D.

This way, a multi-label document classification problem is converted to a binary one, simplifying the
machine learning task; and if we carefully choose features that depict the relation between a chunk and
an MI ID, by, for example, looking at how much the chunk’s surrounding context overlaps the description
of the ID in PSI-MI, the actual content of the chunk and the ID become less important. In other words,
performance of classifying such pairs is less dependent on the amount of training data available for the MI
ID in question. Hence, the approach addressed the problem faced by multi-label document classification
where many MI IDs do not have sufficient data to train a good model.

We used SVMperf classifier (with the linear kernel) [6]4 and a rich feature set. Features used are listed
below. For the sake of explanation, we define a candidate pair to be classified as p = {c, n}, where c is a

3http://www.nactem.ac.uk/software/kleio/
4http://www.cs.cornell.edu/People/tj/svm_light/svm_perf.html
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text chunk and n is an MI name that matches c. Let’s also define id as n’s corresponding MI identifier and
the document containing c as D.

Local context includes contextual words within a defined window surrounding c. We chose two window sizes:
10 and 50 with the former additionally accompanied by position information.

Local NER context is the named entities adjacent to c. We took 5 on each side and both the type (e.g.,
protein) and text of the entities were used.

MI synonym match We searched the local context (window size 20) of c and the global context of D for the
synonyms linked to id in PSI-MI. The number of matches in both cases were used as features.

MI definition match In addition to synonyms, key words in the definition associated with id may be useful.
We ranked the tokens in each definition according to their TFIDF scores so that the tokens at the top of
the rank were more likely to relate to id. Given this rank, we searched the local context (window size 20)
of c and also the global context of D for tokens in id’s definition, and then used the TFIDF rank linked to
each definition token as a binary feature.

Section title Based on the assumption that method names are more likely to be mentioned in some sections
(e.g., “Materials and Methods”) than others, we searched the commonly used section names in biomedical
articles, such as “introduction” and “results and discussion”, and tagged them as section titles.

MeSH headings A feature indicating whether D is annotated with a MeSH heading that matches an MI ID,
using the mapping previously described.

Other features include the text strings of c and id, and string similarity score between c and n.
Note that all contextual words were lemmatised and “stop words” (e.g., functional words and words

consisting of only digits) were removed. We tuned the C-value of SVM with cross-validation on the training
set and achieved the best F1-scores with the values 16 or 32. The final model was trained on training and
development datasets. This method is referred to as b-SVM in Table 1.

Multi-label Document Classification

We also approached IMT as multi-label document classification, using an ensemble of binary classifiers
produced for each class (i.e., MI ID). We trained the binary classifiers using the one-vs-all strategy, where
each model was trained on all instances, and positive instances were those that belong to a class for which
the model was being built. To classify a document D, it would be scored by all the models, and if the score
of D when given as input to a particular model was greater than the corresponding threshold, then the label
associated with that model would be assigned to D.

The features used were different from those in b-SVM. Two types of features were used: (1) type and
text of named entities, words surrounding the entities (window size 10 with position) and the title of the
section in which the entities occur; (2) word unigrams and character n-grams (n = {2, 3, 4}) from the MI
definition and synonyms. All features were binary. Based on this set of features, we tested two machine
learning algorithms: LR and SVM (referred to as m-LR and m-SVM respectively in Table 1).

Logistic Regression We used models trained via L2-regularized LR [7, 8] from instance vectors constructed
using the features described above. In total, 85 LR models were constructed, one for each interaction method
for which at least one instance in the training set was found. In order to assess how the LR models would
generalize on unseen data, both the training data and development data provided by the organizers were
used in a 10-fold cross-validation experiment. In this experiment, we have set aside the development data as
a test set and decided to use the training data to build our models and also determine the threshold value.

We first randomly divided the data into 10-folds, and then performed 10 runs using the training data to
build models and separately used the development data for testing. For each run, we used 9 folds to train
the LR model LRj , j ∈ [1, 85], and the remaining fold to determine the threshold for LRj . Thus for each
run, we trained 85 LR models. During training, a document D corresponds to one training instance. For a
specific interaction method MIj , j ∈ [1, 85], we associate a corresponding LR model LRj . D is a positive
example for LRj if it has been assigned a label MIj in the training data, otherwise D is a negative example
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Table 3: Influence of thresholding to SVM as tested by 10 fold cross-validation on IMT training data. All
scores are macro-average (%).

System Precision Recall F1
no thresholding 74.35 44.08 55.29
SCut 78.86 54.90 64.61

for LRj . We performed 10 experiment runs, training a total of 850 LR models and averaged the results of
the evaluation on the development dataset, as shown in Table 1. To construct the final model for the official
test data, we used the training data to train the 85 LR models and the development set to determine the
thresholds for each model, subject to the constraint that each threshold has a minimum value of 0.10.

SVM The implementation of SVM used was SVMperf with the linear kernel. The parameter C-value was
tuned using 10-fold cross-validation on the training set in the fashion similar to the LR classification. Since
the applied range of parameter values produced the same micro-average F1-scores, we arbitrarily chose C = 1
for the final model.

Thresholding Strategies It has been argued that simple thresholding on scores obtained from classifiers (0.5
in the case of LR or zero in the case of SVM) does not always yield the best performance in multi-label
classification. Several thresholding strategies have been proposed, which can be categorised into rank-based
thresholding, class proportion-based assignment, and score-based local optimisation [9]. Due to the time
constraints, we were able to test only the score-based optimisation strategy (SCut), which assigns a class
to a document based purely on the score between the two and a class-specific threshold. We compared the
performance classifying documents using local (class-fitted) thresholds and global thresholds. The thresholds
were tuned using 10-fold cross-validation on the training set whereas the evaluation was performed on
the development set. In the case of SVM, the classification with local thresholds resulted in an inferior
(albeit marginally) micro-average F1 to the classification with the global nominal (zero) threshold. That
could indicate that the local thresholds over-fitted the training set, which was less likely with the global
thresholding.

It is important to note that local thresholding driven to optimise individual class’s F1-score outperformed
the global thresholding in terms of per-class macro-average F1. However, a relatively small improvement of
F1-scores for very small classes was obtained with the expense of a large amount of false positives, which
significantly lowered the overall micro-average F1-score. Ideally, the subject of optimisation would be the
micro-average F1-score, which would require tuning a range of per-class threshold combinations; however,
due to the time constraints we opted for simpler and faster per-class accuracy, which, although not ideal,
proved to be better balanced than the per-class F1-score. A comparison of systems with and without the
SCut thresholding strategy is shown in Table 3.

In contrast to SVM, the choice of the subject of optimisation (F1-score vs. accuracy) when choosing the
thresholds for the LR models did not affect the performance. Similarly to SVM, LR with a global threshold
outperformed the local thresholding strategy. Interestingly enough, the best micro-average F1 was obtained
with threshold 0.1, which is substantially lower than the nominal 0.5. Further analysis revealed that for the
majority of classes the range of prediction probabilities occupied the lower part of the [0, 1] range. Lowering
the threshold from the nominal 0.5 to 0.1 boosted recall with an acceptable decrease in precision.

ACT
To get a better understanding of the task at hand, we analysed a few randomly chosen positive and negative
sample abstracts from the training dataset, in terms of whether the presence of the following attributes in
an abstract correlate to its class (i.e., positive or negative): protein names (A1), verbs or nominalised verbs
around protein names that signify protein interaction (involving more than one participant) (A2), verbs or
nominalised verbs near protein names signifying protein modification (one participant) (A3), protein name
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Table 4: Analysis of 10 sample abstracts
Positive Samples Negative Samples

PMID A1 A2 A3 A4 A5 PMID A1 A2 A3 A4 A5
17517622 yes yes no yes yes 19413980 no no no no no
17586502 yes no yes no yes 19416831 yes no no yes no
17666011 yes yes no no yes 19421224 yes no no no no
17762861 yes yes no yes yes 19429605 yes no yes no no
17942705 yes yes yes yes no 19435285 yes no yes no no

MeSH headings (A4) and protein-related biochemical process MeSH headings (A5).
Table 4 shows the results of the analysis of the randomly chosen documents. From this analysis, we

were able to determine that verbs around protein names (A2) and MeSH terms pertaining to biochemical
processes (A5) can be used as indicative features for distinguishing between positive and negative examples.

To classify a document D, we used the following features: bag of words in D, named entities in D, words
in the sentences that contain at least one protein (with position) and MeSH headings associated with D.
Again, LR and SVM classifiers were adopted. For LR, we trained an L2-regularized model [7,8] using above
features. To assess how LR models perform on ACT data, we ran three sets of experiments: (1) 10-fold
cross-validation on training data (2) separately train on the entire training data and test the trained model
on the development set (3) 10-fold cross-validation on the combined training and development data. LR
achieved accuracies scores of 86.79%, 84.83% and 87.75%, respectively. We did similar experiments using
SVMperf and the final models were trained on the combined training and development data.
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General Description  
A range of biomedical text mining systems are currently available online, but 

these are generally not flexible enough to be easily adapted to particular information 

demands posed by the biocuration community, such as (1) assisting the semi-

automatic construction of links for a given document of interest to gene/protein 

identifiers or (2) the ranking a desired article collection according to a curation topic 

of interest.  

 

The MyMiner system provides an easy to use online interface for constructing 

a labeled training collection of relevant and non-relevant articles. Labeling efficiently 

relevant articles is crucial for the development of training data to be used by 

supervised or semi-supervised classifier systems. MyMiner facilitates recording of the 

time spend per abstract, the highlighting of positive and negative keywords or gene 

names, as well the analysis of overlapping data curated by multiple annotators.  The 

labeled data collection derived from MyMiner can be easily used as training set for 

any existing retrieval system, such as MedlineRanker [1] or data mining packages like 

SVMLight [2] or Weka [3]. 

 

Another module of MyMiner (Entity tagging) allows the automatic tagging of 

desired bio-entity mentions in a given document of interest. It integrates the facility to 

use automatic detection of mentions of proteins, genes, cell lines and cell types as 

well the tagging of species names [4]. Furthermore using a color code system it also 

highlights these mentions in the text, and allows quick manual correction and editing. 

The user can add also new bio-entity types, as well as specify relations between co-

mentioned bio-entities using a co-mention matrix check box. Such relation types 
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might be useful to the extraction of annotations, e.g. protein-protein interactions or 

protein – functional term association. Results can be downloaded in an XML-tagged 

output file.  

 

Finally with the Entity Linking module, the end user (which also can upload a 

entity tagged file from the previous step) is able to provide database links to proteins 

mentioned in a document input. The list of automatically recognized protein mentions 

can be manually edited, and also the end user can add restrictions in terms of the 

organism source. MyMiner integrates a species tagger system to pre-index organism 

mentions as constraints for the gene/protein normalization [5]. One advantage of 

MyMiner is that it allows direct searches against the UniProt database for the protein 

normalization step, using the efficient search ranking algorithm implemented by the 

UniProt search query interface. Potential protein identifiers can be easily selected with 

a simple to use check box. Annotations can be exported as a tagged annotation XML 

file.  

Status 
The main facilities of MyMiner have been already implemented. Right now it 

has some restrictions in terms of the input format (3 tab separated column file), which 

could be adapted to also handle other formats such as PubMed Central (PMC) input 

text. Additional aspects which have been already analyzed but not integrated to the 

current system are the gene normalization confidence scoring (record to text similarity 

based, as well as qualitative and quantitative protein properties disambiguation 

approach). URL: http://myminer.armi.monash.edu.au 
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