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Abstract
Aim: In biodiversity monitoring, observational data are often collected in multiple, dis-
parate schemes with greatly varying degrees of standardization and possibly at differ-
ent spatial and temporal scales. Technical advances also change the type of data over 
time. The resulting heterogeneous datasets are often deemed to be incompatible. 
Consequently, many available datasets may be ignored in practical analyses. Here, we 
propose a more efficient use of disparate biodiversity data to assess species distribu-
tions and population trends.
Location: Switzerland (Europe).
Taxon: Birds.
Methods: We developed an integrated, hierarchical species distribution model with a 
joint likelihood for all datasets using a shared state process (e.g. latent species abun-
dance or occurrence), but distinct observation process for each dataset. We show 
how the abundance submodel of a binomial N-mixture model can fuse four different 
data types (count, detection/non-detection, presence-only and absence-only data) 
and enable improved inferences about spatiotemporal patterns in abundance. As case 
studies, we use data from multiple avian biodiversity monitoring schemes. In the first, 
the goal is estimating abundance-based species distribution maps. In the second, we 
infer trends in population abundance across time.
Results: Accuracy and precision of abundance estimates increased when combining 
data from different sources compared to using a single data source alone. This is par-
ticularly valuable when data from each single data source are too sparse for reliable 
parameter estimation.
Main conclusions: We show that exploiting the complementary nature of ‘cheap’, but 
abundant, citizen-science data and less abundant, but more information-rich, data 
from structured monitoring programmes might be ideal to estimate distribution and 
population trends more accurately, especially for rare species. Joint likelihoods allow 
to include a wide variety of different datasets to (1) combine all the available informa-
tion and to (2) mitigate weaknesses of one by the strength of another.
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1  |  INTRODUC TION

Efficient assessment of spatial and temporal patterns in species 
distributions, for example, to draw species distribution maps and 
to estimate population trends, has been a challenging but essen-
tial endeavour for ecologists and wildlife managers for a long time 
(Barker & Sauer,  1992; Guisan et al.,  2006; Inger et al.,  2015). 
Species distribution or abundance models that specify popula-
tion trends help understanding basic ecological questions (Guisan 
& Thuiller,  2005; Hirzel et al.,  2006; Sattler et al.,  2007). Reliable 
distribution and trend estimates are essential for a smart resource 
allocation in conservation (Rodrigues et al., 2006) and species man-
agement (Sutherland et al., 2004). Traditionally, temporal or spatial 
patterns in species distributions have been assessed using data from 
a single focused monitoring scheme (e.g. Fewster et al., 2000; Kéry 
et al.,  2005; Sauer & Link,  2011). However, the scope of interest 
often goes beyond the temporal or spatial limits of an established 
monitoring program. With the rise of mass-participation citizen-
science programmes, data produced by them are increasingly being 
used to answer questions of scientific or management interest 
(Cooper et al.,  2007; Dickinson et al.,  2012). However, analysis of 
these opportunistic data, though typically very copious, often suf-
fers from severe challenges due to variable degrees spatial sampling 
and detection biases (Johnston et al., 2019). Thus, combining data 
from different monitoring schemes seems like an obvious propo-
sition (Freeman et al.,  2007; Isaac et al., 2020; Pagel et al., 2014). 
Making use of multiple data sources in integrated models can im-
prove estimator precision (Besbeas et al., 2002; Pacifici et al., 2017; 
Fletcher Jr. et al., 2019; Miller et al., 2019; Pacifici et al., 2019; Kéry & 
Royle, 2021 [Chapter 10]; Schaub & Kéry, 2022). Including datasets 
from designed monitoring schemes can reduce potential biases from 
opportunistic data when modelled together (Dorazio, 2014). In addi-
tion, data from regions or periods that are poorly covered by any one 
scheme may be complemented with data from another (Lebreton 
et al., 1995; Renner et al., 2019).

Since the 1990s, ecology has seen substantial methodological 
developments for combining data from different sources to improve 
estimation of demographic parameters (Lebreton et al.,  1995) and 
population trends (Besbeas et al., 2002). Freeman et al. (2007) com-
bined data from two simultaneous bird monitoring schemes within 
one model to estimate population changes. Pagel et al.  (2014) de-
veloped a framework to estimate population trends over time by 
combining counts and detection/non-detection data. This idea was 
picked up again by Zipkin et al.  (2017), who extended the frame-
work to a dynamic model including extinction and colonization 
using concepts from the models of MacKenzie et al.  (2002), Dail 
and Madsen  (2011) and Rossman et al.  (2016). Since then, several 

integrated species distribution models that enable the fusion of data 
from different sources using a common state model and different 
observation models via a joint likelihood were described in the lit-
erature. Koshkina et al.  (2017) combined detection/non-detection 
and presence-background data. Pacifici et al. (2017) described a spa-
tially explicit framework to share information between higher qual-
ity and lower quality detection/non-detection data. Also, Pacifici 
et al.  (2019) presented a method to resolve the issues caused by 
spatial misalignment in multiple data sources that are mutually used 
for species distribution modelling. Fletcher Jr. et al. (2019) proposed 
combining data of different quality by making use of weighted joint 
likelihoods. Miller et al. (2019) gave an overview on recent advances 
in data integration for species distribution models, putting them into 
the context of spatial point processes. Renner et al. (2019) proposed 
a combined penalized likelihood approach to combine detection/
non-detection and presence-only data, accounting for spatial de-
pendence in the data.

Here, we develop an integrated species distribution model 
that allows combining four different data types within a single 
modelling framework to estimate spatial or temporal patterns in 
abundance. The four data types are as follows: (1) counts result-
ing from (repeated) observations, as typically conducted within 
structured monitoring schemes; (2) detection/non-detections 
(also misleadingly called “presence/absence data”), for example, 
from checklists; (3) information on the presence of a species at 
a site, often originating from older data sources (e.g. prior to dig-
ital transmission of observation data); and (4) information on the 
ascertained absence of a species at a site. To do so, we extend 
the formal framework first described by Pagel et al. (2014) by an 
inclusion of the latter two data sources (3 and 4) that can both be 
considered as site-specific syntheses that lack information on the 
observation process. To our knowledge, this is the first attempt 
to combine those four data types within one single modelling 
framework. Our model explicitly accounts for imperfect detection 
by estimating detection probability in count and detection/non-
detection data by combining the occupancy model by MacKenzie 
et al.  (2002) and Tyre et al.  (2003) with the binomial N-mixture 
model of Royle (2004).

We illustrate the novel model with two applications. First, we 
model spatial patterns in the abundance of two rare bird species 
using data from different sources collected for the Swiss Breeding 
Bird Atlas 2013–2016 (Knaus et al., 2018). In our second example, 
we assess population trends of the same species based on data col-
lected in different monitoring schemes during the breeding seasons 
1999–2018. In both cases, we compare the inferences under our 
new model with those from traditional methods that do not allow 
combining detection/non-detection and count data.

K E Y W O R D S
binomial N-mixture model, distribution map, integrated species distribution model, joint 
likelihood, population trend, SDM, site-occupancy model
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2  |  MATERIAL S AND METHODS

After introducing the data, we describe our general modelling frame-
work to incorporate four different data types via a joint likelihood to 
model patterns in abundance over space and time. Subsequently, we 
illustrate our new model with two applications, focusing first on the 
spatial and second on the temporal dimension.

2.1  |  Overview of the data

2.1.1  |  Data type 1: Replicated counts

Typically, count data are used to model patterns of abundance in space 
or changes in abundance over time. For our subsequent applications, 
we considered either data collected within the Swiss Breeding Bird 
Atlas (Application 1; Knaus et al., 2018) or from the similarly designed 
Swiss Common Breeding Bird Monitoring called MHB (Application 2; 
Kéry & Schmid, 2006; Schmid et al., 2004). For both schemes, 1 km2 
grid cells based on the Swiss coordinate reference system (CH1903/
LV03, EPSG: 21781) are surveyed two to three times annually within 
one breeding season (15 April–15 July) by the same observer on a 
cell-specific, constant transect using territory- (or spot-) mapping 
techniques (Bibby et al., 2000). The locations of all visually or aurally 
detected individuals (mostly singing males) are mapped during each 
survey and subsequently grouped to putative territories (Kéry & 
Schmid, 2006; Schmid et al., 2004). As input data for our model, we 
used the observed number of territories per survey, grid cell and year.

2.1.2  |  Data type 2: Replicated detection/non-
detection data from checklists

On the data entry platform ornitho.ch and the corresponding mobile-
phone app NaturaList, users can enter their opportunistic bird obser-
vations. Users registered as volunteers of the Swiss Ornithological 
Institute are asked to either systematically report all observations of 
a defined set of rare species or to submit complete observation lists 
where every species detected is recorded. We used checklist data 
of this type for both spatial and temporal applications. This type of 
observational data allows deducing non-detection data (i.e. zeros) 
for either the set of rare species or for all species when not recorded 
(Kéry et al., 2010). Both complete lists and observations of the fixed 
set are assigned to 1 km2 grid cells based on the Swiss coordinate 
reference system. To avoid inclusion in the analysis of migrating in-
dividuals, only observations made within a defined species-specific 
breeding period were included in the analysis (Knaus et al., 2018).

2.1.3  |  Data type 3: Annual presence-only data

In a separate monitoring programme focused on wetland species, 
a fixed set of sites is annually surveyed for breeding birds. Effort is 

not standardized and annually varies between 3 and 12 surveys per 
site, typically conducted by highly skilled volunteers (Müller, 2015). 
The resulting data contain the species that were present during the 
breeding season at a certain site, but these data are not assigned to 
a specific date. This data type often originates in older data (prior to 
digital transmission of observation data) or from reports that do not 
specify individual observations (e.g. environmental impact analyses 
or other reports for administrative purposes, travel reports).

2.1.4  |  Data type 4: Absence-only data

Switzerland has a steep altitudinal gradient (193–4634 m.a.s.l.). High-
elevation areas are difficult to access and consequently less surveyed 
by volunteer ornithologists. Additionally, within the range of a species, 
density usually is lower towards its higher end of elevation. Therefore, 
data of type 2 and thus information on species absences from high-
elevation areas are often sparse. However, most species are limited to 
some well-defined, species-specific altitudinal range. In this way, it is 
possible to define conservative species-specific altitudinal thresholds 
above which a species is essentially close to certain to be absent as a 
breeding bird, based on the sparse data that is available in high alti-
tudes, in combination with expert knowledge. We denote all grid cells 
above such a threshold as absence and call them ‘ascertained absence’ 
or ‘absence-only data’. Such absence data greatly ease the modelling at 
the edge of the elevational gradient.

2.2  |  Model

Our model framework combines replicated count data, detection/
non-detection data, presence-only and ascertained absences on the 
basis of a binomial N-mixture (Royle,  2004) and a site-occupancy 
model (MacKenzie et al.,  2002; Tyre et al.,  2003) that are specified 
in combination. Inference on abundance based on replicated count 
data is straightforward via the binomial N-mixture part of the model, 
while detection/non-detection data enter via the site-occupancy part. 
Presence-only data and absence-only data do not contain any informa-
tion on the observation effort and are assumed to directly observe the 
true presence or absence state of a site. Therefore, we added them 
directly in the state part of the hierarchical model by fixing the latent 
occupancy state of a site at 1 (for a presence) or 0 (for an absence).

In our hierarchical model, we specified the abundance N and the 
occurrence (=presence/absence) z of a species at site i as a latent (i.e. 
partially or completely unobserved) variable in the state part of the 
model. The latent abundance N at site i is modelled as the outcome of 
a non-negative, discrete distribution. As usual, we will use the Poisson:

 Here, the expected abundance λi, indexed by site i, allows the inclusion 
of site-level covariates or random effects (e.g. to accommodate spatial 
dependence) via a log link:

(1)Ni
∼ Poisson

(

�i
)

.
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 where α is an intercept, β stands for the site-specific covariate val-
ues and x for the parameter estimates and k indexes a number of 
covariates. Two different observation models link the replicated 
counts and detection/non-detection data to the latent abundance 
state at a site.

Observation model for replicated counts

The observed count Ci,j at site i during survey j is described as the 
outcome of a binomial distribution with trial size Ni and success 
probability θi,j which is the probability that an individual present 
within site i is detected during survey j.

 Detection probability is modelled using a logit link function, in the il-
lustration here with an intercept αθ and with covariates varying either 
by space (x1) or within season (x2).

Observation model for replicated detection/non-
detection data

We modelled the number of detections y of a species per site i and 
survey j as the outcome of a binomial distribution with trial size Si,j 
and species-level detection probability pi,j.

 Here, Si,j is the number of surveys conducted at site i during survey oc-
casion j. The success probability pi,j here is the detection probability of 
the species, that is, of all individuals combined that are present at site i 
during survey j, or, in other words, the probability to detect at least one 
individual during survey j at site i.

We linked these data to the underlying abundance at site i by 
expressing the per-species detection probability p as a function of 
the per-individual detection probability θ from above and the popu-
lation size Ni of the specific site according to the model of Royle and 
Nichols (2003):

Thus, the per-species detection probability at site i during survey 
j, pi,j, is 1 minus the probability to miss all Ni individuals present, 
which for each individual happens independently with probability 
1 − θi,j.

Annual presence-only data and annual absence-
only data

These additional two data types were assumed to perfectly ob-
serve the true presence or absence state of a site during a given 
year. Note that for absences, this contrasts with the traditional 
assumption of site-occupancy and binomial N-mixture models that 
absences are never perfectly observed. These data are introduced 
into the model without a formal observation process by simply 
fixing the occupancy state for site i, zi, at a value of 1 for sites 
where the species was recorded as a breeding bird based on an-
nual presence-only data, and at a value of 0 for sites where the 
species was certain to be absent as a breeder (see below). To allow 
for the provision of fixed values for the latent presence or absence 
state at some sites in our implementation of the model in JAGS 
(Plummer, 2017), we formally specified the relationship between 
the latent occurrence (i.e. presence/absence) state of a site and 
the abundance at the site as stochastic (although it is in fact deter-
ministic such that zi ←Ni > 0):

The indicator function I(.) evaluates to 1 when its argument is 
true and to 0 otherwise. This allowed us to fix z for some sites to 0 
or 1.

2.3  |  Model fitting

For the applications presented below, we processed data in R (R 
Core Team, 2018) and fitted our models in JAGS (Plummer, 2017) 
using the R-package ‘jagsUI’ (Kellner, 2019). Starting values must be 
selected carefully when launching the analysis in JAGS to avoid con-
flicts between data, model and the state of the chains at initializa-
tion. We chose starting values for the latent abundance state N in 
the BUGS model as follows: If replicated counts (data type 1) were 
available, we used the maximum number of territories found within 
one survey in the corresponding site. Starting values were set to 1 
for sites where a species was reported on opportunistic lists only 
(data type 2), and to NA for sites covered by data types 3 and 4. For 
all sites where no data were available at all, starting values for the 
latent abundance state N were set to 0.

2.4  |  Application 1

2.4.1  |  Spatial modelling of abundance

Here, we apply our model for species distribution mapping, uti-
lizing data collected for the Swiss breeding bird atlas (Knaus 
et al., 2018). We analysed data from two species which both have 
a restricted distribution as breeding birds in Switzerland, the 

(2)log
(

�i
)

= � +

l
∑

k=1

�k ∗xki,

(3)Ci,j
∼Binomial

(

Ni , �i,j
)

.

(4)logit
(

�i,j
)

= �� + �1 ∗x1i + �2 ∗x2j .

(5)yi,j
∼Binomial

(

Si,j pi,j
)

.

(6)pi,j = 1 −

(

1−�i,j
)Ni .

(7)zi
∼Bernoulli

(

I
(

Ni > 0
))

.
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Common Nightingale Luscinia megarhynchos in the lowlands and 
the Rock Bunting Emberiza cia in the (Southern) Alps. During the 
breeding seasons of 2013–2016, replicated counts (type 1) were 
collected in 2262 grid cells and opportunistic lists (type 2, citizen-
science data) in approximately 25,000 grid cells (Table  1). The 
spatial coverage of the latter data type is much higher. However, 
they do not contain information on abundance (just detection/
non-detection) and suffer from a spatial sampling bias in favour of 
lowland sites. Annual presence-only data (type 3) were available 
from 92 wetland sites, complementing the spatial coverage from 
data of types 1 and 2 (especially for the Common Nightingale). For 
our absence-only data (data type 4), we fixed at 0 the latent oc-
currence state zi of all grid cells located above the species-specific 
altitudinal threshold.

2.4.2  |  Integrated species distribution model 
for abundance

To model abundance per grid cell, we used a set of environmental co-
variates (see Table S1) that were found to explain the species occur-
rence in the recent Swiss Breeding Bird Atlas (Knaus et al., 2018). We 
extended the log-linear model for abundance in Equation (2) by adding a 
two-dimensional penalized spline function for the x- and y-coordinates 
to account for spatial autocorrelation (Guélat & Kéry, 2018; Kammann 
& Wand, 2003). We modelled detection probability as.

with α being estimated separately for data of type 1, for data of type 
2 originating from complete lists and for data of type 2 where observ-
ers only recorded the list of rarer species. We predicted the estimated 
abundance per grid cell for entire Switzerland (n = 41,844).

We compared our model with three more traditional methods 
(Table  2), namely a Poisson generalized linear model (henceforth: 
GLM), a binomial N-mixture model (henceforth: N-mix model; 
Royle,  2004) and a site-occupancy model (MacKenzie et al.,  2002; 
Tyre et al., 2003) for which abundance is neglected. We label our new 
model the ‘integrated SDM’ in these comparisons. In all these model 
types, we retained identical the model structure in terms of covariates 
and spline-based modelling of spatial autocorrelation. For the GLM, 
the modelled response was the total number of territories per grid 
cell based on all surveys within one season combined (thus an aggre-
gation of data type 1, ignoring detection probability); data types 2, 3 
and 4 were ignored for the GLM. For the N-mix model, we did include 
detection probability (i.e. used the number of territories detected per 
grid cell and survey of data type 1), but again ignored data from types 
2, 3 and 4. For the site-occupancy model, we used all data that were 
also considered for the integrated SDM, but quantized the number 
of territories detected per grid cell and replicate (data type 1) to be-
come detection/non-detection data, thus incorporating all available 
data, but just modelling occupancy probability instead of abundance 
as the state variable in the hierarchical model (detection probability 
included). To fit the models, we ran three Markov chains for 50,000 
(site-occupancy model) or 100,000 (all other models) iterations and 
discarded the first half as a burn-in. We monitored convergence (Rhat 
values < 1.1 according to Brooks & Gelman, 1998) of the parameter 
estimates for detectability and abundance (α in Equation 2). For the 
Rock Bunting, Rhat values exceed 1.1 for one parameter (‘wetlands’) 
in the site-occupancy model, for two parameters (wetlands and ara-
ble land) in the integrated SDM and for the linear and quadratic term 
of the covariate ‘buildings’ in the N-mix model and the GLM. For the 
Nightingale, in all four analyses, Rhat values exceeded 1.1 only for 
the parameter estimate for ‘altitude’ (a covariate strongly correlated 
with other covariates). Code and data to replicate the analysis can be 
found on https://doi.org/10.5281/zenodo.5840377.

(8)logit
(

�i,j
)

= �� + �1 ∗datei,j + �2 ∗date
2
i,j
,

TA B L E  1  Sample sizes per species and data type, in terms of the number of grid cells with data

Replicated counts 
(data type 1)

Detection/non-detection 
data (data type 2)

Presence-only data 
(data type 3)

Absence-only data 
(data type 4)

Rock Bunting 222/2262 853/24,655a 0 1653 (>2800 m a.s.l.)

Common Nightingale 94/2262 990/22,534 7 7787 (>1800 m a.s.l.)

Note: Data types 1 and 2: number of grid cells where the species was found/the total number of grid cells visited in 2013–2016. Presence-only data: 
number of sites where such data were available, but where no observation of data types 1 and 2 was available. Absence-only data: number of grid 
cells where the presence of the species was set to zero (corresponding altitudinal threshold in brackets).
aNumbers of visited cells differ, as breeding season is defined differently for the two species.

Integrated 
SDM GLM N-mix model

Site-occ 
model

Data included Types 1–4 Aggregation of type 1 Type 1 Types 1–4

Modelled 
quantity

Abundance Abundance Abundance Occupancy 
(P/A)

Detection 
probability

Included Ignored Included Included

TA B L E  2  Overview on the four 
modelling approaches in Application 1. 
For all models, we included the same set 
of environmental variables (Data S1) and a 
two-dimensional penalized spline function 
to consider spatial autocorrelation
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F I G U R E  1  Species distribution maps for Rock Bunting and Common Nightingale, obtained by the integrated species distribution model 
and three simpler models that do not use the full information utilized by the former. We show posterior medians of predictions of the 
expected number of territories (top and bottom left for the plots in both species), and occupancy probability (bottom right for both species). 
Examples for additional species are found in Data S1
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To compare out-of-sample prediction performance of the 
integrated SDM with that of an N-mix model (that uses data of 
type 1 only), we defined a hold-out sample by randomly selecting 
10% of the sites with data type 1 and turned all count data from 
these sites to NAs (861 breeding season counts from 226 sites for 
the Rock Bunting, 618 breeding season counts from 226 sites for 
the Nightingale). Then, we fitted the models using the reduced 
dataset, predicted the out-of-sample count data and calculated 
the Pearson correlation coefficient and the root mean squared 
prediction error (Hooten & Hobbs,  2015) of the mean predic-
tions and the counts. In addition, we approximated the log pre-
dictive density for the out-of-sample counts (Gelman et al., 2014; 
Hooten & Hobbs,  2015) using Monte Carlo integration (Hooten 
& Hefley, 2019). To do so, for each posterior draw retained from 
the analysis in JAGS (n  =  300), we simulated 1,000,000 data 
points for every out-of-sample count using the posterior sample 
estimates of λ and θ for the corresponding site and date from the 
JAGS output. For each out-of-sample count, we then calculated 
the proportion of simulated values that were equal to the corre-
sponding out-of-sample count. Note that the counts are integers 
and so this proportion is an estimate of the probability of the ob-
served datum given the parameter estimates under each model. 
Then we multiplied the resulting values across all hold-out counts. 
This was repeated for all 300 posterior draws we retained from 
the JAGS analysis. To get an estimate for the log predictive den-
sity, we then averaged the resulting 300 values and took the nat-
ural log of this average. If at least one count did not match any of 
the 1,000,000 simulated data points (because the observed count 
was outside of the range of the predicted values), then the prod-
uct of the resulting values for the corresponding posterior sample 
became zero and the logarithm of this was negative infinity. In the 
binomial-N-mixture model fitted to the Nightingale data, this was 
the case for all the 300 posterior draws.
The modelled quantity in both the integrated SDM and the N-mix 
model is latent abundance. In contrast, in the GLM, the modelled 
quantity is observed abundance, while in the site-occupancy model 
it is latent occurrence. Therefore, we could not include the latter two 
in the comparison.

2.4.3  |  Results in Application 1

We estimated the number of territories for all 1  km2 grid cells in 
Switzerland. As a point estimate, we use the posterior median 
(Figure 1). As in Knaus et al. (2018), estimates exceeding a species-
specific maximum abundance were truncated for plotting. We de-
fined this threshold to be the 99% quantile for all predictions ≥0.05 
territories, rounded to the nearest integer.

For the Rock Bunting, the spatial patterns found in abundance are 
quite similar for the integrated SDM, the N-mix model and the GLM, 
whereas the estimates of the latter tended to be slightly lower as they 
do not correct for imperfect detection. Also, for the Nightingale, the 

species distributions estimated by the integrated SDM, the N-mix 
model and the GLM look rather similar. However, the map produced 
by the GLM and the N-mix model miss some pockets where the spe-
cies is estimated to occur according to the integrated SDM and the 
site-occupancy model, for example, in Northern Switzerland. This is 
not astonishing, as the latter two utilize data with much greater spa-
tial coverage. The spatial pattern found by the site-occupancy model 
and the integrated SDM was very similar for both species. However, 
patches of high abundance cannot be identified, and the lack of in-
clusion of abundance can even mask patterns, like the strong prefer-
ence of Rock Bunting for southern exposed slopes than can be seen 
clearly on the other maps. Thus, the site-occupancy model cannot 
provide nuanced predictions for species with local abundances far 
greater than one.

Abundance per grid cell was estimated considerably more pre-
cisely by the integrated SDM than by the N-mix model and the GLM 
(Figure 2).
For the considered model selection metrics, the integrated SDM 
outperformed the N-mix model in both species (Table 3).

2.5  |  Application 2

2.5.1  |  Modelling of abundance over time

For the 20  years of 1999–2018, we modelled annually varying 
abundance of Rock Bunting and Common Nightingale based on 
data from several sources. Both species may reach densities up to 
several territories per 1 km2. We used territory mapping data (data 
type 1 from the Swiss common breeding bird monitoring (Schmid 

F I G U R E  2  Length of the 95% credible interval of the estimated 
abundance per grid cell over all grid cells in Switzerland, assembled 
as violin plots (Adler & Kelly, 2021). Each violin plot summarizes 
41,844 values. No results are shown for the site-occupancy model, 
since the estimates are in different mathematical spaces (here log, 
vs. logit in the site-occupancy model) and therefore cannot be 
compared reasonably
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et al.,  2004) and the Swiss Biodiversity Monitoring (Hintermann 
et al.,  2000). In the former, 267 grid cells of 1  km2 are annually 
surveyed since 1999. In the latter, a different set of 267 grid cells 
of 1  km2 are surveyed on a rotational basis once every 5 years, 
starting in 2001 (NA in the 4 years between). As the Nightingale 
mainly occurs in riverine habitats and in rare occasions in hedge-
rows and forest borders (mainly W Switzerland), it is only rarely 
included (1–12 areas/year) in the regular grid of the Swiss common 
breeding bird monitoring and the Swiss Biodiversity Monitoring 
(Table 4). The Rock Bunting is recorded somewhat more by these 
regular survey schemes. In addition, we used checklist data (citizen 
science data) collected since 1999 (data type 2) which is far more 
common than data type 1. Data type 3 from the wetlands monitor-
ing was obtained on an annual basis and was used as in Application 
1. Here we did not utilize absence-only data (type 4), since we only 
included grid cells where at least one breeding season record was 
made during 1999–2018.

2.5.2  |  Model extension for the temporal dimension

We extended the previous model to estimate temporal trends in 
abundance. The latent abundance (i.e. number of territories), Ni,t, in 
grid cell i and year t is treated as a Poisson random variable with an 
expected value �i,t that we expressed (on the log link scale) as the 
sum of a year effect � and a site effect � as follows:

As before, we had two different observation models that linked 
the observed data to the latent abundance states for each site/year 
combination. For these, we only needed to adapt the base model 

(described above) by adding a temporal dimension. The observed 
number of territories Ci,j,t at grid cell i during survey j and in year t 
(data type 1) was treated as a binomial random variable with index Ni,t 
and success probability �i,t, which again is the per-individual detection 
probability.

As for Application 1, we modelled detection probability again as a 
linear and quadratic function of survey date, but in addition added ran-
dom year effects to allow for systematic differences among the years.

We modelled the number of records of a species per grid cell, 
year and survey (y, data type 2) as the outcome of a binomial distri-
bution with trial size Si,j,t and detection probability pi,j,t; which is again 
the probability to detect at least one of the territories, that is, has a 
species-level interpretation.

As before, we expressed the relationship between the detection 
probabilities per grid cell and per individual as a deterministic func-
tion of local abundance according to the Royle and Nichols  (2003) 
model, that is, exactly as in Equation (6), but now with an additional 
index t for year.

(9)log
(

�i,t
)

= �t + �i , with �i
∼Normal

(

0 �2
site

)

.

(10)Ci,j,t
∼Binomial

(

Ni,t , �i,j,t
)

.

(11)

logit
(

�i,j,t
)

= �t + �1 ∗datei,j,t + �2 ∗date
2
i,j,t
, with �t

∼Normal
(

�� �2
year

)

,

(12)yi,j.t
∼Binomial

(

Si,j,t , pi,j,t
)

(13)pi,j,t = 1 −

(

1−�i,j,t
)Ni,t .

TA B L E  4  Sample sizes in terms of the number of grid cells with observations of the species per year

Replicated counts (data type 1)
Replicated detection/non-detection data 
(data type 2)

Presence-only data 
(data type 3)

Common Nightingale Min: 1, max: 12, tot: 28 Min: 141, max: 576, tot: 1608 Min: 6, max: 15, tot: 26

Rock Bunting Min: 7, max: 44, tot: 97 Min: 104, max: 390, tot: 639 Min: 0, max: 0, tot: 0

Note: Indicated is the minimum and maximum of grid cells with observations per year, the last figure (tot) indicates the total number of grid cells 
where the species was ever detected during the breeding seasons 1999–2018. For data of type 3, we only utilized sites where no detection data 
were available from data type 1 or 2 in the same year.

TA B L E  3  Out-of-sample model comparison results for the N-mix model and the integrated SDM using three model selection criteria

Correlation coefficient RMSPE Log predictive density

N-mix 
model Integrated SDM N-mix model Integrated SDM N-mix model Integrated SDM

Common 
Nightingale

0.47 0.53 4.36 0.73 −Infa −121.82

Rock Bunting 0.65 0.74 0.54 0.48 −221.57 −195.93

Note: The ‘better’ result per metric and species is indicated in bold. Abbreviation: SDM, species distribution model RMSPE: root mean squared 
prediction error.
aThe approximation for log predictive density of the N-mix model for Nightingale resulted in −Inf, as the prediction differed substantially from the 
count in at least one case.
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Annual presence-only data (type 3) were included as in the base 
model (Equation 7) by fixing the occupancy state for grid cell i in year 
t to zi,t = 1 if a species was listed as breeding in the corresponding 
grid cell and year.

By adding the annual abundance estimates over all grid cells and 
dividing these values by the one of 2018, we obtained an estimated 
index of annual population size relative to the estimate for 2018, 
which is this treated as a baseline. As in Application 1, we compared 
the results from the integrated SDM with those obtained from a 
N-mix model, a site-occupancy model, and a Poisson GLM (detec-
tion probability ignored) as implemented in program TRIM (Table 5). 
This latter is widely used to estimate national trends from annual 
count data in Europe (Pannekoek & van Strien,  1991). Neither of 
which used the full information utilized by the integrated SDM. For 
the N-mix model, we used the number of territories detected per 
grid cell and survey (data type 1). For the site-occupancy model, we 
again used all data that were also used in the integrated SDM but 
quantized the number of territories detected per grid cell and sur-
vey to become detection/non-detection data (detection probability 
included).
We again used Bayesian inference and fitted the models in JAGS 
using vague priors for all parameters, running three chains over 
a maximum of 50, 000 iterations and discarding the first half of 
the iterations as a burn-in, which was sufficient to achieve con-
vergence (Rhat < 1.1; Brooks & Gelman, 1998) for all estimated 
parameters in the integrated model and the site-occupancy 
model. For the N-mix model, convergence was achieved for all 
annual estimates for Rock Bunting and for most annual estimates 
for the Nightingale. For the Poisson GLM fitted with TRIM in R-
package ‘rtrim’ (Bogaart et al., 2018), we treated as the response 
the observed total number of territories per year and grid cell 
for the two to three annual surveys combined. Code and data to 
replicate our analysis can be found on https://doi.org/10.5281/
zenodo.5840377.

2.5.3  |  Results in Application 2

The different methods yielded an estimate of the relative annual 
population size compared to the reference year 2018 (Figure 3). For 
the Nightingale, the integrated model estimated a substantial in-
crease in the breeding population particularly over the first 15 years. 
The increase estimated by the site-occupancy model was less in the 

Nightingale. In the results given by TRIM (Poisson GLM) and the N-
mix model, no trend is visible in the estimates for Nightingale. In 
both models, the width of the confidence intervals and the annual 
fluctuations imply that the available data are too sparse for accurate 
and precise trend estimation. For the Rock Bunting, the estimated 
trend in breeding population estimated by the different methods 
that do consider information on abundance in the data is similar, 
indicating an increase in breeding population size. The 95% confi-
dence intervals of the TRIM estimates are smaller than the analo-
gous 95% credible intervals obtained from the integrated SDM and 
the N-mix model. In contrast to the abundance-based models, the 
site-occupancy model estimates a rather stable breeding population 
over the study period for the Rock Bunting.

3  |  DISCUSSION

In biodiversity monitoring and ecology, multiple data sources are 
often available when examining the distribution of a species over 
a large geographical area or its population trend over or a period 
of multiple years. We developed an integrated species distribu-
tion model (SDM) that jointly exploits the information in mul-
tiple, disparate datasets. With our new model, count data and 
detection/non-detection data are jointly used to estimate spa-
tial patterns in abundance or population trends. The information 
content of the sparser, but more valuable, count data (directly 
informing abundance) is fully exploited, which is not the case 
in, for example, site-occupancy models that only allow analysing 
detection/non-detection data. The ‘cheaper’, but typically more 
abundant, detection/non-detection data can increase spatial 
coverage of the data considerably. In addition, detection records 
that are not assigned to a specific date, but have an annual tem-
poral resolution only, can be added into the estimation. Finally, 
it is also possible to include information on ascertained absences 
of a species, for example, for sites with covariate values above 
or below a certain threshold that makes presence of a species 
essentially impossible. Such absence data add yet more informa-
tion to the model and can lead to more accurate parameter es-
timates and predictions. This is especially valuable for sites that 
are rarely visited, or, more generally, if the parameter space over 
which we want to predict extends beyond the extent in the data, 
but we can be certain that a species is absent at one end of that 
range, as is typically the case for the broad elevation gradient of 

Integrated 
SDM TRIM

N-mix 
model

Site-
occupancy 
model

Data included Types 1–3 Aggregation of type 1 Type 1 Types 1–3

Modelled 
quantity

Abundance Abundance Abundance Occupancy 
(P/A)

Detection 
probability

Included Ignored Included Included

TA B L E  5  Overview on the four 
modelling approaches in Application 2

https://doi.org/10.5281/zenodo.5840377
https://doi.org/10.5281/zenodo.5840377
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species in Switzerland. Another example might be the inferred 
absence in forest-only sites for an obligate open-country nester 
such as the Skylark (Alauda arvensis). Finally, the integration of 
presence-only data allows making use of disparate monitoring 
programmes where information on the observation process is 
lacking. Regarding trend estimation, integration of presence-
only data comes with a certain risk if the observation effort 
increases over time. However, we assume that this is less prob-
lematic as long as there is no trend in observation effort (e.g. in 
a monitoring programme with a fixed set of annually surveyed 
sites, as in our case of the wetland monitoring scheme). For spe-
cies distribution estimation, the inclusion of presence-only leads 
to biased results when some sites are more likely to be visited 
than others (‘observer bias’; Warton et al., 2013). In our analyses, 
the proportion of presence-only data among all data is low, but 
as soon as presence-only data make up a more substantial part 
of all data, we recommend considering a weighting procedure 
like the one proposed by Fletcher Jr. et al. (2019), or the methods 
proposed by Dorazio (2014) or Fithian et al. (2015) for data inte-
gration. Compared to the scenarios described by Dorazio (2014), 
Fithian et al.  (2015) or Koshkina et al.  (2017) that focus on a 
sophisticated way of combining (low quality) presence-only 
data with (high quality) data from more structured surveys, 
our most important ‘low-quality’ data source consists of detec-
tion/non-detections. In contrast to detection-only, detection/
non-detection data come with zeros, which reduces a potential 
influence of site selection bias on covariate estimates (Guillera-
Arroita et al., 2015; Lahoz-Monfort et al., 2014). We assume that, 
in our case, the method described here is adequate to exploit 
the entire information content of this data, without inducing a 
site-selection-caused bias in abundance estimation. The results 
of the model selection conducted in the spatial application are in 

agreement with Zipkin et al. (2017) who showed that model esti-
mates improved when detection/non-detection were added and 
jointly analysed with count data, compared to analysing count 
data alone. In case some of the four data sources are lacking, the 
described analysis can be accommodated by omitting the cor-
responding data preparation steps or sub-models. Considering 
presence-only data or ascertained absences is still possible if 
either detection/non-detection or count data are lacking. In 
the latter case, the fitted model will either be an adaptation 
of the Royle-Nichols’ (Royle & Nichols,  2003) model, or a site-
occupancy model as in our applications. If both count and detec-
tion/non-detection data are lacking, the presented framework is 
not suitable.

If data are sparse, uncertainty intervals and interannual 
variability of the estimates from the N-mix model and from 
Poisson GLM were much larger than those from our integrated 
SDM (Figures  2 and 3). This is not surprising, as these meth-
ods can make use of a more limited proportion of the data only. 
Integrating ‘cheaper’ detection/non-detection data that is avail-
able for many more sites supports accurate and precise param-
eter estimation by the integrated SDM and the site-occupancy 
model. For trend estimation, the credible intervals of the site-
occupancy estimates were smaller than those of the integrated 
SDM (Figure 3). However, the overall changes identified by the 
site-occupancy model were smaller than the one found by the 
other methods (Figure  3). Most likely, this is because changes 
in population size within occupied sites that do not lead to a 
change in the sites' occupancy state (such for instance a decline 
from 3 to 1) do not ‘count’ when analysing the data with a site-
occupancy model.

Fitting the integrated SDM takes up more computer runtime 
which may be considered a disadvantage. The amount of time needed 

F I G U R E  3  Point estimates and 95% uncertainty intervals of the annual breeding population of Common Nightingale and Rock Bunting 
in Switzerland, indexed such that the year 2018 is assigned a value of 1 and thus treated as a reference. We took posterior means as a point 
estimate in the first three models, which we fitted with Bayesian methods, and the mean estimate based on the imputed time totals for the 
last. Likewise, uncertainty is described by a 95% credible interval for the Bayesian analyses, and by a 95% confidence interval from TRIM. 
Also note the truncated y-axis for enhanced readability
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to achieve convergence of the Markov chains in the Bayesian analy-
ses is up to one order of magnitude greater for the integrated SDM, 
compared with the site-occupancy model that uses the same amount 
of data (though less information on abundance, as abundance infer-
ences are much more indirect when modelling occupancy probability). 
However, as computer power is flexibly available nowadays and get-
ting cheaper all the time, this should not be seen as a major disadvan-
tage. Still, it can complicate data exploration and model development, 
as even a short test run might take quite some time. However, the im-
provement generated using all existing data can arguably compensate 
for the additional time investment in most cases. We hope that our 
R-code provided to combine the available data will lower the hurdle to 
tackle this endeavour.

Recently, several researchers have developed methods that 
allow integrating observation data of different quality (e.g. 
Dorazio, 2014; Pagel et al., 2014; Pacifici et al., 2017; Koshkina 
et al., 2017; Zipkin et al., 2017; Fletcher Jr. et al., 2019; Chapter 
10 in Kéry & Royle,  2021). To our knowledge, however, ours is 
the first attempt where count data, detection/non-detection 
data, presence-only data and information on ascertained ab-
sences are all jointly analysed within a single, integrated SDM. 
We assume that our approach is particularly valuable when the 
amount of available data from one single data source only is too 
sparse to obtain reasonably precise estimates (rare species) or 
when changes in abundance may be masked when considering 
detection/non-detection only. In addition, drawbacks caused by 
a varying amount of data over time, space, or, more generally, 
covariate gradients, could be mitigated (Zipkin et al.,  2017), as 
making use of a broader data base generally enhances the ro-
bustness of an analysis.

ACKNOWLEDG EMENTS
We thank Mevin Hooten for sharing R-code on model validation. 
Also, we are very grateful to all ornithologists that – mostly as volun-
teers – contribute invaluable field work in the different monitoring 
schemes that we describe in this paper. No permits were required 
for this research. Open Access Funding provided by Schweizerische 
Vogelwarte.

CONFLIC T OF INTERE S T
The authors declare no conflicts of interest.

DATA AVAIL ABILIT Y S TATEMENT
Code and data to replicate the presented analyses in Application 1 
and 2 is archived on the vogelwarte.ch Open Repository and Archive 
(https://doi.org/10.5281/zenodo.5840377).

ORCID
Nicolas Strebel   https://orcid.org/0000-0003-2919-6732 

R E FE R E N C E S
Adler, D. & Kelly, S. T. (2021). vioplot: violin plot. R package version 0.3.7. 

https://github.com/TomKe​llyGe​netic​s/vioplot

Barker, R. J., & Sauer, J. R. (1992). Modelling population change from 
time series data. In Wildlife 2001: Populations (pp. 182–194). 
Springer.

Besbeas, P., Freeman, S. N., Morgan, B. J., & Catchpole, E. A. (2002). 
Integrating mark–recapture–recovery and census data to estimate 
animal abundance and demographic parameters. Biometrics, 58(3), 
540–547.

Bibby, C., Jones, M., & Marsden, S. (2000). Bird surveys (p. 137). Birdlife 
International.

Bogaart, P., van der Loo, M., & Pannekoek, J. (2018). Rtrim: Trends 
and indices for monitoring data. R package version 2.0.6. https://
CRAN.R-proje​ct.org/packa​ge=rtrim

Brooks, S. P., & Gelman, A. (1998). General methods for monitoring 
convergence of iterative simulations. Journal of Computational and 
Graphical Statistics, 7, 434–455.

Cooper, C. B., Dickinson, J., Phillips, T., & Bonney, R. (2007). Citizen sci-
ence as a tool for conservation in residential ecosystems. Ecology 
and Society, 12(2), 11.

Dail, D., & Madsen, L. (2011). Models for estimating abundance from 
repeated counts of an open metapopulation. Biometrics, 67(2), 
577–587.

Dickinson, J. L., Shirk, J., Bonter, D., Bonney, R., Crain, R. L., Martin, J., 
Phillips, T., & Purcell, K. (2012). The current state of citizen science 
as a tool for ecological research and public engagement. Frontiers in 
Ecology and the Environment, 10(6), 291–297.

Dorazio, R. M. (2014). Accounting for imperfect detection and survey 
bias in statistical analysis of presence-only data. Global Ecology and 
Biogeography, 23(12), 1472–1484.

Fewster, R. M., Buckland, S. T., Siriwardena, G. M., Baillie, S. R., & Wilson, 
J. D. (2000). Analysis of population trends for farmland birds using 
generalized additive models. Ecology, 81, 1970–1984.

Fithian, W., Elith, J., Hastie, T., & Keith, D. A. (2015). Bias correction 
in species distribution models: Pooling survey and collection 
data for multiple species. Methods in Ecology and Evolution, 6(4), 
424–438.

Fletcher, R. J., Jr., Hefley, T. J., Robertson, E. P., Zuckerberg, B., 
McCleery, R. A., & Dorazio, R. M. (2019). A practical guide for 
combining data to model species distributions. Ecology, 100(6), 
e02710.

Freeman, S. N., Noble, D. G., Newson, S. E., & Baillie, S. R. (2007). 
Modelling population changes using data from different surveys: 
The common birds census and the breeding bird survey. Bird Study, 
v. 54, 61–72.

Gelman, A., Hwang, J., & Vehtari, A. (2014). Understanding predictive 
information criteria for Bayesian models. Statistics and Computing, 
24(6), 997–1016.

Guélat, J., & Kéry, M. (2018). Effects of spatial autocorrelation and 
imperfect detection on species distribution models. Methods in 
Ecology and Evolution, 9(6), 1614–1625.

Guillera-Arroita, G., Lahoz-Monfort, J. J., Elith, J., Gordon, A., Kujala, 
H., Lentini, P. E., MA, M. C., Tingley, R., & Wintle, B. A. (2015). Is 
my species distribution model fit for purpose? Matching data and 
models to applications. Global Ecology and Biogeography, 24(3), 
276–292.

Guisan, A., Lehmann, A., Ferrier, S., Austin, M., Overton, J. M. C., 
Aspinall, R., & Hastie, T. (2006). Making better biogeographical 
predictions of species' distributions. Journal of Applied Ecology, 
43(3), 386–392.

Guisan, A., & Thuiller, W. (2005). Predicting species distribution: Offering 
more than simple habitat models. Ecology Letters, 8, 993–1009.

Hintermann, U., Weber, D., Zangger, A., & Schmill, J. (2000). Biodiversity 
monitoring in Switzerland. Schriftenreihe für Landschaftspflege und 
Naturschutz, 62, 47–58.

Hirzel, A. H., Le Lay, G., Helfer, V., Randin, C., & Guisan, A. (2006). 
Evaluating the ability of habitat suitability models to predict species 
presences. Ecological Modelling, 199(2), 142–152.

https://doi.org/10.5281/zenodo.5840377
https://orcid.org/0000-0003-2919-6732
https://orcid.org/0000-0003-2919-6732
https://github.com/TomKellyGenetics/vioplot
https://cran.r-project.org/package=rtrim
https://cran.r-project.org/package=rtrim


574  |    STREBEL et al.

Hooten, M. B., & Hefley, T. J. (2019). Bringing Bayesian models to life. CRC 
Press.

Hooten, M. B., & Hobbs, N. T. (2015). A guide to Bayesian model selec-
tion for ecologists. Ecological Monographs, 85(1), 3–28.

Inger, R., Gregory, R., Duffy, J. P., Stott, I., Voříšek, P., & Gaston, K. J. (2015). 
Common European birds are declining rapidly while less abundant 
species' numbers are rising. Ecology Letters, 18(1), 28–36.

Isaac, N. J., Jarzyna, M. A., Keil, P., Dambly, L. I., Boersch-Supan, P. H., 
Browning, E., Freeman, S. N., Golding, N., Guillera-Arroita, G., 
Henrys, P. A., & Jarvis, S. (2020). Data integration for large-scale 
models of species distributions. Trends in Ecology & Evolution, 35(1), 
56–67.

Johnston, A., Hochachka, W. M., Strimas-Mackey, M. E., Gutierrez, V. R., 
Robinson, O. J., Miller, E. T., Auer, T., Kelling, S. T., & Fink, D. (2019). 
Best practices for making reliable inferences from citizen science 
data: Case study using eBird to estimate species distributions. 
BioRxiv, 574392.

Kammann, E. E., & Wand, M. P. (2003). Geoadditive models. Journal of the 
Royal Statistical Society: Series C (Applied Statistics), 52, 1–18.

Kellner, K. (2019). jagsUI: A wrapper around 'rjags' to streamline 'JAGS' 
analyses. R package version 1.5.1. https://CRAN.R-proje​ct.org/
packa​ge=jagsUI

Kéry, M., & Royle, J. A. (2021). Applied hierarchical modeling in ecology: 
Analysis of distribution, abundance and species richness in R and 
BUGS: Volume 2: Dynamic and advanced models. Academic Press.

Kéry, M., Royle, J. A., & Schmid, H. (2005). Modeling avian abundance 
from replicated counts using binomial mixture models. Ecological 
Applications, 15, 1450–1461.

Kéry, M., Royle, J. A., Schmid, H., Schaub, M., Volet, B., Häfliger, G., & 
Zbinden, N. (2010). Site-occupancy distribution modeling to cor-
rect population-trend estimates derived from opportunistic obser-
vations. Conservation Biology, 24, 1388–1397.

Kéry, M., & Schmid, H. (2006). Estimating species richness: Calibrating a 
large avian monitoring programme. Journal of Applied Ecology, 43(1), 
101–110.

Knaus, P., Antoniazza, S., Wechsler, S., Guélat, J., Kéry, M., Strebel, N., & 
Sattler, T. (2018). Swiss breeding bird atlas 2013–2016. Distribution 
and population trends of birds in Switzerland and Liechtenstein. Swiss 
Ornithological Institute.

Koshkina, V., Wang, Y., Gordon, A., Dorazio, R. M., White, M., & Stone, 
L. (2017). Integrated species distribution models: Combining 
presence-background data and site-occupancy data with imperfect 
detection. Methods in Ecology and Evolution, 8(4), 420–430.

Lahoz-Monfort, J. J., Guillera-Arroita, G., & Wintle, B. A. (2014). Imperfect 
detection impacts the performance of species distribution models. 
Global Ecology and Biogeography, 23, 504–515.

Lebreton, J. D., Morgan, B. J., Pradel, R., & Freeman, S. N. (1995). A simul-
taneous survival rate analysis of dead recovery and live recapture 
data. Biometrics, 51(4), 1418–1428.

MacKenzie, D. I., Nichols, J. D., Lachman, G. B., Droege, S., Andrew 
Royle, J., & Langtimm, C. A. (2002). Estimating site occupancy 
rates when detection probabilities are less than one. Ecology, 
83(8), 2248–2255.

Miller, D. A., Pacifici, K., Sanderlin, J. S., & Reich, B. J. (2019). The recent 
past and promising future for data integration methods to esti-
mate species' distributions. Methods in Ecology and Evolution, 10(1), 
22–37.

Müller, C. (2015). Monitoring Feuchtgebiete. Mit Stiefeln und Ausdauer auf 
den Spuren seltener Arten. Presentation, accessed on https://www.
vogel​warte.ch/downl​oads/files/​proje​kte/ueber​wachu​ng/CMu_
Mitar​beite​rtagu​ng_Sempa​ch_2015.pdf. Sempach.

Pacifici, K., Reich, B. J., Miller, D. A., Gardner, B., Stauffer, G., Singh, S., 
McKerrow, A., & Collazo, J. A. (2017). Integrating multiple data 
sources in species distribution modeling: A framework for data fu-
sion. Ecology, 98(3), 840–850.

Pacifici, K., Reich, B. J., Miller, D. A., & Pease, B. S. (2019). Resolving mis-
aligned spatial data with integrated species distribution models. 
Ecology, 100(6), e02709.

Pagel, J., Anderson, B. J., O'Hara, R. B., Cramer, W., Fox, R., Jeltsch, F., 
Roy, D. B., Thomas, C. D., & Schurr, F. M. (2014). Quantifying range-
wide variation in population trends from local abundance surveys 
and widespread opportunistic occurrence records. Methods in 
Ecology and Evolution, 5(8), 751–760.

Pannekoek, J., & van Strien, A. (1991). TRIM: Trends & indices for monitor-
ing data. Statistics Netherlands.

Plummer, M. (2017). JAGS: A program for analysis of Bayesian graphical 
models using Gibbs sampling. Release 4.3.0.

R Core Team (2018). R: A language and environment for statistical comput-
ing. R foundation for statistical computing. www.R-proje​ct.org

Renner, I. W., Louvrier, J., & Gimenez, O. (2019). Combining multiple 
data sources in species distribution models while accounting 
for spatial dependence and overfitting with combined penalized 
likelihood maximization. Methods in Ecology and Evolution, 10(12), 
2118–2128.

Rodrigues, A. S., Pilgrim, J. D., Lamoreux, J. F., Hoffmann, M., & Brooks, 
T. M. (2006). The value of the IUCN red list for conservation. Trends 
in Ecology & Evolution, 21(2), 71–76.

Rossman, S., Yackulic, C. B., Saunders, S. P., Reid, J., Davis, R., & Zipkin, E. 
F. (2016). Dynamic N-occupancy models: Estimating demographic 
rates and local abundance from detection-nondetection data. 
Ecology, 97(12), 3300–3307.

Royle, J. A. (2004). N-mixture models for estimating population size from 
spatially replicated counts. Biometrics, 60, 108–115.

Royle, J. A., & Nichols, J. D. (2003). Estimating abundance from re-
peated presence–absence data or point counts. Ecology, 84(3), 
777–790.

Sattler, T., Bontadina, F., Hirzel, A. H., & Arlettaz, R. (2007). Ecological 
niche modelling of two cryptic bat species calls for a reassess-
ment of their conservation status. Journal of Applied Ecology, 44, 
1188–1199.

Sauer, J. R., & Link, W. A. (2011). Analysis of the north American 
breeding bird survey using hierarchical models. The Auk, 128(1), 
87–98.

Schaub, M., & Kéry, M. (2022). Integrated population models – A Bayesian 
hierarchical perspective using R and BUGS. Elsevier/Academic Press.

Schmid, H., Zbinden, N., & Keller, V. (2004). Überwachung der 
Bestandsentwicklung häufiger Brutvögel in der Schweiz. Swiss 
Ornithological Institute.

Sutherland, W. J., Pullin, A. S., Dolman, P. M., & Knight, T. M. (2004). 
The need for evidence-based conservation. Trends in Ecology & 
Evolution, 19, 305–308.

Tyre, A. J., Tenhumberg, B., Field, S. A., Niejalke, D., Parris, K., & 
Possingham, H. P. (2003). Improving precision and reducing bias in 
biological surveys: Estimating false-negative error rates. Ecological 
Applications, 13(6), 1790–1801.

Warton, D. I., Renner, I. W., & Ramp, D. (2013). Model-based control of 
observer bias for the analysis of presence-only data in ecology. 
PLoS ONE, 8(11), 1–9.

Zipkin, E. F., Rossman, S., Yackulic, C. B., Wiens, J. D., Thorson, J. T., Davis, 
R. J., & Grant, E. H. C. (2017). Integrating count and detection–
nondetection data to model population dynamics. Ecology, 98(6), 
1640–1650.

https://cran.r-project.org/package=jagsUI
https://cran.r-project.org/package=jagsUI
https://www.vogelwarte.ch/downloads/files/projekte/ueberwachung/CMu_Mitarbeitertagung_Sempach_2015.pdf
https://www.vogelwarte.ch/downloads/files/projekte/ueberwachung/CMu_Mitarbeitertagung_Sempach_2015.pdf
https://www.vogelwarte.ch/downloads/files/projekte/ueberwachung/CMu_Mitarbeitertagung_Sempach_2015.pdf
http://www.r-project.org


    |  575STREBEL et al.

BIOSKE TCH
Our interest is to develop and apply methods for analysing animal 
monitoring data, ranging from unstructured citizen science data 
over data originating from structured monitoring programmes 
up to data including demographic information on the individual 
level. We mainly focus on temporal trends and species distribu-
tion modelling.
Authors' contributions: NS and TS developed the idea and con-
cept, NS and MK the methodology. NS conducted the analysis 
and led the writing of the manuscript. JG, MK and TS contributed 
to the manuscript.

SUPPORTING INFORMATION
Additional supporting information may be found in the online 
version of the article at the publisher’s website.

How to cite this article: Strebel, N., Kéry, M., Guélat, J., & 
Sattler, T. (2022). Spatiotemporal modelling of abundance from 
multiple data sources in an integrated spatial distribution 
model. Journal of Biogeography, 49, 563–575. https://doi.
org/10.1111/jbi.14335

https://doi.org/10.1111/jbi.14335
https://doi.org/10.1111/jbi.14335

