Published April 21, 2022 | Version V1
Journal article Open

Advancing Radiation-Detected Resonance Ionization towards Heavier Elements and More Exotic Nuclides

  • 1. Abteilung Superschwere Elemente Physik, GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt, Germany; Department Chemie—Standort TRIGA, Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany
  • 2. Abteilung Superschwere Elemente Physik, GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt, Germany; Faculty of Science and Engineering, University of Groningen, 9747 AG Groningen, The Netherlands; Sektion Superschwere Elemente Physik, Helmholtz Institut Mainz, 55099 Mainz, Germany
  • 3. Abteilung Superschwere Elemente Physik, GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt, Germany; Department Chemie—Standort TRIGA, Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany; Sektion Superschwere Elemente Physik, Helmholtz Institut Mainz, 55099 Mainz, Germany
  • 4. Abteilung Superschwere Elemente Physik, GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt, Germany; Sektion Superschwere Elemente Physik, Helmholtz Institut Mainz, 55099 Mainz, Germany
  • 5. Department of Physics and Astronomy, KU Leuven, 3000 Leuven, Belgium
  • 6. Abteilung Superschwere Elemente Physik, GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt, Germany; Institut für Physik, Universität Greifswald, 17489 Greifswald, Germany
  • 7. Department Chemie—Standort TRIGA, Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany
  • 8. Abteilung Superschwere Elemente Physik, GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt, Germany; Institut für Kernphysik, Technische Universität Darmstadt, 64289 Darmstadt, Germany
  • 9. Irfu, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
  • 10. Institut für Angewandte Physik, Technische Universität Darmstadt, 64289 Darmstadt, Germany

Description

Journal article in the Special Issue "Atomic Structure of the Heaviest Elements" in Atoms submitted in the context of the "Virtual Workshop on the Atomic Structure of Actinides & Related Topics" conference proceedings.

In our article, we report on the recent developments in the Radiation Detected Resonance Ionization Spectroscopy (RADRIS) method for applications to the heaviest actinides. This method is based on laser spectroscopy, which is a powerful tool to study the atomic and nuclear structure of these exotic elements allowing to benchmark theoretical studies. As the heaviest actinides do not naturally occur on earth, they need to be artificially produced in atom-at-a-time quantities at large-scale accelerator facilities and studied immediately after production due to their short half-lives. The RADRIS method is dedicated to the study of the heaviest elements, as common laser spectroscopy techniques are not capable of performing such challenging low-yield experiments. Only recently, the first laser spectroscopic investigation of nobelium (Z=102) was performed by applying the RADRIS technique in a buffer-gas filled stopping cell at the GSI in Darmstadt, Germany. To extend this technique for more short-lived and more long-lived nuclides and to enhance the overall efficiency of RADRIS, multiple developments were performed, which are described in our article. With the recent advances in this technique, the first laser spectroscopy of the short-lived 251No (t1/2=0.8s) will become possible with RADRIS and the newly enhanced efficiency will benefit future experiments on the search for atomic levels in the heaviest actinide element, lawrencium (Z=103).

Files

atoms-10-00041-v2 (1).pdf

Files (2.1 MB)

Name Size Download all
md5:701e6243866be0c9222821324f0defc1
2.1 MB Preview Download

Additional details

Funding

LISA – Laser Ionization and Spectroscopy of Actinide elements 861198
European Commission
LRC – Laser Resonance Chromatography of Superheavy Metals 819957
European Commission