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Abstract—Reconfigurable intelligent surface (RIS) is regarded
as a key technology for the next generation of wireless communi-
cations. Recently, the combination of RIS and spatial modulation
(SM) or space shift keying (SSK) has attracted a lot of interest in
the wireless communication area by achieving a trade-off between
spectral and energy efficiency. In this paper, by generalizing
RIS-aided SM/SSK system to a special case of conventional SM
system, we investigated deep learning based detection in RIS-
aided SM/SSK systems. Based on the idea of deep unfolding,
we studied the model-driven deep learning detection for RIS-
aided SM systems and compare the performance against the
data-driven deep learning detectors.

Index Terms—reconfigurable intelligent surface, spatial mod-
ulation, deep learning, deep unfolding

I. INTRODUCTION

A. RIS-SSK/SM

Future wireless communication is expected to provide reli-
able connections between a large amount of devices with lim-
ited energy consumption. To overcome the unreliable wireless
communication environment, reconfigurable intelligent surface
(RIS) is considered as an important approach to enhance
the classical communication channels [1], [2]. By imposing
customized phase shifts to the incident waves, an RIS can
appropriately shape the scattered waves towards specified
locations [3], [4]. Compared to traditional relays, an RIS does
not need power amplifiers, thus reducing the interference and
power consumption [5].

Recently, the idea of combing RIS and spatial modulation
(SM) is getting heated discussion. In [6], Basar et al. proposed
to utilize the RIS to maximize the received signal to noise ratio
(SNR) on a chosen antenna of the receiver. In this paper, by
generalizing RIS-SSK/SM to a special case of conventional
SM system, we aim to investigate deep learning detectors for
RIS-SSK/SM.

B. Deep Unfolding

In deep learning, the structure design of a neural network
is critical. To integrate the model expert knowledge into the
network structure and design model-driven deep learning (DL)
detectors, instead of using a conventional deep neural network
(DNN), deep unfolding [7] takes an iterative algorithm with a
fixed number of iterations, unfolds its structure, and introduces
a number of trainable parameters. The basic idea of deep
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Fig. 1: The framework of an RIS-aided SM system.

unfolding is to treat an iteration as a layer in a neural network.
This model-driven DL approach can achieve or exceed the
performance of corresponding iterative algorithms since the
advantages of model-driven and data-driven approach are
effectively complementary to each other. Deep unfolding can
mitigate the negative impact of time-varying channels, reduce
the number of trainable parameter in the neural network and
accelerate the convergence.

C. Literature Study

By unfolding the model-based iterative detection algorithms
into a neural network, there has a surge of works on deep
unfolding of multiple-input multiple-output (MIMO) detection
in recent years. Unfolded iterative soft thresholding algo-
rithm (ISTA) and unfolded alternating direction method of
multipliers (ADMM) are proposed in [8] and [9], separately.
In [10], it is theoretically proved that deep unfolding will
guarantee a better performance against the original iterative
algorithm. It is also proved that data-driven DL detector can
approach the optimal maximum a posteriori (MAP) detector
with enough training, while the performance of the model-
driven DL detector depends on the original iterative algorithm.

The rest of this paper is organized as follows. The sys-
tem model and the traditional detection algorithms for RIS-
SSK/SM systems are introduced in Section II. The data-driven
and the model-driven DL detectors are presented in Sections
III. Simulation results are provided in Section IV followed by
the conclusion in Section V.

II. RIS-SSK/SM

A. System Model

Based on the concept of access-point-based RIS introduced
in [11], RIS-SSK/SM scheme is proposed in [6]. A schematic
diagram of RIS-aided SM system is given in Fig. 1. The RIS



is a part of the transmitter, it reflects the signals generated by
a near (radio frequency) RF source in a deliberate manner to
convey information bits. We consider an RIS consists of N
passive and low-cost reflector elements (reconfigurable meta-
surfaces) and a receiver with NR antennas, The receiver lies
in the far-field of the RIS and does not receive transmission
from the RF source. The wireless fading channel between the
l-th receive antenna of the receiver and i-th reflector element
is characterized by gl,i = βl,ie

−jψl,i for l = 1, · · · , NR and
i = 1, · · · , N , and follows CN (0, 1) distribution under the
assumption of flat Rayleigh fading channels, where βl,i and
ψl,i are the absolute value and phase of gl,i, respectively. For
intelligent reflection, the RIS has the knowledge of channel
phases ψl,i for all l and i. We also assume that all wireless
channels are uncorrelated and the receiver has perfect channel
state information (CSI).

In each transmission of RIS-SSK, log2(NR) bits are utilized
to choose one out of NR receive antennas. After the antenna
selection, the RIS phase shifts are adjusted to maximize the
SNR at the target receive antenna. Assuming the chosen
antenna index is u, the phase shifts of the RIS are adjusted as

Ψ = [ejϕu,1 , ..., ejϕu,N ]T ∈ CN×1 (1)

where ϕu,i = − arg(gu,i) = ψu,i for i = 1, · · · , N .
To further improve the spectral efficiency, an RIS-SM

system conveys extra log2M bits in each transmission to
modulate a phase shift keying (PSK) or quadrature amplitude
modulation (QAM) symbol, which is transmitted from the RF
source to the RIS.

Denote G = {gl,i, l = 1, · · · , NR, i = 1, · · · , N} as the
channel matrix between the RIS and the base station (BS)
with NR receiver antennas, the received signal ȳ ∈ CNR×1

can be expressed as

RIS-SSK: ȳ = GΨ+ n̄ (2)

RIS-SM: ȳ = GΨx+ n̄ (3)

where n̄ ∈ CNR×1 is the additive white Gaussian noise
(AWGN), which follows CN (0NR×1, N0INR×1) with N0

denoting the noise power. In RIS-SM, x ∈ S is the modulated
M -PSK/QAM signal drawn from a discrete constellation S.

B. ML and Greedy Detection
The maximum likelihood (ML) detector for RIS-SSK/SM

[6] is given as

ûRIS−SSK
ML = arg min

u∈{1,...,NR}

∥∥∥ȳ −G
[
ejϕu,1 , ..., ejϕu,N

]T∥∥∥2
2

(4)(
ûRIS−SM
ML , x̂RIS−SM

ML

)
= arg min

u∈{1,...,NR},x∈S

∥∥∥ȳ −G
[
ejϕu,1 , ..., ejϕu,N

]T
x
∥∥∥2
2

(5)

The authors in [6] also proposed a greedy detector (GD) with
reduced complexity to estimate the activated antenna index,
which is given as

û
RIS−SSK/SM
GD = argmax

i
|yi| (6)

where yi is the i-th element of the received ȳ. After the
estimation of u using (6), an estimation of x in RIS-SM can
be obtained as

x̂RIS−SM
GD = argmin

x

∣∣∣∣∣yu − x

N∑
i=1

βu,i

∣∣∣∣∣
2

(7)

C. RIS-SM: A special case of conventional SM

Let B be a N × NR matrix whose elements {bl,i} are
described as

bl,i = g∗l,i/ |gl,i| = ejψl,i , (8)

then we can rewrite (2) and (3) as

ȳ = GBc̄+ n̄, (9)

where c̄ is defined for RIS-SSK and RIS-SM separately as

RIS-SSK: c̄ =

0, ..., 1︸︷︷︸
u−th

, ..., 0

T

RIS-SM: c̄ =

0, ..., x︸︷︷︸
u−th

, ..., 0

T
(10)

Thus, (2) and (3) can be written as

ȳ = H̄eqc̄+ n̄, (11)

where H̄eq is the equivalent channel matrix defined as

H̄eq = GB. (12)

In fact, under the assumption that G being flat Rayleigh
fading channel, when N ≫ 1, for i, j = 1, · · · , NR and
j ̸= i, we can obtain the distribution (see Appendix A) of
the diagonal and non-diagonal elements of H̄eq as

hii ∼ N
(
N

2

√
π,
N

4
(4− π)

)
,

hij ∼ CN (0, N) ,

(13)

Therefore, when N ≫ 1, the distortion of H̄eq mainly comes
from the diagonal element, which explains the advantage of
greedy detection in RIS-SSK/SM.

From the expression in (11), we can observe that the RIS-
SM system is equivalent to the conventional SM system with
the difference in the channel matrix. Therefore, the detection
of RIS-SM can utilize the variety of detection algorithms in
conventional SM systems.

III. DETECTION BASED ON DEEP LEARNING

In this section, we introduce data-driven and model-driven
DL detectors separately. To avoid handling complex values in
detection, (11) is re-parameterized into a real-valued signal
model as

y = Hc+ n, (14)

where
y =

[
Re (ȳ)
Im (ȳ)

]
∈ R2NR×1 (15)
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Fig. 2: Network structures for the data-driven DL detectors.

c =

[
Re (c̄)
Im (c̄)

]
∈ R2NR×1 (16)

n =

[
Re (n̄)
Im (n̄)

]
∈ R2NR×1 (17)

and

H =

[
Re

(
H̄eq

)
−Im

(
H̄eq

)
Im

(
H̄eq

)
Re

(
H̄eq

) ]
∈ R2NR×2NR (18)

where Re (·) and Im (·) denote the real and imaginary parts
separately. In the following, we introduce the data-driven and
model-driven DL detectors for RIS-SSK/SM, respectively.

A. Data-driven DL Detector

We consider a data-driven DL detector with a fully-
connected ReLU DNN, the network structure is illustrated in
Fig. 2. The deep neural network (DNN) of the detector consists
of input and output layers, l ∈ N hidden layers and neuron
assignment d = (d0, d1, ..., dl, dl+1) ∈ Nl+1.

The number of nodes in the input layer is determined by
the knowledge of CSI at the receiver. Denote the output of
the DNN as b, and the input of the DNN is a. When CSI is
unknown, the input of the DNN is a = {y}, thus we have
d0 = 2NR for the input layer of RIS-SSK/SM. When CSI is
available, the input of the DNN is a = {y, vec (H)}, where
vec(·) stands for vectorization. In this case, we have d0 =
2NR + 4N2

R for the input layer of RIS-SSK/SM.
The binary cross entropy (BCE) between the output b of

the DNN and the one-hot encoding of c̄ is adopted as the loss
function, which can be expressed as

floss = BCE
(
b, b̄

)
, (19)

where b̄ is the one-hot encoding of c̄ and is defined as

b̄ =

0, ..., 1︸︷︷︸
υ−th

, ..., 0

T (20)

In RIS-SSK, υ is the chosen antenna index u. In RIS-SM,
when the modulated signal x is the m-th constellation in S,
we have υ =M(u− 1) +m. Therefore, we have dl+1 = NR
for RIS-SSK and dl+1 =MNR for RIS-SM.

The set of all trainable parameters of the DNN can be
expressed as

Θ = {vec (Wi) ,bi}li=0 , (21)

ĉi

Input:  H, y, ĉi

HTHĉi
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i
B

i
C
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ĉi+1

ReLU

Fig. 3: Schematic diagram of the i-th iteration of D3.

where Wi ∈ Rdi+1×di is the weight matrix connecting the
i-th layer to the (i + 1)-th layer, and bi ∈ Rdi+1 is the bias
vector of the (i + 1)-th layer for i ∈ {0, 1, ..., l}. The total
number of trainable parameters is

∑l
i=0 di+1 (di + 1).

For the activation function, we choose rectified linear units
(ReLU) for the hidden layers and softmax for the output layer.
Finally, the DNN can be expressed as

b = ψdl+1

(
Al

(
φdl

(
Al−1

(
φdl−1

(· · · (φd1 (A0 (a))))
))))

(22)
where ψdl+1

: Rdl+1 → Rdl+1 is the entry-wise softmax func-
tion, Ai: Rdi → Rdi+1 is the affine transformation with weight
Wi and bias bi and φdi : Rdi → Rdi is the entry-wise rectified
linear units (ReLU) activation function for i ∈ {0, ..., l}.

For ease of notation, we denote the data-driven fully con-
nected DL detector w/o CSI information as D1 and D2,
respectively.

B. Model-driven DL Detector with CSI

In this section we introduce the model-driven DL detector
based on deep unfolding. Based on the idea of well-known
gradient descent, we can obtain the estimated ĉ in an iterative
fashion as:

ĉi+1 = ĉi − δi
∂∥y −Hc∥2

∂c
|c=ĉi , (23)

where c1 can be initialized as zeros. Thus we obtain

ĉi+1 = ĉi + 2δiH
Ty − 2δiH

THĉi. (24)

Consequently, following the idea of deep unfolding, we can
design a L-layer neural network by unfolding the iterations in
(24) as:

ĉi+1 = φ
(
ĉi − Bi

(
HTy

)
+ Ci

(
HTHĉi

))
(25)

where φ: R2NR → R2NR is the entry-wise ReLU activation
function for i ∈ {0, ..., l}, Bi, Ci: R2NR → R2NR are
the affine transformations with weight W1,i,W2,i and bias
b1,i,b2,i, respectively. For simplicity, we denote the model-
driven detector as D3. In Fig. 3, we plot the i-th iteration of
D3, the whole signal-flow graph of D3 can be obtained by
stack multiple Fig. 3.

The set of trainable parameters of D3 is given as

Θ = {vec (W1,i) ,b1,i, vec (W2,i) ,b2,i}Li=1 (26)

The total number of trainable parameters is 2NRL (2NR + 1).
The loss function is defined as the mean squared error (MSE)



of the estimation ĉ and the original vector c, which is given
as

floss = MSE (c, ĉ) (27)
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Fig. 4: The BER performance of the DL detectors and con-
ventional ML and greedy detectors for RIS-SSK system with
NR = 4 and N = 64.
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Fig. 5: The BER performance of the model-driven DL detec-
tors for RIS-SSK system with NR = 4 and N = 64.

IV. NUMERICAL RESULTS

In this section, the performance of the DL detectors is
evaluated by computer experiments. Time-invariant and time-
varying Rayleigh fading channels are investigated. For all the
DL detetors, we choose Adam as the optimizer [12]. The
learning rate is 0.001 for all the DL detectors. The data-driven
DNNs (D1 and D2) have 3 hidden layers. The model-driven
DNN (D3) has 4 layers (or iterations).
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Fig. 6: The BER performance of the DL detectors and con-
ventional ML and greedy detectors for RIS-SM system with
NR = 4 and N = 64.
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Fig. 7: The BER performance of the model-driven DL detec-
tors for RIS-SM system with NR = 4 and N = 64.

In Fig. 4, we compare the BER performance in RIS-
SSK systems over time-invariant and time-varying chan-
nels. The model-based greedy, ML detectors and data/model-
driven DL detectors are investigated and compared in
a RIS-SSK system with NR = 4 and N = 64.
We have (di, d1, d2, d3, d4) = (8, 72, 144, 72, 4) for D1,
(di, d1, d2, d3, d4) = (72, 72, 144, 72, 4) for D2.

From Fig. 4, we can observe that the proposed DL detectors
outperform the greedy detector. With CSI, D2 exhibits a better
performance than D1. The performance of D3 is better than
D1 and D2 with fewer training samples.

The numbers of all the trainable parameters are 21892,
26500 and 288 for D1, D2 and D3, respectively. Because that
D3 has a smaller set of trainable parameter, D1 and D2 need
much more training batches to converge, in the simulation



the number of training batches is 20000 for D1 and D2 and
10000 for D3. Each training batch consists of 5000 channel
realizations.

Fig. 5 gives a BER comparison of different model-driven
DL detectors for RIS-SSK over time-invariant and time-
varying channels. The performance of unfolded ISTA detector
[8] and unfolded ADMM detector [9] are investigated. We can
observe that our proposed model-driven DL detector has better
performance against the other model-driven DL detectors.

In Fig. 6, similar performance comparisons are given for
RIS-SM system over time-invariant and time-varying channels.
We have (di, d1, d2, d3, d4) = (8, 144, 288, 72, 4) for D1,
(di, d1, d2, d3, d4) = (72, 144, 288, 72, 4) for D2. In Fig. 7, we
compare the BER performance of different model-driven DL
detectors for RIS-SM with NR = 4 and N = 64. Compared
with unfolded ISTA and ADMM detector, D3 has a better
performance.

V. CONCLUSION

In this paper, we proposed to detect the RIS-SSK/SM
systems with the aid of data-driven and model-driven deep
learning. The numerical results show that our proposed data-
driven DL detector and model-driven DL detectors have better
performance against conventional greedy detection. Besides,
with a simple design, our proposed model-driven DL detector
exhibits a promising performance against the unfolded ISTA
and ADMM detectors.

APPENDIX A
DISTRIBUTION OF Heq WHEN N ≫ 1

Denote gi,j , hi,j as the (i, j) element of G, Heq , respec-
tively. From (12), we have

hii =
∑N

k=1
|gik|, (28)

hij =
∑N

k=1

gikg
∗
jk

|gjk|
. (29)

To better analyze the equivalent channel matrix, we give the
following lemmas.

Lemma 1. Given g ∼ CN (0, 1), we have |g| ∼
Rayleigh

(√
1/2

)
, whose moments are given as E (|g|n) =

Γ (1 + n/2).

Lemma 2. If N ≫ 1, hii ∼ N
(
N
2

√
π, N4 (4− π)

)
.

Proof. From 1, we have

E (hii) = E
(∑N

k=1
|gik|

)
=

∑N

k=1
E |gik| =

N

2

√
π.

(30)
Because

h2ii =
∑N

k=1

∑N

l=1
|gik| |gil|

=
∑N

k=1
|gik|2 +

∑N

k=1

∑N

l ̸=k
|gik| |gil|,

(31)

we have

E
(
h2ii

)
= E

(∑N

k=1
|gik|2

)
+ E

(∑N

k=1

∑N

l ̸=k
|gik| |gil|

)
=

∑N

k=1
E
(
|gik|2

)
+

∑N

k=1

∑N

l ̸=k
E (|gik|)E (|gil|)

= N +N (N − 1)
π

4
,

(32)

and
V (hii) = E

(
h2ii

)
− [E (hii)]

2
= N − N

4
π. (33)

From central limit theorem, when N ≫ 1, we have hii ∼
N

(
N
2

√
π, N4 (4− π)

)
.

Lemma 3. If N ≫ 1, hij ∼ CN (0, N) for i ̸= j.

Proof. Since E (hij) = E
(∑N

k=1

gikg
∗
jk

|gjk|

)
=∑N

k=1 E (gik)E
(
g∗jk/ |gjk|

)
= 0, we have

hijh
∗
ij =

∑N

k=1

gikg
∗
jk

|gjk|
∑N

l=1

g∗ilgjl
|gjl|

=
∑N

k=1
|gik|2 +

∑N

k=1

∑N

l ̸=k

gikg
∗
jk

|gjk|
g∗ilgjl
|gjl|

.

(34)

Therefore, V (hij) = E
(
hijh

∗
ij

)
= N . From central limit

theorem, when N ≫ 1, we have hij ∼ CN (0, N).
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