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Abstract—5G is expected to bring about disruptive industrial-

societal transformation by enabling a broad catalogue of (radically 

new, highly heterogeneous) applications and services. This 

scenario has called for Zero-touch network and Service 

Management (ZSM). With the recent advancements in Artificial 

Intelligence (AI), key ZSM capabilities such as the runtime 

prediction of user demands can be facilitated by data-driven and 

Machine Learning (ML) methods. In this respect, the paper 

proposes a runtime prediction approach that transforms time 

series forecasting into a simpler multivariate regression problem 

with Artificial Neural Networks (ANNs), structurally optimized 

with a genetic algorithm (GA) metaheuristic. Leveraging on a 

novel set of input features that capture seasonality and calendar 

effects, the proposed approach removes the prediction accuracy’s 

dependence on the temporal succession of input data and the 

forecast horizon, which is typical in time series forecasting. 

Evaluation results based on real telecommunications data show 

that the GA-optimized ANN regressor has better prediction 

performance compared to 1-day and 1-hour ahead forecasts 

obtained with state-of-the-art Multi-seasonal Time Series (MSTS) 

and Long Short-Term Memory (LSTM) forecasting models by an 

average of ~59% and ~86%, respectively. Furthermore, despite its 

longer training times compared to the baseline models, the 

proposed ANN regressor relaxes the monitoring requirements in 

5G dynamic management systems by allowing less frequent re-

training offline. 

 
Index Terms—Artificial Neural Networks, Genetic Algorithm, 

Network Dynamics, Runtime Prediction, Time Series, ZSM.  

 

I. INTRODUCTION 

VER the years, learning complex system dynamics has 

maintained significant interest in the research scene, as 

well as in various industrial domains, for its notable potential in 

autonomic management and control. At a networking 

perspective, the runtime prediction of user demands at various 

management levels (e.g., infrastructure-, service- and 

application-level) and coverage granularities (e.g., cell-, city- 

and nationwide-level) would not only facilitate the 

dimensioning of the network/service/application, but also 

enable a wide range of management and control mechanisms 

such as the dynamic (and proactive) provisioning of the 

underlying resources. Indeed, this is a fundamental component 

towards enabling Zero-touch network and Service Management 

(ZSM) [1], as well as the disruptive industrial-societal 

transformation brought forth by 5G [2].    

User demand dynamics are usually recorded as temporal 

data, which have been widely investigated through time series 

analysis and forecasting, as well as regression analysis, among 

others. Moreover, it is worth noting that they naturally have 

layered seasonality (e.g., daily, weekly, monthly, etc.), and may 

exhibit the so-called calendar effect (e.g., weekends, holidays, 

sales, etc.), as well [3].  

With the recent advancements in Artificial Intelligence (AI), 

data-driven and Machine Learning (ML) methods have opened 

new directions towards predictive analytics. Among others, bio-

inspired Artificial Neural Networks (ANNs) have gained 

particular interests for their ability to model noisy and nonlinear 

systems, by learning from examples. In fact, numerous works 

in the literature (e.g., [4]-[7]) exploit past temporal data as input 

to extend ANNs’ high prediction accuracies to time series 

forecasting. The training times of ANN-based time series 

predictors are, however, substantially longer than typical 

regressors, and such models usually have a limited usable 

prediction horizon [5]. Furthermore, they depend on the 

temporal succession of data and, hence, call for re-training as 

the series are updated with new observations. 

With this in mind, the main contribution of this paper is a 

novel input feature set and framework for transforming time 

series forecasting into a simpler multivariate regression 

problem, using ANNs (that are structurally optimized with a 

Genetic Algorithm (GA) metaheuristic, as in [4]) in the context 

of network activity runtime prediction. In particular, by 

leveraging a set of seasonal and calendar features, the 

dependence of the modeling and forecasting steps on the 

temporal succession in the data is removed. Hence, the 

proposed approach is capable of predicting any future value 

based only on the fed inputs, as well as capture possible 

(ir)regularities in the dynamics brought forth by seasons and 

special events. 
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The remainder of this paper is organized as follows. Firstly, 

Section II sets the technological scene for time series runtime 

prediction. Section III then describes the proposed GA-

optimized ANN modeling of the network activity in an urban 

area. Section IV provides an overview of the dataset considered 

in this work. Performance evaluation results are presented in 

Section V, and finally, conclusions are drawn in Section VI. 

II. RELEVANCE, CHALLENGES AND REQUIREMENTS OF TIME 

SERIES RUNTIME PREDICTION 

Time series runtime prediction in networking is becoming 

more crucial than ever before with the onset of the ZSM 

initiative. Understanding the dynamics of user demands and of 

the corresponding network resources’ usage is foreseen to be 

the key in driving smarter dimensioning and provisioning of 

next-generation networks, services and applications. Usually 

expressed as temporal data, such dynamics can be explored 

using state-of-the-art time series analysis and forecasting 

techniques, as well as regression analysis, among others. 

 Box-Jenkins’ Autoregressive Integrated Moving Average 

(ARIMA) model and Holt-Winters exponential smoothing are 

two of the earliest approaches for capturing various patterns 

within time series; their main difference lies in the way past 

series values impact the forecast – specifically, for the former 

they are weighted uniformly, while for the latter the weights 

follow an exponential function. Numerous works in the 

literature build on these two towards multi-seasonal time series 

(MSTS) forecasting. For instance, seasonal parameters can be 

used with ARIMA (denoted as SARIMA) to capture 

seasonality, as well as adding exogenous inputs (denoted as 

SARIMAX) for multivariate time series forecasting.  

On the other hand, the presence of noise and nonlinearity has 

motivated the use of more advanced solutions based on ANNs. 

The authors in [5] considered GA-optimized Nonlinear 

Autoregressive with Exogenous inputs (NARX) ANNs for 

service demand prediction, with the past series values as the 

driving variables. Recurrent ANNs (RNNs) have also gained 

popularity for time series forecasting – in view of this, recent 

works such as [6] consider different RNN models (i.e., Long 

Short-Term Memory (LSTM) and Gated Recurrent Unit 

(GRU)) for forecasting series values like the next day traffic 

dynamics in datacenters. Furthermore, for multivariate time 

series forecasting, the authors in [7] proposed ensembling 

RNNs and convolutional ANNs (CNNs) along with an 

autoregressive model in order to capture long- and short-term 

patterns, while addressing the so-called scale insensitivity 

problem of ANNs. 

A common limitation of the aforementioned approaches is 

the dependence on the temporal succession of data samples 

used in building the models, as well as during prediction for 

ANN-based models, since they use a sliding window of past 

series values as input. Keeping a model up-to-date and ensuring 

a valid forecast horizon entail re-training as new observations 

become available. For autoregressive models, the receding 

accuracies further in the forecast horizon and inability to 

capture nonlinearities are the main concerns. On the other hand, 

for the ANN-based models, the time cost of (re-)training, 

structural optimization, as well as the various vulnerabilities in 

the training process (e.g., non-representative training sets, 

temporal succession of time series data, etc.) remain open issues 

– which a number of published works in the literature have 

engaged in addressing. Among others, [8] used hyperparameter 

search strategies; [9] used k-fold cross validation to select the 

best ANN structure among the folds; [10] explored profile-

based tuning of LSTM hyperparameters; and [4][5] used a GA 

metaheuristic to find a suboptimal combination of the ANN 

structural parameters. However, as previously anticipated, the 

usage of GA-optimized ANNs as time series predictors with 

past series values as input takes much more time (i.e., up to over 

20 hours) to train than typical regression ANNs, and usually has 

a limited usable prediction horizon (e.g., 10-20 steps ahead) [5]. 

In this work, GA-optimized ANNs are used with a novel set 

of generic input features that capture both seasonality and 

calendar effects. The goal is to transform time series forecasting 

into a simpler multivariate regression problem, keeping ANN’s 

high prediction performance while removing the dependence on 

the temporal succession of data samples and forecast horizon. 

This relaxes not only re-training requirements but also 

monitoring ones and, hence, enhances 5G management 

systems’ fault tolerance against intermittent failures of 

monitoring subsystems. Furthermore, with a smaller number of 

input features, the training times of GA-optimized models are 

expected to be substantially reduced, as well. 

III. MODELING THE NETWORK ACTIVITY WITH ANNS 

This work explores transforming time series forecasting into 

a simple regression problem by defining some seasonal and 

calendar features as ANN inputs, which results in predictions 

that are indifferent to the forecast horizon, and only depend on 

the fed inputs. 

A. Input Features 

The idea is to not only capture the multi-seasonal effects with 

the approach, but also the calendar effects that bring possible 

irregularities in the dynamics – may it be a surge or a drop in 

the network activity levels. Hence, aside from the date/time 

information (decomposed as DayOfTheWeek and 

HourOfTheDay), we additionally define and evaluate the 

following features: (a) PeriodType, (b) isHoliday and (c) 

DaysToNextHoliday, as inputs being mapped with the target 

variable, NetworkActivity, exploring their ability to encode any 

calendar effects in the dataset. The PeriodType variable admits 

values from the set {0,0.5,1}, which are associated to normal 

days, holiday period and sales, respectively. Although the 

different kinds of holidays are not differentiated in this work, 

PeriodType is used to somehow add weight on holiday periods 

(e.g., weekends around holidays and year-end holidays), as well 

as special sales periods (e.g., Black Friday through Cyber 

Monday). The binary variable isHoliday flags the actual 

holidays, while the DaysToNextHoliday variable is a 

countdown to the next holiday; the latter can be useful to 

capture any trends as holidays or holiday periods are 

approaching.  
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It follows that the training dataset used in this work is 

structured with 6 columns – 5 for the aforementioned input 

features and 1 for the target. 

B. GA-based ANN Structure Optimization 

The operation of ANNs basically derives from the structural 

parameters used – specifically, the number of layers, the 

neurons per layer and their corresponding transfer functions. 

Note that the term ‘transfer function’ adopted in this work is 

based on the GNU Octave ANN library; on the other hand, the 

widely used TensorFlow-Keras library in Python adopts the 

more customary term ‘activation function’.  

While the number of neurons in the input and output layers 

are defined by the dataset structure (i.e., in our case, there are 5 

neurons in the input layer and 1 neuron in the output layer), 

everything else is tunable. Nonetheless, ANN structural 

optimization still remains an open issue, which is usually 

addressed using search strategies [8], k-fold cross-validation [9] 

and evolutionary algorithms [4][5], among others.  

 Fig. 1 illustrates the ANN architecture of the proposed 

runtime predictor. To obtain its optimal structure, this work 

adopts the numerical method in [4] that automates the 

optimization process using a GA metaheuristic, which in turn 

recursively evaluates various combinations of structural 

parameters during the training and intermediate validation 

processes. Starting from an initial random population of ANN 

structures, ANNs are created, trained and dynamically updated 

based on the structural parameters generated by the GA in each 

succeeding generation. It is worth noting that in order to quickly 

converge to a suboptimal solution, the GA adopts the bio-

inspired elitism, crossover and mutation operators in creating 

the population for subsequent generations, resulting in a 

recursive evolutionary process that is driven by the Mean 

Squared Error (MSE) on the training set.  

 GA is specifically considered for an automated approach in 

ANN structure optimization with no human intervention, such 

that it can be included in next-generation network/service 

management approaches. It also adapts to different data patterns 

that may need different logics and, therefore, different ANN 

base characteristics (such as types of transfer functions). Lastly, 

GA results in faster convergence than a random selection 

iteration. 

C. Model Training and Validation 

Feed-forward back-propagation ANNs are considered and 

trained with the Levenberg-Marquardt algorithm [11] 

according to the MSE training goal. The best ANNs (i.e., 

models resulting in MSE values that satisfy the set goal) of each 

generation are then saved for an intermediate validation phase 

at the completion of the GA. This step is aimed at enhancing 

the models’ generalizability, and uses a subset of the training 

set, which includes samples that are not used in the actual 

training (i.e., 30% of the training set, as in [4]). The Mean 

Absolute Percentage Error (MAPE) between the actual and 

predicted NetworkActivity values in this subset is used to assess 

the generalizability of each model in the best ANNs’ pool, such 

that the final model is selected as the one with the least MAPE 

value (denoted as “Best MAPE”). This model is validated 

against the final test set (i.e., not used during training or best 

model selection) and can then be used for runtime prediction. 

 In this work, we further explore a k-fold cross validation 

approach to evaluate inter-fold performance (e.g., [9]), as well 

as to investigate federated learning. Since the proposed 

approach removes the temporal succession dependencies 

among data samples, the training and test sets for each fold are 

obtained through stratified sampling of the data according to the 

DayOfTheWeek and HourOfTheDay. This results in varying 

values of PeriodType, isHoliday, DaysToNextHoliday and 

HourOfTheDay for a given calendar day. The performance of 

the resulting ANNs for each fold will then be evaluated using 

an independent test set and analyzed to understand how to drive 

the final predictor – whether to adopt the best-performing 

model (e.g., the one with the least MAPE), or to integrate the k 

models (e.g., the final prediction as the mean of the individual 

predictions).  

 Fig. 2 illustrates the conceptual framework of the proposed 

runtime prediction approach, leveraging GA-optimized ANN 

regressors in a k-fold cross validation methodology.  

IV. DATASET 

Starting with the multi-source open dataset of Telecom 

Italia’s Big Data Challenge, the telecommunications data over 

Milan’s urban area [12] are used as bases in this work. In more 

detail, the Milano Grid area includes around 33 cities/towns in 

Italy’s Lombardy region, over which a two-month worth of 

mobile network activity data has been collected. Although the 

Milano Grid is originally subdivided into 10,000 235m × 235m 

square areas, we consider the aggregate values on the entire grid 

in order to have a glimpse on the urban network perspective, 

resulting in a single time series and hence, location attributes 

were not necessary in this work.  

A detailed description of the dataset and the data acquisition 

process can be found in [13]. Putting it briefly, the 

telecommunications data are derived from Call Detail Records 

(CDRs) of Telecom Italia’s mobile network, which are 

generated for logging events related to the users’ SMS, calls and 

Internet activities. Based on the CDRs, the dataset includes 

values that are proportional to the network interactions (rather 

than the actual load itself); these can be regarded akin to service 

requests, and hence, considered as such hereinafter. Although 

the original data samples are in 10-minute intervals, the dataset 

has been pre-processed to consider the hourly averages of the 

network interactions in this work. 

 

Fig. 1.  ANN architecture. 
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For simplicity, but without loss of generality, we suppose that 

the different types of network interactions (i.e., SMS-in, SMS-
out, Call-in, Call-out and Internet traffic) have the same 

weight, considering the current shift towards IP-based 

messaging and calling services (e.g., WhatsApp, Facebook’s 

Messenger, etc.). Summing up their values across both network 

interaction types and square areas, we obtain an aggregate time 

series for the Milano Grid’s network activity. Fig. 3 illustrates 

the two-month worth of urban level network activity dynamics 

derived from Telecom Italia’s dataset, along with some 

seasonal and calendar attributes. A decreasing trend can also be 

observed towards the year-end holidays, which can be 

attributed to people going out of town for vacation; this can be 

potentially captured by the DaysToNextHoliday.  

It is worth noting that the values in the dataset (dated 2013) 

may need to be scaled accordingly to account for the growth in 

volume from 2013 to 2020. For instance, scaling the Internet 

activity by a factor of 17, based on the growth in mobile data 

traffic produced by smartphones in Western Europe [14], and 

possibly, the network interactions related to the SMS and calls 

by other factors. However, since the focus of this work is to 

capture the inherent seasonality and calendar effects in the 

dataset (i.e., aspects that would not be affected by scaling), the 

values are kept unscaled.  

V. PERFORMANCE EVALUATION 

In this section, the evaluation details and outcomes of the 

proposed network activity runtime predictor based on GA-

optimized ANNs are presented. 

An ANN model with 5-fold cross-validation is generated for 

the entire Milano Grid area. The GNU Octave implementation 

in [4] is used, in which the GA explores ANN structures with 

3-5 layers, 1-30 neurons/layer (excluding the inputs and 

outputs), and 1-3 types of transfer functions (i.e., logsig, tansig 

and purelin). The algorithm runs for 30 generations, each one 

considering a population of 20 ANN structures that is updated 

according to the elitism, crossover and mutation operators (with 

the default Octave parameters) for the subsequent generation. 

Each ANN structure is then trained for 150 epochs, with a 

maximum training time of 500s and a training goal of 10-7 for 

the MSE. 

The proposed ann-5features (ANN with 5 input features – 

PeriodType, isHoliday, DaysToNextHoliday, DayOfTheWeek 

and HourOfTheDay) is evaluated with models based on the 

MSTS forecasting method available in R distributions and 

LSTM implementation of the TensorFlow-Keras bundle library 

available in Python. Particularly, two MSTS-based models 

msts-x and two LSTM-based models lstm-x are considered for 

comparison, where x indicates the forecast horizon in hours 

(i.e., msts-1step and lstm-1step for 1-hour ahead forecasts, 

msts-24steps and lstm-24steps  for 1-day ahead forecasts, 

respectively).  

It is worth noting that MSTS-based models naturally yield 

receding accuracies moving further a given forecast horizon, 

which only worsen in case of unexpected events such as a 

sudden surge/drop in the network activity levels. Moreover, 

while the MSTS and LSTM 1-step ahead forecasting are the 

better comparisons in terms of accuracy, the multiple-steps 

ahead models are also fair comparisons in terms of the enabled 

use cases of the proposed ANN model, with its ability to 

generate predictions for any given hour/day/week in the future, 

as defined by the input provided. 

For the ANN models, the training and test sets for each fold 

are obtained through stratified sampling with respect to the 

DayOfTheWeek and HourOfTheDay, as previously 

anticipated. Starting with the Milano Grid  training set, the GA-

optimized ANN regressors are then obtained by following the 

 

Fig. 2.  Conceptual framework of the proposed runtime prediction approach. 
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Fig. 3.  Urban level network activity dynamics (November - December 2013) 
in terms of the average hourly network interactions, along with some seasonal 

and calendar attributes.  
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framework in Fig. 2 and over 500 models are saved to the best 

ANNs’ pool in each fold. Examples of GA-optimized structures 

generated for the proposed ann-5features are reported in Table 

I, along with their respective best MAPE values obtained in the 

intermediate validation, which are around 5.6% on average. It 

can also be observed that for the considered training dataset the 

GA-optimized ANN structures consist of 2~3 hidden layers, 

with 2~3 neurons/layer. While these structures seem 

straightforward to try by hand, when compared to today’s 

common approach of manual parameter setting with the 

TensorFlow-Keras Python library for a similar range of 3- 

through 5-layer densely connected ANNs with 1, 5, or 30 

neurons/layer and the widely-used relu activation function for 

regressors, the ann-5features performs way better. 

Particularly, the best validation set predictions for the manual 

approach are obtained with the 4- and 5-layer ANNs with 30 

neurons/layer in the hidden layers, resulting in an average 

MAPE of ~36% for the 5 folds. These results further motivate 

the adoption of GA-based ANN structure optimization.  

For the MSTS-based models, each fold corresponds to a 

running 4-week window, with 3-week worth of training data 

and the remaining 1 week for the test. The R forecast 

package’s msts and HoltWinters functions are used to 

model the multi-seasonality (i.e., daily and weekly) in the time 

series data. The resulting models are in turn used as input to its 

forecast function to predict the values for a given horizon.  

As regards the LSTM-based models, the performance was 

noted to be unstable and highly dependent on the stochastic 

nature of the initialization and optimization, as well as the 

number of time steps used as input and the number of neurons 

in the LSTM layer, among others. Setting the number of input 

time steps to 12 and the neurons in the LSTM layer to 20 is the 

first configuration that gave workable results; more time steps 

and neurons resulted in divergence (i.e., undefined loss value) 

during training, such that the model was not learning. The 

training/validation/test MAPE values obtained for the given 

training and test sets range from ~4% through ~100%, and 

although each experiment is repeated 100 times, a stationary 

average performance may still not be guaranteed. Furthermore, 

5-fold cross-validation as well as varying training and test batch 

sizes have been also explored but the initial tests did not result 

in any improvements; hence, they are not included in the paper 

as they only present unnecessary computing overheads.  

 The independent test MAPE values for the five models 

evaluated in this study – namely, ann-5features, msts-1step, 

msts-24steps, lstm-1step and lstm-24steps, are shown in Fig. 

4, in which results obtained with the ANN regressor and the 

MSTS models are also broken down into the 5 folds, while 

those with LSTM are simply the average of the 100 independent 

runs. It can be observed that, on average, the ANN regressor 

has better accuracies than the MSTS- and LSTM-based models 

– even with the best-case scenario of 1-step ahead forecasting. 

Besides the ability of predicting any value in the future enabled 

by the selected features of the ann-5features, it has improved 

the prediction accuracies by an average of ~66%, ~51%, ~88% 

and ~83% with msts-24steps, msts-1step, lstm-24steps and 

lstm-1step, respectively. It is important to note that the best run 

among the 100 independent runs of lstm-24steps and lstm-

1step had independent test MAPE values of ~13% and ~4%; 

however, due to LSTM’s performance instability even for the 

same values of hyperparameters and the same dataset, the 

average of the MAPE values obtained in the repeated 

experiments are way higher.  

Additionally, the Nemenyi test [15] in R has been used to 

further evaluate the similarities in performance of the five 

models, with the average MAPE value obtained for each sample 

in the models’ 1-week worth of independent test sets being the 

input. It first computes for the average rank of the models, and 

then based on a confidence level parameter, the critical distance 

that defines the similarity among the average ranks is obtained. 

Fig. 5 shows the results of the Nemenyi test for the default 

confidence level of 5%, indicating a critical distance of 0.471. 

It is interesting to note that while the ranking of the models in 

both Fig. 4 and Fig. 5 coincide (i.e., ann-5features > msts-

1step > msts-24steps > lstm-1step > lstm-24steps), the 

Nemenyi test finds both the ann-5features and msts-1step to 

have similar performances in terms of accuracy, since the 

difference between their average ranks is below the critical 

distance. 

 

Fig. 4.  MAPE values obtained in each fold of msts-24steps, msts-1step and 
ann-5features for the hourly demand prediction. 
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Table I: GA-optimized ANNs. 
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Fig. 5.  Nemenyi test results for the models’ independent test MAPE values.  
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Fig. 4 also shows a comparison of the models’ training times, 

where msts-24steps and msts-1step indicate durations of 

~10ms, lstm-24steps and lstm-1step indicate ~47 minutes, 

while ann-5features indicate ~55 minutes. Since MSTS-based 

models are dependent on the temporal succession of the 

samples, fewer samples can be used to train the models for the 

given data in order to execute the 5 folds (i.e., 540 samples or 

3-week worth of data, as previously anticipated); without cross 

validation, maximizing the number of training samples as in the 

ANN-based approaches results in durations of ~11ms.  

Moreover, online re-training is necessary as new samples are 

observed in order to keep valid models and maintain the 

temporal succession. This also entails high reliance on a 

dynamic management system’s monitoring components. The 

time for receiving the new observation values, updating models 

and generating forecasts could be critical, especially in 5G and 

beyond environments. Therefore, further costs can be expected 

for MSTS-based models due to these concerns. 

Without the 5-fold cross-validation, the training samples 

used for LSTM-based models can be maximized at 1284 

samples or 7.6-week worth of data – just a little bit smaller than 

those used in the ann-5features because of the temporal 

succession dependencies. By removing such dependencies, a 

total of 1296 samples or 7.7-week worth of data can be used to 

train the ann-5features. Although LSTM-based models have 

training times lower by ~8 minutes compared to the latter, the 

limitations that come with re-training and performance 

instability pose critical concerns. Moreover, at least over 500 

ANN structures have been evaluated in each fold of the ann-

5features to obtain a generalized model, and the predictors’ 

validity are also not constrained by the forecast horizon; re-

training can also be done less frequently offline. 

To summarize, an indirect benefit of the generic features used 

for the proposed ANN regressor is the lack of need for having 

the window of past series values at each time step, as typically 

needed in the other approaches. This enables the relaxation of 

monitoring requirements (such as time criticality for receiving 

these values) that a dynamic management system poses on the 

related monitoring components. On this note, monitoring 

requirements on 5G networks are already increased [2], 

therefore relaxing them on some parts of the system would be 

beneficial. This also signifies that the ann-5features is a good 

trade-off between accuracy, training time, as well as re-training 

and monitoring costs. 

VI. CONCLUSION 

The 5G scenario has called for AI-powered ZSM solutions to 

support next-generation applications and services. With this in 

mind, a novel input feature set and framework for transforming 

time series forecasting into a simpler multivariate regression 

problem using GA-optimized ANNs is proposed in the context 

of urban area network activity runtime prediction. Particularly, 

new input features are defined to capture the seasonality and 

calendar effects of the network activity time series, which 

enables the approach to remove the prediction accuracy’s 

dependence on the temporal succession of input data and the 

forecast horizon. 

 Based on Telecom Italia’s Milano Grid dataset, aggregated 

at the urban area level, evaluation results show that the GA-

optimized ann-5features regressor has generally better 

prediction performance compared to the 1-day and 1-hour 

ahead forecasts obtained with the MSTS- and LSTM-based 

models by an average of ~59% and ~86%, respectively. 

Furthermore, despite its longer training times compared to the 

other models, the ann-5features’ validity is not constrained by 

the forecast horizon and the temporal succession of data 

samples. Re-training can then be done less frequently offline, 

hence relaxing the monitoring requirements in the system. 
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