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Abstract—Multi-access Edge Computing (MEC) is expected to 
play an essential role in enabling 5G (and beyond) technologies 
and services. This has driven numerous micro-datacenter (μDC) 
deployment studies in the literature, with a common goal of 
addressing the optimal μDC placement and dimensioning 
problems. Along this line, this paper aims at clustering subareas 
with similar network activity dynamics, to find a good hotspots’ 
representation over the urban area. Leveraging common Machine 
Learning (ML) and statistics principles, the main contribution of 
this paper is two-fold: (i) the definition and selection of dynamicity 
features based on real telecommunications datasets; and (ii) the 
granular cluster evaluation and analysis based on agglomerative 
hierarchical clustering. Three feature sets (containing 20, 12 and 8 
features, respectively) are evaluated at varying precision levels, 
showing interesting trends on the number of clusters, heatmaps 
and intra-cluster correlation. These could potentially provide 
some valuable indications on the placement and dimensioning of 
the μDCs.   

Keywords—Feature selection, Hierarchical clustering, MEC 
deployment, Network activity hotspots 

I. INTRODUCTION 

The 5G and beyond technologies and services have been 
recently pushing for the wide adoption of the Multi-access Edge 
Computing (MEC) paradigm [1], in order to accommodate the 
stringent requirements (such as low latencies, high connection 
density and seamless mobility support, among others [2]) of 
next-generation verticals. MEC deploys micro-datacenters 
(μDCs) towards the network edge to provide Cloud-like services 
much closer to end-users and their devices. Equipped with 
certain computing, networking and storage resources, the μDCs 
will be able to host both vertical application components and 
virtualized network functions (VNFs) that will be part of end-to-
end services. Nevertheless, open issues on the optimal μDC 
placement and dimensioning need to be tackled prior to 
advancing towards large-scale deployments. 

Towards this end, numerous works in the literature (e.g., [3]–
[6], among others) have looked into different aspects of μDC 
deployment, such as the number of μDCs, as well as their 

locations and/or dimensioning, based on user demands and 
various quality and/or cost constraints. For instance, a 
comprehensive set of parameters (both quality of service (QoS)- 
related and not) is proposed in [3] for selecting μDC locations; 
while authors in [4] consider user location statistics to identify 
μDC potential locations, and analyze the impact of the number 
and dimensioning of the μDCs to the QoS. In [5], the authors 
proposed a mathematical model for finding the number and 
locations of 5G base stations and μDCs, by exploiting 
population statistics and considering the services’ minimum 
base station distance constraints. Then, with the growth of 
Machine Learning (ML) applications in networking problems, 
the authors in [6] apply k-means clustering on base station 
coordinates to subdivide an urban area, and optimally place 
μDCs in each subarea through a facility location problem. 

To the best of the authors’ knowledge, there are still 
currently no μDC deployment studies in the literature evaluating 
urban network activity hotspots. In this respect, this paper takes 
the initial step with a granular cluster analysis of the spatio-
temporal distribution of mobile network interactions over urban 
Milan. The goal is to cluster subareas that have similar dynamics 
and find a good network activity hotspots’ representation over 
the urban area, which could potentially provide some valuable 
indications on the placement and dimensioning of the μDCs. 

By leveraging common ML and statistics principles, the 
main contribution of this paper is two-fold: (i) the definition and 
selection of dynamicity features based on real 
telecommunications datasets; and (ii) the granular cluster 
evaluation and analysis based on agglomerative hierarchical 
clustering. The dynamicity features are derived from the 
subareas’ network activity time series, and their stationarized 
by-products.  

The remainder of this paper is organized as follows. Section 
II provides an overview of the dataset, and Section III describes 
the feature selection procedure adopted. The granular cluster 
evaluation and analysis are presented in Section IV, and finally, 
conclusions are drawn in Section V. 

II. DATASET 

This section provides a brief background on the dataset and 
the dynamicity features considered in this work. 
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A. The Milano Grid 

Starting with the datasets from Telecom Italia’s Big Data 
Challenge, we look into the network activity over Milan’s 
urban area [7][8]. In particular, the Milano Grid [7] is composed 
of 10,000 square areas (i.e., a 100 x 100 grid), each one 
corresponding to an area of 235 m x 235 m. Fig. 1 provides a 
reference view on the Milano Grid coverage, also indicating the 
busiest square (near the Duomo) in the grid.  

The telecommunications datasets, dated 2013, include a 2-
month worth of mobile network data based on Call Detail 
Records (CDRs), which provides a set of time series related to 
users’ SMS, calls and Internet activities, with values 
proportional to the corresponding type of network interaction 
instead of the actual load itself. Nonetheless, they can be 
exploited to analyze the dynamics of user-network interactions 
across the Milan urban area, such as network activity hotspots 
and unique/similar dynamic behaviors among the squares in the 
grid.  More details on the dataset can be found in [9]. 

Supposing that the different types of network activities (i.e., 
SMS-in, SMS-out, Call-in, Call-out and Internet traffic) have 
the same weight, their values are summed up to generate a time 
series that would characterize each square. Hourly averages are 
further considered in this work, where the six samples in each 
hour of the original 10-minute interval time series are averaged. 

It is important to note that while scaling the values in the 
dataset may be ideal to better represent the growth in network 
activity between 2013 and 2020, such intermediate 
preprocessing would not be necessary for the goal of this work.  

B. Dynamicity Features 

While each square area can have a unique behavior, it is 
intuitive to suppose that their geographical location and/or 
proximity with other areas can result in some similar dynamics. 
Hence, we explore different dynamicity features based on the 
areas´ network activity time series to cluster them accordingly.  

Standard descriptive statistics can be extracted from time 
series data. Although they ignore the temporal succession 
among the samples, they still provide a general view on the 
dynamicity within the series. Five statistics are considered in 
this work, namely, the minimum, maximum, mean, standard 
deviation and interquartile range among the series samples.  

Given the time series {𝑥 , 𝑘 ∈ ℤ} , the following 
stationarized series are also evaluated in an attempt to 
effectively capture dynamicity. 

1) First order differences, {�̇� , 𝑘 ∈ ℤ} : The first derivatives 
along the time series’ curve can be numerically approximated 
based on first order differences. With a step size equal to 1, the 
value at the 𝑘-th interval is given by 

 �̇� = 𝑥 − 𝑥                                     (1) 

2) Second order differences, {�̈� , 𝑘 ∈ ℤ}: Similarly, its second 
derivatives can be numerically approximated from second order 
differences, and the value at the 𝑘-th interval is given by 

�̈� = �̇� − �̇�                                 (2) 

3) Link relatives, {�̅� , 𝑘 ∈ ℤ}: On the other hand, link relatives 
express the change between adjacent time series samples as 
ratios. The value at the 𝑘-th interval is given by 

 �̅� =                                      (3)  

Considering the busiest square area in the dataset, Fig. 2 
illustrates a comparison between its original time series and the 
three stationarized series. 

The corresponding descriptive statistics of the stationarized 
series are then extracted and considered as additional 
dynamicity features, besides those of the original time series. 
This results in a 20 -tuple feature set {TSmin, TSmax, 
TSmean, TSstd, TSiqr, TSDiffmin, TSDiffmax, 
TSDiffmean, TSDiffstd, TSDiffiqr, TSDiff2min, 
TSDiff2max, TSDiff2mean, TSDiff2std, 
TSDiff2iqr, TSLinkRelmin, TSLinkRelmax, 
TSLinkRelmean, TSLinkRelstd, TSLinkReliqr} 
associated to each square area.  

In order to evaluate the urban network activity hotspots, we 
seek to cluster square areas with similar behaviors based on  
their dynamicity features (or a subset thereof). Moreover, since 
the number of clusters is not known initially, agglomerative 

 

Fig. 1.  The Milano Grid area and its busiest square area. 

                           

(a) Original time series                  (b) First (TSDiff) and second (TSDiff2) order differences                          (c) Link relatives  

Fig. 2.  Original and stationarized series example for the network activity of the busiest square area in Telecom Italia’s Big Data Challenge dataset [8]. 



hierarchical clustering is considered to obtain a cluster tree that 
can be cut at various precision levels to obtain a family of 
clusters at various granularities. Note that, depending on the 
chosen granularity, some clusters may contain a single 
coverage area, more specifically at high precision levels. 

III. DYNAMICITY FEATURE SELECTION 

 Considering that the 20 features are all derived from the 
original time series and its stationarized by-products, some of 
them may be highly correlated and could lead to misleading 
results. Hence, it is only logical to deal with this potential 
problem through feature selection.  

The coefficient of determination (𝑅 ) is used to measure the 
similarities between dynamicity features to select a subset of 
more relevant features. Then, backward elimination is 
performed recursively until a stopping criterion (e.g., a 
maximum acceptable 𝑅  value) is reached. This procedure is 
detailed in ALGORITHM 1.  

To summarize, let 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 be the initial set of dynamicity 
features, and 𝐶𝑜𝑒𝑓𝑓𝐷𝑒𝑡  be the matrix of 𝑅  values, 𝑅 (𝑖, 𝑗), 
corresponding to the feature pairs, 𝑓 , 𝑓 , 𝑖 ≠ 𝑗. We define the 
𝑅  threshold, 

𝑅 = 𝑓𝑙𝑜𝑜𝑟(𝑚𝑎𝑥[𝐶𝑜𝑒𝑓𝑓𝐷𝑒𝑡] , 0.1)                 (4) 

whose value is updated in each iteration. 𝑅  assumes a tenths 
value within {0.9, … , 𝑡ℎ } as indicated by the significance 
parameter 0.1 ; the minimum value 𝑡ℎ  serves as the 
stopping criterion of the algorithm. Starting with the feature 
pair corresponding to the maximum 𝑅  value, 𝑓 ∗, 𝑓 ∗ , 

one of the two features is eliminated according to: (a) 𝑁 , 𝑁 , 
the number of 𝑅  values greater than 𝑅  related to features 𝑓 ∗ 
and 𝑓 ∗ , respectively; and (b) 𝑀 , 𝑀 , the maximum 𝑅  
values, related to features 𝑓 ∗ and 𝑓 ∗, respectively, when each 
is considered with the rest of the features 𝑓 , 𝑘 ≠ 𝑖∗, 𝑘 ≠
𝑗∗, ∀𝑘 = 1, … , |𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠|. It is worth noting that the former 
criterion holds the higher priority, since removing the one 
having high 𝑅  values with respect to more features expedites 
the elimination process. This is repeated until all 𝑅  values in 
𝐶𝑜𝑒𝑓𝑓𝐷𝑒𝑡  are less than 𝑡ℎ , removing one feature from 
𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠  in each iteration, along with its corresponding 𝑅  
values in 𝐶𝑜𝑒𝑓𝑓𝐷𝑒𝑡.  

Setting 𝑡ℎ = 0.6, Fig. 3 shows how the maximum 𝑅  
value in 𝐶𝑜𝑒𝑓𝑓𝐷𝑒𝑡 and the number of features (|𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠|) 
may vary at each iteration. It can be observed that the first 8 
iterations assumed 𝑅 = 0.9 , the following 4 iterations 
assumed 𝑅 = 0.8, then max[𝐶𝑜𝑒𝑓𝑓𝐷𝑒𝑡] < 𝑡ℎ  is satisfied 
in the next and last iteration. Hence, the feature selection 
outcomes can be divided into three regions: 𝑅 ≥ 0.9, 0.9 >
𝑅 ≥ 0.8, and 0.8 > 𝑅 , based on which we evaluate the initial 
20-tuple feature set, together with the resulting 12- and 8-tuple 
feature sets in the granular cluster analysis. Particularly, the 12-
tuple includes Min, IQR, Mean_diff, Min_diff2, 
Mean_diff2, Min_linkrel, Max_linkrel, 
IQR_linkrel, Mean_linkrel, Max_diff, 
StdDev_diff2 and Min_diff; starting from this, the 8-

tuple results in the elimination of the last four features.  

IV. GRANULAR CLUSTER EVALUATION AND ANALYSIS 

An agglomerative hierarchical cluster tree is built for each of 
the aforementioned feature sets based on Matlab’s 
implementation of the Ward’s minimum variance method [10]. 
The trees are then evaluated in terms of the number of clusters, 
heatmaps and intra-cluster correlation, by cutting them at 
various precision levels.      

A. Number of Clusters 

A set of clusters can be obtained by cutting a cluster tree at 
the desired precision level. In this work, the cutoff points are 
given as percentages of the maximum Ward’s distance in the 
tree. Evaluating cutoff distances at 1%, 2%, 5%, 10%, 20% 
and 50%, Fig. 4 illustrates how the number of clusters varies 
when considering the 20-, 12- and 8-tuple feature sets as input.  

For instance, when cutting the cluster trees at 1% of the 

 
Fig. 3.  Maximum 𝑹𝟐 value in each iteration of the backward elimination 
process. 

ALGORITHM 1 
BACKWARD ELIMINATION PROCESS 

𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 
𝐶𝑜𝑒𝑓𝑓𝐷𝑒𝑡 ← {𝑅 (𝑖, 𝑗): 𝑖 ≠ 𝑗, 𝑖, 𝑗 = 1, … , |𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠|} 
𝑡ℎ  

while max [𝐶𝑜𝑒𝑓𝑓𝐷𝑒𝑡] ≥ 𝑡ℎ : 
𝑅 ← 𝑓𝑙𝑜𝑜𝑟(max[𝐶𝑜𝑒𝑓𝑓𝐷𝑒𝑡] , 0.1) 

𝑓 ∗, 𝑓 ∗ ← 𝑓 , 𝑓  corresponding to max [𝐶𝑜𝑒𝑓𝑓𝐷𝑒𝑡] 

𝑁 ← count 𝑅 (𝑖∗, 𝑘) > 𝑅 , 𝑘 ≠ 𝑖∗, 𝑘 ≠ 𝑗∗, ∀𝑘 = 1, … , |𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠| 
𝑁 ← count 𝑅 (𝑘, 𝑗∗) > 𝑅 , 𝑘 ≠ 𝑖∗, 𝑘 ≠ 𝑗∗, ∀𝑘 = 1, … , |𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠| 
if 𝑁 > 𝑁 : 

Remove the 𝑖∗-th row and column from 𝐶𝑜𝑒𝑓𝑓𝐷𝑒𝑡 
Remove 𝑓 ∗ from 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 

elseif 𝑁 < 𝑁 : 
Remove the 𝑗∗-th row and column from 𝐶𝑜𝑒𝑓𝑓𝐷𝑒𝑡 
Remove 𝑓 ∗ from 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 

else: 
𝑀 ← 𝑚𝑎𝑥[𝑅 (𝑖∗, 𝑘)], 𝑘 ≠ 𝑖∗, 𝑘 ≠ 𝑗∗, ∀𝑘 = 1, … , |𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠| 
𝑀 ← 𝑚𝑎𝑥[𝑅 (𝑘, 𝑗∗)], 𝑘 ≠ 𝑖∗, 𝑘 ≠ 𝑗∗, ∀𝑘 = 1, … , |𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠| 
if 𝑀 > 𝑀 : 

Remove the 𝑖∗-th row and column from 𝐶𝑜𝑒𝑓𝑓𝐷𝑒𝑡 
Remove 𝑓 ∗ from 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 

elseif 𝑀 < 𝑀 : 
Remove the 𝑗∗-th row and column from 𝐶𝑜𝑒𝑓𝑓𝐷𝑒𝑡 
Remove 𝑓 ∗ from 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠  

else: 
𝑘∗ ← randomly choose between 𝑖∗ and 𝑗∗ 
Remove the 𝑘∗-th row and column from 𝐶𝑜𝑒𝑓𝑓𝐷𝑒𝑡 
Remove 𝑓 ∗ from 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 

return 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 

 
 



maximum Ward’s distances, the 20-, 12- and 8-tuple feature 
sets result in 496 , 426  and 353  clusters, respectively. More 
clusters naturally result with bigger feature sets since the 
relationships among data samples are captured with more detail. 
However, as previously anticipated, it is necessary to ensure that 
the feature sets do not include highly correlated features to avoid 
misleading results. As the precision level decreases (i.e., by 
admitting higher cutoff distances), the three cases tend to 
converge, resulting in 3 clusters at a cutoff distance of 50%.  

Similarly, it is interesting to note that evaluating the three 
feature sets with the well-known k-means clustering method 
(e.g., either using the Calinski-Harabasz [11] or the Davies-
Bouldin [12] indexes) for 𝑘 ∈ [2, … ,500]  yields around 2~3 
clusters as optimal values of 𝑘. At such low precision levels, the 
clusters can be used to indicate, for instance, the urban core 
versus the suburbs (versus the agricultural areas). Nonetheless, 
a low intra-cluster correlation can be expected, since each cluster 
aggregates a substantially high number of square areas with 
highly heterogeneous network activity dynamics. Furthermore, 
simply tuning the 𝑘 parameter of k-means does not provide a 
fine-grained control on the desired precision level as the 
agglomerative hierarchical clustering.      

B. Heatmaps 

Based on the average of the square areas’ peak levels of 
network interaction within each cluster, Fig. 5 shows the 
resulting heatmaps over the Milano Grid area, when the 20-
tuple, 12-tuple and 8-tuple cluster trees are cut at 1%, 5% and 
20% of their corresponding maximum Ward’s distances. Among 
a hundred possible heatmap color bins, around 1~3 cluster/s 
has/have been mapped with the same color in the figure. 

Looking at Figs. 5a-c, it can be observed that cutting the trees 
at 1% of their maximum Ward’s distances result in quite similar 
heatmaps, indicating a relatively dense hotspot within the urban 
core. The hotspots in the three cases consist of a single cluster, 
which in turn contains a single square area (i.e., the busiest one 
on the grid shown in Fig. 1). At this precision level, multiple 
other clusters also contain a single square area, accounting for 
around 14%, 9% and 7% of the total number of clusters for the 
20-, 12- and 8-tuple feature sets, respectively. Intuitively, too 
much precision does not provide valuable indications for large-
scale μDC deployments in this case. As the precision level is 
decreased, the number of hotspots and their coverage increases, 
as illustrated in Figs. 5d-i. At the same time, the percentage of 
single area clusters also decreases with the precision level, 
resulting in fewer, yet bigger clusters. In fact, a cut-off distance 
of 20% does not result in such single area clusters any longer.  
 It can also be observed how the hotspots resulting from the 

20-tuple feature set are densely formed within/around the urban 
core. Then, as the number of features is decreased to 12 and 8, 
the number of hotspots gradually increases and spread across the 
Milano Grid area. Furthermore, increasing the cutoff distance 
for a given feature set results in the hotspots’ wider coverage. 

C. Intra-cluster Correlation 

 One way to validate the similarity between square areas in 
each cluster is through time series correlation. Particularly, 
considering the mean value of the coefficient of correlation (𝑅) 
among pairs of square areas in each cluster, Fig. 6 shows the 
empirical cumulative distribution function (CDF) for the 20-, 
12- and 8-tuple feature sets, when cutting the cluster trees at 1%, 
5% and 20% of their corresponding maximum Ward’s distances.  

It is foreseen to achieve better intra-cluster correlation when 
utilizing more dynamicity features, as it can be observed when 
cutting the cluster trees at 1% and 20% of their maximum 
Ward’s distances. However, it is interesting to note that at an 
intermediate cutoff distance of 5%, the 8-tuple feature set has 
resulted in better intra-cluster correlation than the 20- and 12-
tuple feature sets, as indicated by the CDFs. Indeed, the heatmap 
in Fig. 5f seems to show the best mapping of hotspots with 
respect to Figs. 5d-e. Based on these results, it is evident that a 
joint optimization of both the feature set and the cut-off distance 
is necessary to obtain the best representation of urban network 
activity hotspots. 

As a final remark, a heatmap such as the one in Fig. 5f can 
be exploited towards optimal μDC placement and dimensioning 
in large-scale deployments. For instance, the hotspots can give 
indications on the number and locations of μDCs, while the 
heatmap colors (corresponding to the average of the square 
areas’ network interaction peaks within each cluster) can give 
indications on the dimensioning.    

V. CONCLUSION 

The MEC paradigm is expected to play an essential role in 
enabling 5G and beyond technologies and services. This has 
driven numerous μDC deployment studies in the literature. 
Along this line, this paper evaluated urban  network activity 
hotspots through a granular cluster analysis of the spatio-
temporal distribution of mobile network interactions over urban 
Milan, leveraging on common ML and statistics principles. 

Three feature sets are evaluated with agglomerative 
hierarchical clustering, with the goal of clustering square areas 
that have similar dynamics. Their corresponding cluster trees 
can be cut at various granularities, allowing for a fine-grained 
control on the desired precision level.  

Evaluation results show interesting trends on the number of 
clusters, urban network activity hotspots mapping and intra-
cluster correlation, pointing out that: (i) too much precision does 
not necessarily give good results; and (ii) a joint optimization of 
both the feature set and the cut-off distance is necessary to obtain 
the best representation of urban network activity hotspots. These 
could potentially serve as valuable indications on the μDC 
placement and dimensioning in large-scale deployments.  

REFERENCES 
[1] “Mobile Edge Computing (MEC); Framework and Reference 

Architecture,” ETSI GS MEC 003 v1.1.1, Mar. 2016. [Online]. Available: 
http://www.etsi.org/deliver/etsi_gs/MEC/001_099/003/01.01.01_60/gs_
MEC003v010101p.pdf. 

 
Fig. 4.  Number of clusters when cutting the cluster trees (that result with the 
𝟐𝟎-tuple, 𝟏𝟐-tuple and 𝟖-tuple feature sets) at various cutoff distances. 

0

100

200

300

400

500

1% 10%

#
 o

f c
lu

st
e

rs

2% 5% 20% 50%

20-tuple

12-tuple

8-tuple

Cutoff distance (%Max)   



[2] “IMT Vision – Framework and Overall Objectives of the Future 
Development of IMT for 2020 and Beyond,” ITU-R Rec. M.2083-0. Sept. 
2015. [Online]. Available: https://www.itu.int/dms_pubrec/itu-r/rec/m/R-
REC-M.2083-0-201509-I!!PDFE.pdf. 

[3] A. Santoyo-González and C. Cervelló-Pastor, “Edge Nodes Infrastructure 
Placement Parameters for 5G Networks,” in Proc. 2018 IEEE Conf.  
Standards Commun. Netw. (CSCN), Paris, France, 2018, pp. 1-6. 

[4] V. Burger et al., “Load Dynamics of a Multiplayer Online Battle Arena 
and Simulative Assessment of Edge Server Placements,” in Proc. 7th Int. 
Conf. Multimedia Syst. (MMSys), Klagenfurt, Austria, May 2016, no. 17. 

[5] J. Martín-Pérez et al., “Modeling Mobile Edge Computing Deployments 
for Low Latency Multimedia Services,” in IEEE Trans. Broadcasting, 
vol. 65, no. 2, pp. 464-474, June 2019.  

[6] U. Paul et al., “Traffic-profile and Machine Learning based Regional Data 
Center Design and Operation for 5G Network,” in J. Commun. Netw., vol. 
21, no. 6, pp. 569-583, Dec. 2019.  

[7] Telecom Italia, “Milano Grid,” Harvard Dataverse, May 2015, [Online]. 
Available: https://doi.org/10.7910/DVN/QJWLFU. 

[8] Telecom Italia, “Telecommunications - SMS, Call, Internet - MI,” 
Harvard Dataverse, May 2015, [Online]. Available: 
https://doi.org/10.7910/DVN/EGZHFV. 

[9] G. Barlacchi et al., “A Multi-source Dataset of Urban Life in the City of 
Milan and the Province of Trentino,” in Scientific Data, vol. 2, Oct. 2015, 
Art. no. 150055. 

[10] J. H. Ward, Jr., “Hierarchical Grouping to Optimize an Objective 
Function,” in J. Am. Stat. Assoc., vol. 58, no. 301, 1963, pp. 236–244. 

[11] T. Calinski and J. Harabasz, “A Dendrite Method for Cluster Analysis,” 
in Commun. Stat., vol. 3, no. 1, 1974, pp. 1–27. 

[12] D. L. Davies and D. W. Bouldin, “A Cluster Separation Measure,” in 
IEEE Trans. Pattern Anal. Mach. Intell., vol. PAMI-1, no. 2, Apr. 1979, 
pp. 224–227.

           
(a) 20-tuple, 1%                                                         (b)  12-tuple, 1%                                                        (c) 8-tuple, 1% 

             
(d) 20-tuple, 5%                                                          (e)  12-tuple, 5%                                                       (f) 8-tuple, 5% 

             
(g) 20-tuple, 20%                                                        (h)  12-tuple, 20%                                                       (i) 8-tuple, 20% 

Fig. 5.  Heatmaps over the Milano Grid, when cutting the 𝟐𝟎-tuple, 𝟏𝟐-tuple and 𝟖-tuple cluster trees at 1%, 5% and 20% of the maximum Ward’s distances. 
 

 
Fig. 6.  Empirical CDF of the mean 𝑹 value in each cluster, when cutting the 
cluster trees at 1%, 5% and 20% of the maximum Ward’s distance. 


