
Model-Driven Development of Distributed
Ledger Applications

Piero Fraternali, Sergio Luis Herrera Gonzalez, Matteo Frigerio, and Mattia
Righetti

Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano,
Piazza Leonardo da Vinci 32, Milan, 20133, Italy. sergioluis.herrera@polimi.it

Abstract. The Distributed Ledger Technology (DLT) is one of the most
durable results of virtual currencies, which goes beyond the financial
sector and impacts business applications in general. Developers can em-
power their solutions with DLT capabilities to attain such benefits as
decentralization, transparency, non-repudiability of actions and security
and immutability of data assets, to the price of integrating a distributed
ledger framework into their software architecture. Model-Driven Devel-
opment (MDD) is the discipline that advocates the use of abstract models
and of code generation to reduce the application development and inte-
gration effort by delegating repetitive coding to an automated model-to-
code transformation engine. In this paper, we explore the suitability of
MDD to support the development of hybrid applications that integrate
centralized database and distributed ledger architectures and describe
a prototypical tool capable of generating the implementation artefacts
starting from a high level model of the application and of its architecture.

Keywords: Blockchain · Distributed Ledger · MDD · IFML

1 Introduction

Distributed Ledger Technology (DLT), popularized by the advent of virtual cur-
rencies, is having great impact also on applications outside the financial sec-
tor, such as those for the insurance industry, for the public administration, for
NFT trading and more. The common trait of the business sectors in which
DLT holds the greatest potential is the need of sharing data and transactions
within a decentralized distributed network in a transparent yet secure way. Most
of the time DLT functionalities must be integrated within a traditional appli-
cation architecture. For example, an insurance business may start introducing
the DLT technology in the claim payment workflow, while retaining a more
traditional database-driven centralized architecture in the other processes. As
the employment of DLT in businesses matures one can expect that companies
will implement a migration strategy to progressively port, totally or in part,
their business processes to this new architecture. This phenomenon resembles
the transition to B2B application architectures in the nineties, when companies
started migrating their business processes to the Web in the wake of the success



2 Fraternali et al.

of B2C applications. Integrating centralized database-driven and decentralized
ledger-driven architectures for developing hybrid applications poses new design
and implementation challenges. At the conceptual level the boundary must be
defined between the data and the operations that reside in either of the two plat-
forms. At the physical level, suitable interfaces must be implemented between
data and transactions in the distributed ledger and in the database. The devel-
opment of hybrid DLT and database driven applications and business processes
requires adequate methodologies and tools to reduce effort and cost, enforce uni-
form design patterns across projects, and ease the migration of workflows from
one architecture to the other. One such methodology is Model-Driven Devel-
opment (MDD), defined as the software engineering discipline that advocates
the use of models and of model transformations as key ingredients of software
development [14]. Abstraction is the most important aspect of MDD, which en-
ables developers to create and validate a high level design of their application and
introduce implementation-level architecture details at a later stage of the realiza-
tion process. Implementation and architecture details are introduced via model
transformations, which iteratively refine the high-level initial model, eventually
getting to the final executable solution [2]. Nowadays MDD is applied in prac-
tice by the so-called low-code software development platforms1, which exploit
Platform Independent Modeling languages and code generators to automate the
production of e.g., mobile, Web and enterprise applications. In this paper, we in-
vestigate the application of MDD to the development of hybrid applications that
mix features of both centralized database-driven and decentralized ledger-driven
architectures. The contributions of the paper can be summarized as follows:

– We introduce the class of hybrid DLT/DB applications, which consists of en-
terprise applications that implement data and processes on both distributed
ledger and centralized database infrastructures.

– We describe the MDD process of hybrid DLT/DB applications in terms of
inputs, activities and outputs. Specifically, we start from a development pro-
cess scheme conceived for data intensive multi tier applications and discuss
its extensions with activities that cope with the DLT requirements.

– We propose to model the design of hybrid DLT/DB solutions with a simple
extension of the Domain Model and of the Interface and Action Models. For
the sake of illustration, we express such models with OMG’s UML Class Di-
agrams or Entity-Relationship Diagrams, OMG’s Interaction Flow Modeling
Language (IFML) diagrams, and an abstract action language for IFML [11].
The extension caters for the requirements posed by the integration of DLT
into a traditional database-driven application development. The designer
simply annotates the Domain Model entities and relationships to specify the
platforms where such primitives are materialized. In this way, the operations
of the Action Model that affect domain objects can infer the platform(s) in
which the operations are executed. Similarly, the components of the Inter-
face Model implicitly derive the content to publish in the interface from the
appropriate data source.

1 Examples of low code platforms are WebRatio, Mendix and Outsystems.



Model-Driven Development of Distributed Ledger Applications 3

– We illustrate a prototypical version of a code generator mapping the high-
level specifications of a hybrid DLT/DB application into the executable code
for the Java EE architecture integrated with a popular DLT framework (Hy-
perledger Fabric). The code generator takes in input the Domain, Interface
and Action Models and produces a fully functional multi-organization and
multi-role hybrid DLT/DB application with Web/mobile GUIs.

– We showcase the MDD approach in the realization of the blueprint applica-
tion of Hyperledger Fabric, a financial certificate trading solution.

– We discuss the integration of the developed modeller and code generator into
the WebRatio2 commercial low-code platform.

1.1 Running example

To illustrate the MDD of hybrid DLT/DB application, we exploit throughout the
paper an exemplary application built on top of the blueprint Papernet network
introduced the Hyperledger Fabric tutorial3. Papernet is a commercial paper
network that allows participants to issue, trade and redeem commercial papers.
The hybrid DLT/DB application will permit the authorized personnel of busi-
ness companies to create commercial papers and share them in a DLT network,
where they can be purchased and redeemed by the employees of financial trad-
ing companies. The hybrid nature of the application stems from the necessity to
exploit a traditional centralized database architecture for storing the employee
data, implementing role-based access control, recording in the company’s own
books both the details of the commercial certificates and other relevant account-
ing and internal auditing data (e.g., the certificate’s creator). To such needs the
DLT requirements add up: the operations on the papers must be implemented
so as to ensure transparency, accountability and non-repudiability of operations.

2 Background

2.1 Distributed ledger technology and hybrid DLT/DB applications

Distributed ledger technology (DLT) is an approach for sharing data across
a distributed network of participants with the guarantee of immutability of trans-
actions. DLT evolved from the Peer-to-Peer (P2P), file sharing and blockchain
technologies. In a P2P network the peers are connected computer systems and
the assets are shared directly without a central server. In 2008 the Bitcoin vir-
tual currency applied the P2P paradigm to financial assets [10]. The under-
lying blockchain data sharing technology opened the way to other P2P asset
management frameworks, yielding to DLT as a general-purpose architecture.
The blockchain is a specific type of DLT that uses cryptographic and algorith-
mic methods to create and verify a continuously growing append-only chain of

2 https://www.webratio.com
3 https://hyperledger-fabric.readthedocs.io/en/release-1.4/tutorial/commercial
paper.html

https://www.webratio.com
https://hyperledger-fabric.readthedocs.io/en/release-1.4/tutorial/commercial_paper.html
https://hyperledger-fabric.readthedocs.io/en/release-1.4/tutorial/commercial_paper.html


4 Fraternali et al.

transaction blocks constituting the ledger. Additions are initiated by a node that
creates a new block of data, e.g., containing several transaction records. Infor-
mation about a new data block is shared across the network and all participants
collectively determine the block validity according to a predefined algorithmic
validation method. Only after validation all participants add the new block to
their respective ledgers. With DLT no single entity in the network can amend
past data and approve additions. An attacker willing to corrupt the ledger must
gain control over the majority of the nodes.
The Smart contracts [15] are code packages deployed and executed in the
nodes of a DLT network. They are programs that run, control or document rel-
evant actions in the network. The source of a smart contract is stored in the
blockchain, allowing any interested party to inspect its code and current state
and verify its functionality; in this way, also the operational semantics of a smart
contract cannot be changed without the consensus of the network participants.
Smart contracts are replicated on all the network nodes; when a smart contract
executes on a node, others can verify the result and the operations performed
by the smart contract are recorded in the blockchain permanently.
A Hybrid DLT/DB application is a distributed application that: 1) has
a client-server multi-tier architecture; 2) manages persistent data; 3) involves
transactions that update data both in traditional database storage and in dis-
tributed ledger storage; 4) requires DLT-enabled transparent sharing and non-
repudiability of operations; 5) exposes its functionality to the end-users through
one or more client-side (web or mobile) interfaces; 6) optionally exposes its func-
tionality to other applications through APIs (e.g., as Restful services).
The State of a hybrid DLT/DB application consists of two elements: the
ledger state i.e., an immutable log of transactions and the world state, i.e., a
database with business objects managed by application transactions. In a hybrid
DLT/DB application the world state can be further distinguished into internal
and external. This leads to a tripartite notion of the state of a hybrid DLT/DB
application, in which each level has its specific update semantics:

– The external world state is the state of the objects in databases external to
the network. It is updated by external operations and transactions, whose
effect is not automatically recorded and shared in the ledger.

– The internal world state is the state of the objects recorded in the network
data store. It is updated by smart contracts, whose effect is automatically
recorded and shared in the ledger.

– The ledger (or blockchain) state is the state of the distributed ledger contain-
ing the log of the smart contract operations. It cannot be updated explicitly
but only by the system as an effect of the smart contract execution. In other
terms, the ledger state is read-only for the application business logic and can
only used by applications to visualize smart contract execution history.

Permissionless vs Permissioned DLT DLT systems can be permissionless
or permissioned. In permissionless systems such as those underlying the virtual
currencies, the participants can join or leave the network at will, without being
authorized by any entity. There is no central owner, and identical copies of the



Model-Driven Development of Distributed Ledger Applications 5

ledger are distributed to all network participants. In permissioned DLT, mem-
bers are pre-selected by someone, in general, an owner or an administrator of
the ledger, who controls network access and sets the participation rules. Permis-
sioned DLT systems have been conceived to support the use of the technology
in business contexts in which the sharing of data and operations are constrained
to a set of entities that satisfy the network access rules.
DLT Frameworks for application development The adaptation of DLT
to general-purpose applications has led to the advent of software frameworks
supporting the integration of DLT functions in business applications. Hyper-
ledger Fabric4 is an open-source enterprise-grade permissioned DLT platform
with features such as participant identifiability, high transaction throughput,
low transaction confirmation latency, and transaction privacy and confidential-
ity control. The architecture separates the transaction processing workflow into
three different stages. The smart contracts, also called chaincode, comprise the
system distributed logic for processing and agreement. The transaction ordering
module and the transaction validation and commitment module implement the
serialization and persistence of operations. Such separation reduces the number
of verification levels, mitigates the network bottlenecks, improves network scal-
ability and the overall performances. When a participant submits a transaction
proposal, the network peers need to endorse it. When a majority of peers have
agreed, an ordering service creates a block of transactions to be validated. After
validation, the transactions are committed to the ledger. Since only confirming
instructions, such as signatures and read/write sets, are sent across the network,
the scalability and performance of the network are enhanced. The plug-in and
component-based architecture of the platform also simplifies the reuse of existing
features and the integration of custom modules.

2.2 MDD with the Interaction Flow Modeling Language

The Interaction Flow Modeling Language (IFML) [11] is an OMG standard for
the platform-independent specification of interactive applications that allows
developers to describe the organization of the interface, the content to be dis-
played, and the effect produced by the user interaction or by system events. The
business logic of the actions activated by the user interaction can be modelled
with any behavioral language, e.g., with UML sequence diagrams or with IFML
extensions for action modelling [3].

Interface Structure. The core IFML element for describing the interface
structure is the ViewElement, specialized into ViewContainer and ViewCompo-
nent. ViewContainers denote the modules that comprise the interface content.
They can include ViewComponents which represent the actual content elements.
Figure 3 shows the IFML specification of one of the interfaces of the Papernet
application. The front-end comprises two ViewContainers: Home and Issue Pa-
per, which in turn comprise the ViewComponents that specify their content.
Different types of ViewComponents can be used to describe alternative content

4 https://www.hyperledger.org/use/fabric

https://www.hyperledger.org/use/fabric


6 Fraternali et al.

patterns. The basic ones are Detail ViewComponents that denote the publication
of a single object, List ViewComponents that denote the publication of multiple
objects, and Form ViewComponents that denote an input form. Depending on
their type, ViewComponents can output parameters: a form has output param-
eters corresponding to the submitted values and a List ViewComponent has an
output parameter that identifies the selected item(s). IFML shows the abstract
source from which ViewComponents derive their content with a DataBinding
element, which references an object class of the application Domain Model. The
object(s) bound to a ViewComponent can be constrained by a selector condition,
which can be parametric. For example, in Figure 3 the Paper Details ViewCom-
ponent displays the data of a Paper object. The selector condition [creator =

?] on the ViewComponent expresses a required input parameter corresponding
to the identifier of the object to display. The parameter input-output dependen-
cies between components are specified with Flows.

Events, Navigation Flows and Data Flows. ViewContainers and View-
Components can be associated with Events, denoted as circles, to express that
they support the user interaction. For example, a List ViewComponent can be
associated with an Event for selecting one or more items, and a Form ViewCom-
ponent with an Event for input submission. The effect of an Event is represented
by a NavigationFlow, denoted by an arrow, which connects the Event to the
ViewElement/Action affected/triggered by it. IFML specifies (also implicitly)
the input, output, and parameter passing from the source to the target of the
NavigationFlow. For example, in Figure 3 the NavigationFlow from the Issued
papers List ViewComponent to the PaperDetails Detail ViewComponent denotes
that the user can interact with the list by selecting one item. Such an event deter-
mines the (re)computation of the content of the Paper Detail ViewComponent
based on the identifier of the Paper object selected from the list. Input-output
dependencies between ViewComponents can also be specified independently of
interaction events, using DataFlows denoted as dashed arrows.

Actions. The above mentioned list selection Event expresses a user inter-
action which has the sole effect of updating the interface content. Events can
also specify the triggering of business logic, executed prior to updating the state
of the user interface. The IFML Action construct is represented by a hexagon
symbol (see Figure 3) and denotes an invoked program treated as a black box,
possibly exposing input and output parameters. The effect of an Event firing an
Action and the possible parameter passing rules are represented by a Navigation-
Flow connecting the Event to the Action and possibly by DataFlows incoming
to the Action from other IFML elements. The execution of the Action may trig-
ger another Action, cause a change in the state of the interface and produce
output parameters; this is denoted by termination events associated with the
Action and connected by a NavigationFlow to the Action executed after it or
to the ViewElement affected by it. In Figure 3 the outgoing NavigationFlow of
the Create Paper Action is connected to the Paper Details ViewComponent and
is associated by default with the output parameter of the Action (this is the
identifier of the Paper object created by the Action, as shown Figure 4). When



Model-Driven Development of Distributed Ledger Applications 7

the Action completes, the Home ViewContainer is displayed and the output pa-
rameter of the Create Paper Action determines the object shown in the Paper
Details ViewComponent, i.e., the newly created Paper object.

3 Development of Hybrid DLT/DB applications

We adopt an enterprise application integration perspective whereby the specific
DLT requirements add up to the requirements typical of enterprise applications.
For this reason, we start from a development process scheme typical of multi-
tier data-intensive applications and extend such a workflow with the inputs,
activities and outputs needed to address the integration of DLT requirements.

The development process of data-driven enterprise applications encompasses
the major phases of requirements specifications, design, implementation and
maintenance/evolution. In this paper, we do not address the modalities in which
such major concerns are addressed in a practical software life cycle (e.g., in a
SCRUM agile development method) but rather focus on the input, output and
tasks that characterize each concern to show how DLT requirements impact.

3.1 Requirement specification

Requirements specification collects and formalizes the essential knowledge about
the application domain and expected functions. The input is the set of business
requirements that motivate the application development and all the available
information on the technical, organizational, and managerial context. The out-
put is a document specifying what the application must do. In a traditional
database-driven application the specifications typically comprises the identifica-
tion of the user roles, the use cases of each role with pre-conditions, workflow
and post-conditions, and a dictionary of the essential data. When DLT require-
ments come into play, the requirements specifications should also address the
data and transaction sharing requirements. This can be done by identifying the
organizations participating to the network to which the user roles belong and
making explicit the operations of the use case workflows whose execution should
be tracked in the network.

Running example Two types of organizations can join the Papernet net-
work: Issuers are companies that create commercial papers to fund their op-
erations, and Traders are financial organizations that transact such certificates
as a form of investment. The application role models comprise Issuer employees
and Trader employees who interact on behalf of their respective organizations.
The relevant use cases comprise the Issue paper use case by the issuer employ-
ees and the Buy Paper and Redeem Paper use cases by the trader employees.
The data dictionary comprises as entities the organizations, the organizations’
roles, the users, the commercial papers and the issuing, buying and redeeming
operations. The application publishes three user interfaces: one public interface
for logging in, one protected interface for issuer employees and one protected
interface for trader employees. Figure 1 shows a simplified and partial excerpt
of the requirements specifications of the Papernet application.



8 Fraternali et al.

Fig. 1. The simplified requirements specifications of the Papernet application

3.2 Data design

Data design is the activity that takes in input the data dictionary and the use
cases and creates the domain model of the application, using such notations
as UML class diagrams or Entity-Relationship diagrams. In the design of the
domain model of a hybrid DLT/DB application entities and relationships can
be stereotyped with the three storage modes (external, internal, ledger) to
show the level at which the information resides in the application state. The
entities and relationships defined at the ledger level are implicitly read-only.
The default storage mode is defined to be external, because it is assumed that
only a minority of critical data will be stored in the internal database.

Fig. 2. Domain model of the PaperNet application

Running example The domain model of the Papernet application shown
in Figure 2 contains five entities (Organization, User, Role, Paper, and Opera-
tion) and seven relationships (ownership, membership, affiliation, creation, issue,
purchase and pertinence). The diagram shows which features are stored in the
external database only (User, Role, Organization, membership, ownership, affili-
ation), which ones both in the internal and in the external database (Paper, issue



Model-Driven Development of Distributed Ledger Applications 9

and purchase) and which ones in the ledger only (Operation and pertinence).
Note that the information necessary for implementing role based access control is
kept private in the external database of the organizations because authorization
is needed also by other non DLT-enabled applications to install the enterprise
access rights. Conversely, the information regarding the papers (including the
reference to the creator and to the purchasing company) is preserved both in
the internal and in the external database. They pertain to the external database
because they serve administrative purposes and are also part of the internal state
of the network because they enable the smart contract operations. Finally, the
trace of the operations is maintained in the ledger only. This information is pro-
duced automatically by the DLT infrastructure and can be accessed in read-only
mode by the application for inspecting the application history.

3.3 Interface design

Interface design maps the use cases into the IFML model of the GUIs that
support the users’ workflows. Each interface can be public or restricted to one
or more roles and contains the ViewComponents, Flows and abstract Actions
needed to support the associated use case(s). To disambiguate the case in which
an entity or relationship belongs to multiple state levels, a default rule is in-
troduced for the data binding of a ViewComponent. If no stereotype is used
external is assumed. Otherwise internal or ledger can be specified.

Running example The Papernet application comprises one public and two
restricted interfaces, as shown in Figure 1. The Issuer employee can access the
interfaces shown in Figure 3. In the public interface a Form ViewComponent and
a Login Action let the employee access the restricted interface. The restricted
interface comprises a Home ViewContainer with a list of the commercial papers
created by the employee. In the Issued Papers ViewComponent the data bind-
ing to the multi-level Paper entity refers by default to the external database
and the selector condition [creator = ?] denotes a relationship join predicate
evaluated in the external database. The DataFlow outgoing the predefined Ge-
tUser session ViewComponent is associated with the id of the logged in user
as a parameter. Therefore the papers to show will be fetched from the external
database by a parametric query that joins the Paper and the User entity on the
creation relationship using the id of the logged in employee. By selecting one
paper from the list, its data are shown in the Paper Details ViewComponent
and the operations executed on it are displayed in the Operations ViewCompo-
nent. Note that in a real application, the Paper Details ViewComponent may
show administrative attributes of the commercial paper that are pertinent to
the business but not maintained in the network, which motivates the decision of
binding the ViewComponent to the external database. A DataFlow between the
Paper Details and the Operations ViewComponents expresses the input-output
dependency between the two elements. In the Operations ViewComponent the
data binding to the ledger Operation entity refers to this data layer and thus
the selector condition [pertains = ?] also refers to a relationship predicate
over the ledger. Therefore the operations to show will be fetched by retrieving



10 Fraternali et al.

from the ledger the records related to the displayed paper. The interface also
contains an Issue Paper ViewContainer, with a Form ViewComponent for in-
putting the data of a new paper. The Form comprises the fields corresponding
to the attributes of the Paper entity (not shown in the IFML graphic notation).
The submission of the Issue form (denoted by the event and NavigationFlow as-
sociated with this ViewComponent) triggers the execution of the Create Paper
Action, whose internal workflow is specified in the action model of Figure 4.

Fig. 3. IFML model of the public Login interface and of the restricted Issuer interface.
The specification of the Create Paper abstract action is provided in Figure 4.

3.4 Operation design

Operation design maps each abstract Action into a detailed workflow. We express
the workflow with the IFML action language extension of the WebRatio low code
platform5. The action language comprises predefined operations, such as CRUD
primitives bound to the entities and relationships of the domain model, system
and session operations and more. When a CRUD operation affects a multi-level
entity or relationship, the internal and external stereotypes can be associated
with its data binding to disambiguate the data source. We assume external as

5 https://www.webratio.com

https://www.webratio.com


Model-Driven Development of Distributed Ledger Applications 11

the default. Given that applications have read-only access to the ledger, CRUD
operations bound to ledger entities and relationships are not meaningful.

Running example The Papernet application comprises four operations (lo-
gin, issue, buy, redeem) which are modelled as abstract Actions in the interfaces
of the respective actor. Figure 4 shows the operation model of the Create paper
abstract Action specified in the Issuer’s interface (Figure 3). The workflow has
an input port that specifies the parameters consumed by the Action. They are
the creator’s id, the face value and the maturity date (such parameters match
the inputs to the abstract Action of Figure 3). The Action workflow starts by
verifying the creator’s credentials (with the Verify User Identity predefined read
operation on the external database entity User); if this succeeds the current
timestamp is acquired (with the predefined system operation Get Time); the
timestamp and the input parameters are forwarded to the Create Paper oper-
ation, which is stereotyped as internal to denote that it is a smart contract
creating a new paper instance in the internal database. If the update of the
internal database succeeds, the issue operation is also automatically registered
to the ledger. After the successful insertion of the paper, the workflow proceeds
by updating the external database. The Create Paper operation stereotyped
with external receives in input the attributes of the new commercial paper and
stores them in the external database. The successful termination event of the
external Create Paper operation is associated with a parameter (the identifier
of the created object) which is bound to the success output port of the workflow.
In the workflow of Figure 4 if any operation fails, the workflow terminates, and
the Error output port is associated with a parameter that describes the failure.
Workflows similar to that in Figure 4 are also specified for the actions of the
Trader’s role: paper purchase and redemption. We omit them for space reasons.

Fig. 4. Operation model of the Create paper abstract action



12 Fraternali et al.

3.5 Architecture design

Architecture design describes at a high level the runtime infrastructure onto
which the application is deployed. We assume a fixed architecture pattern con-
sisting of a Java Enterprise back-end connected to one or more relational databases
and a permissioned DLT network implemented with Hyperledger Fabric.

Running example Under the above mentioned assumptions, architecture
design boils down to specifying the configuration parameters of the architecture
of the specific application. These amount to the URLs and permissions to access
the database by each organization and the network channels, peers and policies
for each organization and for the channel. In the running example, we install a
single Trading channel with two peers for each organization. Figure 5 represents
the network model designed with the MDD tool described in Section 4.

Fig. 5. Network Model

4 Implementation

To implement the described MDD approach, we extended the code generator
of the WebRatio low code platform, which supports Entity-Relationship data
modelling and IFML user interface modelling. The WebRatio code generator is
template-based and enables developers to refine the implementation of the pre-
defined components and to add new components and templates. We customized
the behaviour of the data-driven ViewComponents to support the binding to
internal database entities and relationships and added the action templates for
CRUD operations bound to the internal database so as to map them to smart
contracts. Furthermore, a completely new model editor and a deployment code
generator were developed to map the network model into the artefacts required
to install the network. Figure 6 illustrates the architecture, inputs and outputs
of the MDD code generator of hybrid DLT/DB applications.



Model-Driven Development of Distributed Ledger Applications 13

Fig. 6. Components of the code generator, including inputs and outputs

The DataBase Generator maps the domain model into SQL scripts that cre-
ate the database structure. The native WebRatio module was reused as-is for
mapping the external entities. No code generation is necessary for the Hyper-
ledger Fabric store because all internal entities map to standard collections, and
ledger entities map to JSON objects extracted via API calls.
The Entity Generator maps the domain model into Hibenate classes. The
module has been extended with a Ledger Object Generator to map the internal
database entities onto Java classes extending the Hyperledger Fabric Framework
and the ledger entities onto JSON objects extracted from the blockchain.
The Service Generator takes in input the action model and the domain enti-
ties and outputs service classes that implement the operations and the control
logic of the action workflows. It exploits code templates and generates the ser-
vice API and the implementation code for the predefined system and CRUD
operations. We extended the module by adding a Smart Contract Generator,
which produces the smart contracts for managing the internal objects.
The Controller and UI generator takes in input the IFML models, the ser-
vice interfaces and the predefined ViewComponent templates and outputs Java
controllers and GUI views. We extended the module by adding code templates
for the ViewComponents bound to the internal and ledger entities.
The Deployment generator takes in input the configurations defined in the



14 Fraternali et al.

architecture model and creates a WAR package containing the generated code
of the Web/mobile application. We extended the module by adding a Network
generator that produces the artefacts for installing the network.

To model the network during architecture design, we defined a domain spe-
cific language with the Eclipse Modeling Framework (EMF)6. We identified the
network entities, attributes, and relationships, represented them in an Ecore
meta-model and built a graphical editor that supports the creation of network
models. The Network generator, built using Acceleo7, takes in input the network
model and produces the following files for instantiating and starting the network
automatically:

– configtx.yaml: contains the information to configure the channel(s);
– base.yaml: Docker-Compose file used to define a basic peer container config-

uration; it provides the standard actions for all the peer setup.
– dockercompose.yaml: Docker-Compose file used to define and run the Hy-

perledger Fabric containers that make up the network;
– dockercomposeca.yaml: Docker-Compose file used to define and run the

Fabric-CA containers.
– create channel.sh: script used to create a channel and to join the peers to it;
– deploy chaincode.sh: script used to deploy a smart contract to a channel

according to the Fabric chaincode life cycle.

5 Related Work

Efforts have been done to apply MDD to DTL applications. In [12] the au-
thor propose a method to model the behaviour of Etherium smart contracts
using Entity-Relationship Diagrams, UML class diagrams, and BPMN process
models. Marchesi et al. [8] discuss a design method for blockchain applications
covering the definition of system goals, use cases, data structures, implementa-
tion of smart contracts and integration and testing. UML stereotypes are defined
to account for DLT concepts. In [16,7] Business Process Models and data reg-
istry models are used as input for a code generator that creates smart contracts
executable in the blockchain network. Corradini et al. [4] implement a similar
approach for multi-party business processes interacting with multiple blockchain
networks, by including a choreography model in which the target of each task is
defined. Similar approaches for the generation of smart contracts can be found in
[6] where enhanced state diagrams are used to represent the entities life-cycle as a
set of states and transitions and a code generator takes the diagram as input and
creates a smart contract for each transition. The FSolidM tool [9] employs a sim-
ilar technique but uses finite state machines to represent states and transitions.
In [5] the authors propose B-MERODE, an MDD methodology for blockchain
applications that represents the application in 5 layers: Domain, Permission,
Core Information System Services, Information System Services, and Business

6 https://www.eclipse.org/modeling/emf/
7 https://www.eclipse.org/acceleo/

https://www.eclipse.org/modeling/emf/
https://www.eclipse.org/acceleo/


Model-Driven Development of Distributed Ledger Applications 15

Process. The models can be created using UML Class diagrams, finite state
machines, BPM or tables. The method includes also compliance checks. How-
ever, no code generation is provided. The same authors propose the MDE4BBIS
framework [13], an extension to B-MERODE that defines the transformations
for generating smart contracts from activity models. CEPchain[1] is a tool to
connect a blockchain to a Complex Event Process (CEP) Engine; the author
use domain-specific languages to model the smart contract behaviour, the CEP
domain, and the events that trigger processes. The models are translated into
smart contracts and into event patterns code deployed on the network and on the
CEP, allowing the CEP engine to trigger transactions on the blockchain when
event pattern conditions are met. Most of the revised works focus on defining
software engineering artefacts for modeling blockchain applications and helping
developers in the design process. Some of them include code generation, but
only focused on the generation of smart contracts, leaving the rest of the ap-
plication development and network deployment to be performed manually. Our
approach provides an MDD method for designing hybrid DLT/DB solutions and
a platform that generates the complete code for the deployment of the network,
the installation of the peers and of the smart contracts and a fully functional
web/mobile application for interacting with the network and the ledger, internal
and external data.

6 Conclusion

In this paper, we have described a novel MDD method and toolchain for sup-
porting the development of so-called hybrid DLT/DB applications. The method
has been implemented by extending a commercial MDD platform with features
specific to DLT applications. The current implementation maps the models into
a fully functional Hyperledger Fabric network, the smart contracts realizing the
network operations and a web/mobile GUI for interacting with both database
and ledger content. Future work will focus on improving the generated code for
advanced non-functional requirements such as scalability and atomicity of trans-
actions spanning the internal and external database and on testing the usability
of the method and tools with developers of real-world applications.

Acknowledgement This work has been supported by the European Union’s
Horizon 2020 project PRECEPT, under grant agreement No. 958284.

References

1. Boubeta-Puig, J., Rosa-Bilbao, J., Mendling, J.: Cepchain: A graphi-
cal model-driven solution for integrating complex event processing and
blockchain. Expert Systems with Applications 184, 115578 (2021).
https://doi.org/https://doi.org/10.1016/j.eswa.2021.115578, https://www.
sciencedirect.com/science/article/pii/S0957417421009805

2. Brambilla, M., Cabot, J., Wimmer, M.: Model-Driven Soft-
ware Engineering in Practice, Second Edition. Synthesis Lectures

https://doi.org/https://doi.org/10.1016/j.eswa.2021.115578
https://www.sciencedirect.com/science/article/pii/S0957417421009805
https://www.sciencedirect.com/science/article/pii/S0957417421009805


16 Fraternali et al.

on Software Engineering, Morgan & Claypool Publishers (2017).
https://doi.org/10.2200/S00751ED2V01Y201701SWE004, https://doi.org/10.
2200/S00751ED2V01Y201701SWE004

3. Brambilla, M., Fraternali, P.: Interaction flow modeling language: Model-driven UI
engineering of web and mobile apps with IFML. Morgan Kaufmann (2014)

4. Corradini, F., Marcelletti, A., Morichetta, A., Polini, A., Re, B., Scala,
E., Tiezzi, F.: Model-driven engineering for multi-party business processes
on multiple blockchains. Blockchain: Research and Applications 2(3), 100018
(2021). https://doi.org/https://doi.org/10.1016/j.bcra.2021.100018, https://www.
sciencedirect.com/science/article/pii/S2096720921000130

5. De Sousa, V.A., Burnay, C., Snoeck, M.: B-merode: a model-driven engineering
and artifact-centric approach to generate blockchain-based information systems.
In: International Conference on Advanced Information Systems Engineering. pp.
117–133. Springer (2020)

6. Garamvölgyi, P., Kocsis, I., Gehl, B., Klenik, A.: Towards model-driven engineering
of smart contracts for cyber-physical systems. In: 2018 48th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks Workshops (DSN-
W). pp. 134–139 (2018). https://doi.org/10.1109/DSN-W.2018.00052

7. Lu, Q., Binh Tran, A., Weber, I., O’Connor, H., Rimba, P., Xu, X., Staples, M.,
Zhu, L., Jeffery, R.: Integrated model-driven engineering of blockchain applications
for business processes and asset management. Software: Practice and Experience
51(5), 1059–1079 (2021)

8. Marchesi, M., Marchesi, L., Tonelli, R.: An agile software engineering method to
design blockchain applications. In: Proceedings of the 14th Central and Eastern
European Software Engineering Conference Russia. pp. 1–8 (2018)

9. Mavridou, A., Laszka, A.: Designing secure ethereum smart contracts: A finite
state machine based approach. CoRR abs/1711.09327 (2017), http://arxiv.org/
abs/1711.09327

10. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system. Decentralized Busi-
ness Review p. 21260 (2008)

11. OMG: Interaction flow modeling language (IFML), version 1.0. http://www.omg.
org/spec/IFML/1.0/ (2015)

12. Rocha, H., Ducasse, S.: Preliminary steps towards modeling blockchain oriented
software. In: 2018 IEEE/ACM 1st International Workshop on Emerging Trends in
Software Engineering for Blockchain (WETSEB). pp. 52–57. IEEE (2018)

13. de Sousa, V.A., Burnay, C.: Mde4bbis: A framework to incorporate model-driven
engineering in the development of blockchain-based information systems. In:
2021 Third International Conference on Blockchain Computing and Applications
(BCCA). pp. 195–200. IEEE (2021)

14. Stahl, T., Völter, M.: Model-Driven Software Development: Technology, Engineer-
ing, Management. Wiley, Chichester, UK (2006)

15. Szabo, N.: Formalizing and securing relationships on public networks. First monday
(1997)

16. Tran, A.B., Lu, Q., Weber, I.: Lorikeet: A model-driven engineering tool for
blockchain-based business process execution and asset management. In: BPM (Dis-
sertation/Demos/Industry). pp. 56–60 (2018)

https://doi.org/10.2200/S00751ED2V01Y201701SWE004
https://doi.org/10.2200/S00751ED2V01Y201701SWE004
https://doi.org/10.2200/S00751ED2V01Y201701SWE004
https://doi.org/https://doi.org/10.1016/j.bcra.2021.100018
https://www.sciencedirect.com/science/article/pii/S2096720921000130
https://www.sciencedirect.com/science/article/pii/S2096720921000130
https://doi.org/10.1109/DSN-W.2018.00052
http://arxiv.org/abs/1711.09327
http://arxiv.org/abs/1711.09327
http://www.omg.org/spec/IFML/1.0/
http://www.omg.org/spec/IFML/1.0/

	Model-Driven Development of Distributed Ledger Applications

