Journal article Open Access

Data security in human subjects research: new tools for qualitative and mixed-methods scholars

Milliff, Aidan


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="041" ind1=" " ind2=" ">
    <subfield code="a">eng</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Qualitative Methods</subfield>
  </datafield>
  <controlfield tag="005">20220526015035.0</controlfield>
  <controlfield tag="001">6448133</controlfield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">246285</subfield>
    <subfield code="z">md5:ffe2dfb76008e331d2545021444fffce</subfield>
    <subfield code="u">https://zenodo.org/record/6448133/files/Aidan Milliff.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2022-04-11</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="p">user-qmmr-newsletter</subfield>
    <subfield code="o">oai:zenodo.org:6448133</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="4">
    <subfield code="c">31-39</subfield>
    <subfield code="n">2/1</subfield>
    <subfield code="p">Qualitative &amp; Multi-Method Research</subfield>
    <subfield code="v">19/20</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">Massachusetts Institute of Technology</subfield>
    <subfield code="a">Milliff, Aidan</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Data security in human subjects research: new tools for qualitative and mixed-methods scholars</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-qmmr-newsletter</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution Non Commercial No Derivatives 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;Political science research in both qualitative and quantitative traditions frequently uses data that contain personal information about research participants. Personal information can enter the research process in different ways; sometimes researchers collect it directly via a survey or an interview, other times they gather it from an aggregator like a government agency or private company or semi-public sources like social media. In many cases, the personal data that political scientists collect is both personally-identifiable3 and sensitive, meaning that disclosure could expose respondents to severe repercussions like legal sanction (McMurtrie 2014) or retribution from non-state actors (Venkatesh 2008), as well as more diffuse harms like the negative impacts on personal life, employment opportunities, or reputation (Ohm 2010).&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">issn</subfield>
    <subfield code="i">isPartOf</subfield>
    <subfield code="a">2153-6767</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.5281/zenodo.6448132</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.6448133</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">article</subfield>
  </datafield>
</record>
81
48
views
downloads
All versions This version
Views 8181
Downloads 4848
Data volume 11.8 MB11.8 MB
Unique views 7777
Unique downloads 4646

Share

Cite as