Journal article Open Access

Baby Cry Classification Using Machine Learning

P.Ithaya Rani; P.Pavan Kumar; V.Moses Immanuel; P.Tharun; P.Rajesh

MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="">
  <controlfield tag="005">20220403134914.0</controlfield>
  <controlfield tag="001">6409004</controlfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="a">P.Pavan Kumar</subfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="a">V.Moses Immanuel</subfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="a">P.Tharun</subfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="a">P.Rajesh</subfield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">264695</subfield>
    <subfield code="z">md5:950bd14c14b4331b7961df1f75566f64</subfield>
    <subfield code="u"></subfield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2022-04-03</subfield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="o"></subfield>
  <datafield tag="909" ind1="C" ind2="4">
    <subfield code="c">677-681.</subfield>
    <subfield code="n">3</subfield>
    <subfield code="p">International Journal of Innovative Science and Research Technology</subfield>
    <subfield code="v">7</subfield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="a">P.Ithaya Rani</subfield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Baby Cry Classification Using Machine Learning</subfield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u"></subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2"></subfield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;A Cry is a type of correspondence for kids to communicate their sentiments. Child cry can be portrayed by its regular occasional tone and the difference in voice. Through their child&amp;#39;s cry discovery, guardians can screen their child somewhat just in significant conditions. Recognition of a child cry in discourse signals is a urgent advance in applications like remote child observing and it is likewise significant for researchers, who concentrate on the connection between child cry signal examples and other formative boundaries. This investigation of sound acknowledgment includes highlight extraction and arrangement by deciding the sound example. We use MFCC as an element extraction strategy and K-Nearest Neighbor (K-NN) for arrangement. K-Nearest Neighbor (KNN) is a characterization technique that is regularly utilized for sound information. The KNN classifier is displayed to yield extensively better outcomes contrasted with different classifiers.&lt;/p&gt;</subfield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.5281/zenodo.6409003</subfield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.6409004</subfield>
    <subfield code="2">doi</subfield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">article</subfield>
All versions This version
Views 3131
Downloads 2424
Data volume 6.4 MB6.4 MB
Unique views 2828
Unique downloads 2222


Cite as