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Abstract

Purpose: The purpose of this dissertation is to investigate the feasibility of using tests of robustness

in peer review. This study involved selecting three high-impact papers which featured open data and

utilized bioinformatic analyses but provided no source code and refactoring these to allow external

survey participants to swap tools, parameters, and data subsets to evaluate the robustness and under-

lying validity of these analyses. Technical advances that have taken place in recent years - scientific

computing infrastructure has matured to support the distribution of reproducible computational

analyses - enable this approach. These advances, along with cultural shifts encompassing open data

and open code initiatives, promise to address technical stumbling blocks that have contributed to

the "reproducibility crisis." To take full advantage of these developments toward improving scientific

quality, authors, reviewers, and publishers must integrate reproducible analysis into the peer review

process. Seven existing major case study types - reproduction, replication, refactor, robustness test,

survey, census, and case narrative - have been invaluable toward establishing reproducibility as a

serious and independent area of research. Of particular interest are refactors, in which an existing

analysis with abstract methods is reimplemented by a third party, and robustness tests, which in-

volve the manipulation of tools, parameters, and data to assess the scientific validity of an analysis.

This thesis describes efforts to test the feasibility of robustness testing in the context of in silico peer

review. The contributions described are complemented with extensive source code.

Design and Methods: A multi-method approach was employed for this study consisting of user

surveys and tests of robustness - hands-on, self-directed software development exercises. Three

high-impact genomics publications with open data, but no source code, were selected, refactored,

and distributed to active study participants who acted as quasi-external reviewers. The process

of the refactor was used to evaluate the limitations of reproducibility using conventional tools and

to study how best to present analyses for peer review, and the tests of robustness were employed

under the hypothesis this practice would help to evaluate the underlying validity of an analysis.

Three different approaches were taken in these tests of robustness - a faithful reproduction of the

original manuscript into a framework that could be manipulated by participants, a workflow-library

approach in which participants were encouraged to employ modern "off-the-shelf" pre-built pipelines

to triangulate tests, and an advisor-led approach in which senior experts suggested alternate tools

to be implemented and I generated a report for their evaluation.
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Findings: The refactors and tests of robustness produced numerous discoveries both in terms of

the underlying scientific content and, more importantly, into the strengths and weakness of the

three robustness approaches (faithful/workflow-library/advisor-led) and pain points in the analytic

stack, which may be addressed with appropriate software and metadata. The principal findings

are that the faithful approach may often discourage aggressive robustness testing because of the

inertia imposed by the existing framework, the workflow-library approach is efficient but can prove

inconclusive, and the advisor-led approach may be most practical for journals but requires a higher

level of communication to be effective. The vast majority of time in all these refactors was spent

on sample metadata management, particularly organizing sample groups of biological and technical

replicates to produce the numerous and varied tool input manifests.

Practical Implications: Reproducibility-enabled in silico peer review is substantially more time-

consuming than traditional manuscript peer review and will require economic, cultural, and technical

change to bring to reality. The work presented here could contribute to developing new models to

minimize the increased effort of this type of peer review while incentivizing reproducibility.

Value: This study provides practical guidance toward designing the future of reproducibility-enabled

in silico peer review, which is a logical extension of the computational reproducibility afforded by

technical advances in dependency management, containerization, pipeline frameworks, and note-

books.
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0.1 Introduction

In recent years, various fields - namely the biomedical sciences, psychology, and neuroscience, but

also newer areas such as artificial intelligence - have decried a "reproducibility crisis" [1] in the

form of unreproducible analyses or unreplicable results. The primary origins of these problems are

selective reporting and insufficient detail provided in methods, which can include missing code, data,

versions, or parameters. These details encompass all steps of the scientific endeavor, from laboratory

protocols, data collection, data processing, analysis, and manuscript editing.

Reproducible research is not yet a formally established area of study or curricula in information

science, despite increasing attention within an array of scientific fields and as a primary focus of

several researchers, institutions, and journals. Only one dissertation exists with a title bearing the

phrase "reproducible research" or "reproducible computational research" [2]. The field of informa-

tion science, straddling the fence between computer science and its applied domains, is uniquely

positioned to accommodate reproducible computational research as a topic of study in its own right.

This proposal intends to serve as a progenitor for this new subdomain by exploring metadata as a

syntactic glue to bind layers of the "analytic stack."

0.1.1 Reproducible Research

Reproducible Research is an umbrella term that encompasses many forms of scientific quality -

from generalizability of underlying scientific truth, an exact recreation of an experiment with or

without communicating intent, to the open sharing of analysis for reuse. Specific to computational

facets of scientific research, Reproducible Computational Research (RCR)[3] encompasses all aspects

of in silico analyses, from the propagation of raw data collected from the experimental lab, field,

or instrumentation, through intermediate data structures. computational hardware, to open code

and statistical analysis, and finally publication. Reproducible research points to several underlying

concepts of scientific validity – terms that should be unpacked to be understood. Stodden et al.

[4] devised a five-level hierarchy of research, classifying it as – reviewable, replicable, confirmable,

auditable, and open or reproducible. Whitaker [5] describes an analysis as "reproducible" in the

narrow sense that a user can produce identical results provided the data and code from the original,

and "generalisable" if it produces similar results when both data is swapped out for similar data
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("replicability"), and if underlying code is swapped out with comparable replacements ("robustness")

(Figure 1).

Figure 1: Whitaker’s matrix of reproducibility [6]

While these terms may confuse those new to reproducibility, a review by Barba disentangled the

terminology while providing a historical context of the field [7]. One major conflicted use of terms (re-

producible/replicable) has since then been harmonized [8]. A wider perspective places reproducibility

as a first-order benefit of applying FAIR principles: Findability, Accessibility, Interoperability, and

Reusability [9].

Reproducible computational research (the "reproducible" in Whitaker’s table) is attainable with

current technology with a few caveats - namely external resources and manual steps. There is some

debate whether implementing reproducibility is "still a challenge" [10] or "not hard" [11]. The

tools to achieve highly portable and automated analyses such as Conda, Docker, cloud computing,

pipeline frameworks, notebooks, and script provenance tools are readily available, even if some are

quite new.

RCR is necessary but not sufficient to achieve the other three types of reproducibility (replicability,

robustness, and generalizability). It is impossible to evaluate the replication (swapping in new

data) or robustness (swapping in new tools) of a complex computational workflow if it is not first

reproducible. Those types of reproducibility rely on some level of scientific validity (i.e., truth)

to realize. Methods to measure replicability, robustness, and generalizability are also indirectly
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measuring the strength of scientific hypotheses rather than best practices in reproducible research.

As mentioned above, a binary condemnation of "Not replicable" might infer a scientific result is

not valid when the infraction might be relatively minor - for example, a missing but ultimately

derivable parameter. Conversely, a highly transparent and automated analysis can still suffer from

design problems and small sample sizes that can lead to artefactual results. The Begley and Ellis

Amgen study cited poor design, poor statistics, and perhaps most commonly, selective reporting,

rather than record-keeping or lack of lab notebooks as the primary factor in a failure to validate [12].

This contrasts somewhat with the Ioannidis microarray review discussed above [13], which identified

most reproducibility problems as being due to a lack of detailed methods, missing controls, and

other failures in protocol.

Munafò and Smith contend that the four types of reproducibility cited by Whitakerare not suffi-

cient to verify scientific validity because they do not eliminate common confounders. They posit

that triangulation, defined as applying entirely different approaches (each with differing biases) and

multiple lines of evidence to the same problem, is a more appropriate use of resources.[14]

Millman and colleagues in "Is tagging of therapist-patient interactions reliable?" [15] classify repro-

ducibility into four categories.

• Computational reproducibility and transparency

• Scientific reproducibility and transparency

• Computational correctness

• Statistical reproducibility

These divisions correspond to the divides between reproducibility/replicability and between wet-lab

and in silico analysis.

0.1.1.1 Secondary Attributes of Reproducibility

Building on those primary types are nine secondary attributes of manuscript reproducibility, per-

haps best described by Stodden - replicable, reproducible, repeatable, confirmable, generalizable,

reviewable, auditable, verifiable, and validatable. Many of these attributes revolve around the free
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and unrestricted availability of data. As a tenet or a prerequisite to reproducibility, the role of open

data and the open data movement is a lengthy topic by itself but also affects the standards and

means of measuring reproducibility. The data-sharing movement - including Open Access and FAIR

[9]– has developed somewhat tangentially to the reproducibility movement, although these share

many of the same values of reuse, evaluation, and scientific validity. In biomedical science, open

data is largely driven by the need to reach a critical mass of patient data to derive statistical power,

especially in rare disease. Sample sizes in the thousands are often necessary to utilize machine learn-

ing techniques. "Deep learning" requires even more. In data science, open data is often associated

with larger social and political government transparency issues.

The reproducibility movement can be presented as an "open analysis" (as opposed to "open data")

movement. However, this characterization oversimplifies both the challenges of creating reproducible

workflows in terms of portability, transparency and other characteristics in the same way "open data"

glosses over some of the finer points of tidiness and metadata.

Rokem, Marwick, and Steneva [16] classify the three facets of reproducibility as

• Automation and provenance tracking - includes the single-button press criteria

• Availability of software and data

• Open reporting of results

0.1.1.2 Tertiary Attributes of Reproducibility

Finally, quality attributes are associated with reproducibility in a tangential fashion, most often

connected with software engineering and information and library science.

0.1.1.2.1 Attributes from software engineering The computational reproducibility commu-

nity is closely aligned with computer science and software development communities, which have

developed various software engineering habits, development methodologies, best practices, and stan-

dards that may embody these high-level qualitative characteristics, engendering "checklist"-style

rubrics. These include version control, provenance tracking (tracing the origins of data and inter-

mediates), documentation, pipeline frameworks, and continuous integration [17, 18]. Most of the
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concepts here have been directly borrowed from research in industrial software engineering settings

[19, 20], and many have formal software quality ISO9126 entries.

• Automation - Are there checkpoints that require human judgment to proceed, either because a

machine learning or other automated routine has not yet been developed or because there are

steps that involve web applications, desktop software, or other interactive tools which disrupt

flow?

• Swappability - Refers to how readily can alternative tools and analytical steps be replaced with

substitutes. This is incredibly important for testing whether a result is an artifact created

by a particular tool or model. In software quality terms, this is referred to as ISO 9126

Maintainability Sub-characteristic Replaceability

• Modularity - can individual tools, steps, and reports be extracted and used by others. Main-

tainability Sub-characteristic Modularity

• Discoverability - how readily is this project going to be found by others, even those in a different

field but whose workflow resembles the project

• Readability - is source code well enough documented to be inspected and understood by

programmers familiar with the tool but unfamiliar with the underlying implementation.

• Abstracted - does the project use conventional standard frameworks, such as pipeline frame-

works - either CWL-based or a DSL[21].

• Portability - can the software dependencies of an analysis be seamlessly installed on a dif-

ferent server? Are they specified in a server-agnostic dependency manager such as Conda?

Are Docker [22] or Singularity containers [23] used to isolate individual processes? Is the

infrastructure "cloud-ready"?

• Uncoupledness - is the software designed as a loosely coupled service-oriented architecture that

leverages application programming interfaces (APIs), preferably in a stateless or RESTful web

interface. A popular framework for such services is Swagger [24]. For more highly linked data,

a SPARQL endpoint may be preferable.[25]

• Scalability - can a process be configured to use multiple cores, multiple nodes, batch submission

systems, or more sophisticated big data shared memory frameworks such as Spark.
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• Loggability - does the workflow record steps during progression?

• Monitoring - can the workflow be monitored in real-time?

• Tested - have tests been developed? Are there test coverage statistics?

• Debuggability - can bugs in the project be easily identified? Is continuous integration used?

• Updatability - can the project be updated with new resources?

• Extensibility - can one easily build on an analysis to suit a different experimental design?

• Robustness - can the software work in a variety of contexts?

• Gracefulness - can the software handle exceptions and report meaningful errors?

• Defensiveness - does the software detect error states early on?

• Reentrancy and memoization - can a workflow be restarted where it left off if interrupted?

Can a downstream target deliverable be produced from intermediates?

0.1.1.2.2 Attributes from information science Another facet of RCR research is provided

by researchers in information and library science. These include the following attributes:

• Semantic encoding - semantic data contains markup, metadata that defines the meaning of

data for computation, discovery, reuse, and attribution. Metadata is essential for the wet-lab

technical, computational, scientific, and bibliographic layers of a research project.

• Metadata - are data dictionaries used? Are the Dublin Core elements complete?

• Linkedness - Are standards for linked metadata used to provide means of unambiguous iden-

tification with uniform resource identifiers? Are resource description frameworks leveraged

to enable the relationship between entities to be defined using standard ontologies? Research

objects [26] provide a framework for tying together the data, code, workflows, and publications

related to a project using a standard ontology.

• Provenance - are the origins of data properly recorded? [27]

• Sustainability - are sustainable and permanent data identifiers employed? [28, 29]. Are external

databases or files cached such that the version used is available?
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0.1.1.2.3 Attributes from statistics and data science Statistics and data science have in-

troduced key attributes of report-level reproducibility:

• Tidiness - is the raw input data munged into a format that conforms to tidy data standards

as described by Hadley Wickham [30]. Tidy data tends to be "tall," rather than "wide," with

value classifier variables as row values rather than column headings, and only one observation

or measurement, all of the same data type, appears in each row.

• Subsetability - can a project’s data be easily subset or randomly sampled for cross-validation?

• Literacy - the statistical code is interspersed with contextual text that describes the intent of

each block.

• Prospective stability - the model, operation, or algorithm can map new data points without

affecting existing results.

No word or phrase encompasses all of the attributes above to the author’s knowledge. One possible

term would be "broad-sense reproducibility" (BSR), which I use to describe "narrow-sense RCR"

(aka "hit return reproducibility" - the ability to execute a packaged analysis with little effort) with

the added goals of discovery, reuse, and transparency in line with Findable, Accessible, Interoperable,

and Reusable (FAIR) principles [9]. A recent effort to develop metrics for FAIR has emphasized a

rubric that is "clear", "realistic", "discriminating", "measurable", and "universal" [31]

0.1.1.3 Reproducibility Crisis

The scientific community’s challenge with irreproducibility in research has been extensively docu-

mented [1]. Two events in the life sciences stand as watershed moments in this crisis – the publication

of manipulated and falsified predictive cancer therapeutic signatures by a biomedical researcher at

Duke and subsequent forensic investigation by Keith Baggerly and David Coombes [32], and a re-

view by scientists at Amgen who could replicate the results of only 6 out of 53 cancer studies [12].

These events involved different aspects of research practice - poor data structures and missing pro-

tocols, respectively. Together with related studies [13], they underscore recurring reproducibility

problems due to a lack of detailed methods, missing controls, and other protocol failures, including
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inappropriate statistical tests and or misinterpretation of results, also play a recurring role in irre-

producibility [33]. Regardless of intent, these activities fall under the umbrella term of "questionable

research practices." It bears speculation whether these types of incidents are more likely to occur in

novel statistical or computational approaches compared to conventional ones. Subsequent surveys

of researchers [1] have identified selective reporting, while theory papers [34] have emphasized the

insidious combination of underpowered designs and publication bias, essentially a multiple testing

problem on a global scale. We contend that metadata has been undervalued in the role it can play in

addressing all of these issues and shifting the narrative from the current crisis to new opportunities

[35].

In the wake of this newfound interest in reproducibility, both the variety and volume of related

case studies increased after 2015 (Figure 2). Likert-style surveys and high-level publication-based

censuses (see Figure 3) in which authors tabulate data or code availability are most prevalent.

Additionally, low-level reproductions, in which code is executed, replications in which new data is

collected and used, tests of robustness in which new tools or methods are used, and refactors to

best practices are also becoming more popular. While the life sciences have generated more than

half of these case studies, areas of the social and physical sciences are increasingly the subjects of

important reproduction and replication efforts.

The majority of studies into reproducible research have focused on the first row of Whitaker’s grid

and replication in particular. The reasons for this bias are most perhaps rooted in how science has

typically been conducted in those areas that have experienced the most public reproducibility crises

- psychology and the life sciences - where generating new data to test existing hypotheses is more

common than modeling existing datasets, as is more common in the physical sciences.

0.1.1.4 Big Data, Big Science, and Open Data

The inability of third parties to reproduce results is not new to science [36], but the scale of sci-

entific endeavor and the level of data and method reuse suggest replication failures may damage

the sustainability of certain disciplines, hence the term "reproducibility crisis." The problem of irre-

producibility is compounded by the rise of "big data," in which very large, new, and often unique,

disparate or unformatted sources of data have been made accessible for analysis by third parties, and

"big science," in which terabyte-scale data sets are generated and analyzed by multi-institutional
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collaborative research projects on specialized and possibly unique infrastructure. Big data and big

science have increased the demand for high-performance computing, specialized tools, and complex

statistics, with attention to the growing popularity and application of machine learning and deep

learning (ML/DL) techniques to these data sources. Such techniques typically train models on spe-

cific data subsets, and the models, as the end product of these methods, are often "black boxes,"

i.e., their internal predictors are not explainable (unlike older techniques such as regression) though

they provide a good fit for the test data. Properly evaluating and reproducing studies that rely

on such algorithms presents new challenges not previously encountered with inferential statistics

[37, 38]. Computational reproducibility is typically focused on the last analytic steps of what is

often a labor-intensive scientific process that often originates from wet-lab protocols, fieldwork, or

instrumentation, and these last in silico steps present some of the more difficult problems both from

technical and behavioral standpoints, because of the amount of entropy introduced by the sheer

number of decisions made by an analyst. This "decision entropy" is a possible contributor to many

problems in replications, Hoffmann et al. state "there are concerns that this multiplicity of anal-

ysis strategies plays an important role in the non-replicability of research findings"[39]. Ironically,

these choices are also being utilized to evaluate the quality of science, which is the point of this

dissertation.

The ability of third parties to reproduce studies relies on access to the raw data and methods

employed by authors. Much to the exasperation of scientists, statisticians, and scientific software

developers, the rise of "open data" has not been matched by "open analysis," as evidenced by several

case studies [40, 41, 42, 43].

Missing data and code can obstruct the peer review process, where proper review requires the authors

to put forth the effort necessary to share a reproducible analysis. Software development practices,

such as documentation and testing, are not a standard requirement of the doctoral curriculum, the

peer-review process, or the funding structure – and as a result, the scientific community suffers

from diminished reuse and reproducibility [44]. Sandve et al. [17] identified the most common

sources of these oversights in "Ten Simple Rules for Reproducible Computational Research" – lack

of workflow frameworks, missing platform and software dependencies, manual data manipulation

or forays into web-based steps, lack of versioning, lack of intermediates and plot data, and lack of

literate programming or context can derail a reproducible analysis.
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An issue distinct from the availability of source code and raw data is the lack of metadata to support

reproducible research. We have observed many of the findings from case studies in reproducibility

point to missing methods details in an analysis, which can include software-specific elements such

as software versions and parameters [45], but also steps along the entire scientific process including

data collection and selection strategies, data processing provenance including hardware, statistical

methods and linking these elements to publication. We find the key concept connecting all of these

issues is metadata.

An ensemble of dependency management and containerization tools already exist to accomplish

narrow-sense reproducibility [46] – the ability to execute a packaged analysis with little effort from

a third party. But context to allow for robustness and replicability, "broad-sense reproducibility," is

limited without endorsement and integration of necessary metadata standards that support discov-

ery, execution, and evaluation. Despite the growing availability of open-source tools, training, and

better executable notebooks, reproducibility is still challenging [47]. The following sections address

these issues by first defining metadata, defining an "analytic stack" to abstract the steps of an in

silico analysis, and then identifying and categorizing standards both established and in development

to foster reproducibility.

Overall, the review above documenting aspects of the reproducibility crisis underscores the need to

investigate this topic from multiple perspectives to ameliorate further crises. The research presented

below, first examining existing case studies, then implementing tests of robustness to explore their

viability as a natural extension of peer review, seeks to address the reproducibility crisis in terms of

critical and exploratory evaluation.

0.1.1.5 Existing Methods in Reproducible Research Case Studies

Surveys and censuses have provided a valuable understanding of the scope and nature of the repro-

ducibility crisis. However, reproductions, refactors, and tests of robustness are most appropriate for

in-depth investigations into reproducible computational research of the in silico variety.

This dissertation seeks to leverage three existing case study approaches using a mixed-methods

approach consisting of a refactor, followed by a survey and a brief user testing exercise called a test

of robustness. A refactor is a type of case study used in reproducible research in which a study that
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is presumably valid but poorly reproducible is brought up to higher standards. A refactor one of

several available approaches that have been used in this area. To survey the existing efforts of formal

measurement, I collected 40 case studies on reproducible research. This is published on Awesome

Reproducible Research, a crowdsourced curated list of reproducible research case studies, projects,

tutorials, and media.
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Figure 2: Timeline of case studies in reproducible research

The term "case studies" is used in a general sense to describe any study of reproducibility. A reproduction
is an attempt to arrive at comparable results with identical data using computational methods described in

a paper. A refactor involves refactoring existing code into frameworks and reproducible best practices
while preserving the original data. A replication involves generating new data and applying existing
methods to achieve comparable results. A test of robustness applies various protocols, workflows,

statistical models, or parameters to a given dataset to study their effect on results. A census is a high-level
tabulation conducted by a third party. A survey is a questionnaire sent to practitioners. A case narrative
is an in-depth first-person account. An independent discussion utilizes a secondary independent author to

interpret the results of a study as a means to improve inferential reproducibility. [48].

0.1.1.5.1 Case Study Methodologies
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Study Field Approach Size

Ioannidis 2005 [34] Science Theoretical (all studies)

Glasziou et al. 2008 [49] Medicine Census 80 studies

Baggerly & Coombes

2009 [50]

Cancer biology Refactor 8 studies

Hothorn et al. 2009 [51] Biostatistics Census 56 studies

Ioannidis et al. 2009 [13] Genetics Reproduction 18 studies

Anda et al. 2009 [52] Software engineering Replication 4 companies

Vandewalle et al. 2009

[53]

Signal processing Census 134 papers

Prinz 2011 [54] Biomedical sciences Survey 23 PIs

Horthorn & Leisch 2011

[55]

Bioinformatics Census 100 studies

Begley & Ellis 2012 [12] Cancer biology Replication 53 studies

Collberg et al. 2014 [45]

Collberg & Proebsting

2016 [56]

Computer science Census 613 papers

OSC 2015 [57] Psychology Replication 100 studies

Bandrowski et al. 2015

[58]

Biomedical sciences Census 100 papers

Patel et al. 2015 [59] Epidemiology Robustness test 417 variables

Névéol et al. 2016 [60] NLP Replication 3 studies

Reproducibility Project

2017 [61]

Cancer biology Replication 9 studies

Vasilevsky et al. 2017

[62]

Biomedical sciences Census 318 journals

Kitzes et al. 2017 [63] Science Case narrative 31 PIs

Barone et al. 2017 [64] Biological sciences Survey 704 PIs

Kim & Dumas 2017 [65] Bioinformatics Refactor 1 study

Camerer 2017 [66] Economics Replication 18 studies

Olorisade 2017 [67] Machine learning Census 30 studies

Strupler & Wilkinson

2017 [68]

Archaeology Case narrative 1 survey
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Danchev et al. 2017 [69] Toxicogenomics Census 51,292 claims in 3,363 pa-

pers

Kjensmo & Gundersen

2017 [70]

Artificial intelligence Census 400 papers

Gertler et al. 2018 [71] Economics Census 203 papers

Stodden et al. 2018 [72] Computational science Reproduction 204 articles, 180 authors

Madduri et al. 2018 [73] Genomics Case narrative 1 study

Camerer et al. 2018 [66] Social sciences Replication 21 papers

Silberzahn et al. 2018

[74]

Psychology Robustness test One data set, 29 analyst

teams

Eaton et al. 2018 [75] Microbiome immuno oncol-

ogy

Replication 1 paper

Vaquero-Garcia et al.

2018 [76]

Bioinformatics Refactor and test of robust-

ness

1 paper

Wallach et al. 2018 [77] Biomedical Sciences Census 149 papers

Miller et al. 2018 Bioinformatics Synthetic replication &

refactor

1 paper

Konkol et al. 2018 [78] Geosciences Survey, Reproduction 146 scientists, 41 papers

AlNoamany & Borghi

2018 [79]

Science & Engineering Survey 215 participants

Stagge et al. 2019 [43] Geosciences Survey 360 papers

Bizzego et al. 2019 [80] Deep learning Robustness test 1 analysis

Madduri et al. 2019 [73] Genomics Case narrative 1 analysis

Mammoliti et al. 2019

[81]

Pharmacogenomics Case narrative 2 analyses

Table 1: Table of case studies in reproducible research

0.1.1.5.2 Systematic Runnability Tests Several groups have begun to formalize the devel-

opment of systematic in silico reproducibility tests, distinct from individual case studies or larger

replication efforts such as the Open Science Framework Reproducibility Project. Software-based
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testing challenges such as CODECHECK [82] focus on runnability, whereby a "code checker" cer-

tifies the code submitted with a paper executes on cloud-based infrastructure and produces out-

puts roughly identical to those in the paper, allowing for some leeway in terms of visible figures.

ReScience is a peer-reviewed journal that targets computational replications [83]. Rigorous repro-

ducibility standards for submissions to NeurIPS have also been institutionalized [84]. Despite the

new opportunities afforded by reproducibility standards, and open data/open code, none of these

tests typically involve the manipulation of tools or parameters. In the following sections, more

involved techniques are discussed: refactoring and tests of robustness.

Figure 3: Instances of the terms "open data" and "open code" in all abstracts 2010-2020

These terms point to necessary prerequisites for most approaches to reproducibility-enabled peer review

0.1.1.6 Refactoring

A reproduction can merely be as perfunctory as running someone else’s code on their data, with no

regard to other qualities of the code itself. A reproduction by its very nature assumes the paper is

easily reproducible. A refactor involves an attempt to improve the broad-sense reproducibility of a

study to a level higher than its initial state. Broad sense reproducibility is defined as the ability to

execute a packaged analysis with little effort (narrow-sense) with the added goals of discovery, reuse,
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and transparency in line with Findable, Accessible, Interoperable, and Reusable (FAIR) principles

[9]. A recent effort to develop metrics for FAIR has emphasized a rubric that is "clear", "realistic",

"discriminating", "measurable", and "universal" [31]

A refactor is an appropriate initial approach for this dissertation for three reasons. First, a refactor

enables an evaluation of key reproducibility fixtures including workflows, literate programming, and

metadata standards. Second, A refactor enables the modularization and parameterization of tools

and steps in a workflow to easily enable tests of robustness, in which a similar tool is substituted or the

parameter landscape is explored to examine the robustness of the p-value or result being posited. A

recent paper by Vaquero from the laboratory of Barash explores the refactoring aspect by swapping

out both tool versions and data in a replication of an existing RNA splicing study [76]. Finally,

analyses, even more than data processing, involve numerous choices about appropriate statistical

tests, dealing with outliers and missing data, normalization, correction for multiple comparisons,

null and full models. An interesting study by Silberzahn et al. examined the various routes a

statistical analysis could take by distributing a fixed data set of soccer official interactions and

player variables to 29 teams, each charged with determining whether soccer referees are more likely

to give red cards to dark-skin-toned players than to light-skin-toned players [74]. Differences in

statistical tests, treatment of covariates, and underlying model distributions created wide ranges of

odds ratios, underscoring how nuances of statistical analysis can affect results and the importance

of reproducibility when evaluating a study.

0.1.1.6.1 Existing refactors in the literature A conference poster "Reproducible Analysis

in Practice with FireCloud" by the Genome Analysis Toolkit (GATK) group at the Broad Institute

outlined attempts to perform a refactor of an existing exome study while applying WDL-compliant

workflows, Docker containers, and Jupyter notebooks. This was very much in the spirit of this

dissertation proposal, but because the underlying study involved protected data, the Broad group was

forced to generate synthetic variants to mimic the original data set. While an admirable task, reverse

engineering these called and filtered variants may introduce some weakness, as a major component

of exome studies involves dealing with the vagaries of variant and genotype calling. Synthetically

generating noisy data to imitate real noisy data only to arrive at the same intermediates may fall

short of true reproduction.
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Figure 4: Results from the Silberzahn study on soccer referee bias demonstrating the value of
robustness tests on statistical approaches

0.1.1.7 Robustness

Here we define the robustness of an analysis as its ability to maintain core findings while withstanding

perturbations introduced by tool and parameter changes. This is converse to the understanding

of tool or model robustness - being able to be applied to a wide variety of experimental designs

without returning spurious or biased results. The robustness should reflect both the experimental

design and the strength of the underlying theory. The former is commonly known as "test validity"

or, more specifically, "construct validity" - the degree to which a test measures what it claims to

be measuring. [85]. The latter may reflect generalizability or "external validity," more generally

"experimental validity," or scientific truth.

0.1.1.7.1 Understanding the history of omics method development To understand what

makes it possible to perform tests of robustness, aside from justifying the practice as an evaluation

tool, it is first necessary to explain why there are often many competing similar software tools that
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perform roughly the same tasks in the sciences.

• Different conceptual models - models can be derived from a physical or biological concept.

For instance, many differential expression tools assume that there is a floor and a limit to the

number of transcripts a cell transcribes in a given time, and that should inform the normal-

ization of libraries derived from biological replicates. Other models may not be informed of

the underlying biology but will strive for the best possible fit.

• Different statistical models - tools developed using different mathematical or stat models of

the underlying phenomena will exhibit different error profiles in the face of experimental noise.

One semi-recent example is the adoption of the negative binomial model to more accurately

portray between-sample read count distributions ("dispersions") of next-generation sequence

expression data.

• Different experimental scenarios - tools developed to address a specific question are often

adopted by other areas without formal vetting - for example, fusion detection in cancer being

used to detect readthrough events [86].

• Different test sets - tools are developed to model-specific data sets available to developers will

be fitted to those sets. This is often the root of complaints about tool description papers, as

opposed to formal benchmarking papers, as a tool fitted or optimized to a test set will appear

superior to untuned "straw men" competitors [87, 88].

• Improved computational resources have enabled the implementation of computational ap-

proaches that would have been previously impractical. Both the transcript aligner STAR

and the de novo assembler Velvet were developed during a time when single-node random

access memory became available at gigabyte scale.

• Improved software implementations - this can be driven by the influx of developers from

computer science or other disciplines and may take the shape of more modular, tested, or

faster implementations.

• Improved algorithmic performance - Algorithms derived from other areas of mathematics,

such as Burrows-Wheeler algorithm for compression, have provided indisputable improvement

to omics tools, allowing either greater performance or more sensitivity with equal performance.
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• Improved bias management - tools may improve as more data is collected about scientific

instruments and biases are understood. In microarrays, MAS5 normalization has been largely

replaced by RMA [89] and its successors, which utilize cohort normalization.

• Utilization of machine learning or deep learning approaches

A recent publication text-mining over 1000 single-cell tool papers revealed many of the trends above,

with trends toward data integration, greater performance, and specialization [90].

0.1.1.7.2 Degrees of Freedom and Questionable Research Practices To vet robustness

testing as an evaluation tool, we must define the possible outcomes. The main theory behind

robustness is that results are prone to inflations due to "researcher degrees of freedom," [91] The

flexibility afforded by computational choices enables both intentional and unintentional biases in the

form of questionable research practices (QRPs). The most common types of QRPs are p-hacking, in

which analyses are manipulated to achieve significance, and hypothesizing after results are known, in

which the hypothesis driving an experiment is developed to explain a set of results as a confirmation,

rather than a priori. Certain analytical approaches may invite these problems. Gene set enrichment

analysis (GSEA) or Gene Ontology enrichment, for instance, are especially prone to QRPs [92] [93,

94] because they so often generate results that can be explained post-hoc.

0.1.1.7.3 Exploring Scenarios of Robustness Testing Though there is no formal determi-

nation for whether a test of robustness has "passed" or "failed", criteria should be developed from

the results and discussions in the manuscript. The test of robustness may prove simply inconclusive

if there are limitations such as lack of computing resources, software bugs, time, data accessibility

that prevent it from being executed. Assuming a determination can be made by reviewers, multiple

interpretations can be derived from that finding, and still, multiple conclusions and courses of action

can be drawn from those interpretations.

• Possible interpretations given analysis fails the test of robustness

– The original tool or model is the "correct" model, and alternatives introduce error

– Authors engaged in one or more QRPs such as p-hacking, HARKing, multiple modeling

– Authors implementation contained software bugs
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Figure 5: alignment-variant caller combinations

This Venn diagram from Cornish & Guda illustrates the lack of consensus among various alignment-variant
caller combinations. In theory, each of these combinations could produce substantially different findings.

[95]

– Test of robustness itself contained software bugs

– The analysis is fundamentally flawed

– The effect is strong, but other tools in the robustness test are simply inappropriate, and

only the analysis used will reveal the effect.

– The effect is weak, or detecting the scientific phenomena requires a particular set of tools

and settings

• Possible interpretations given analysis passes the test of robustness

– Test of robustness was too limited

– Both original tool and test models suffer from low test validity
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– Analysis is robust

Given the extensive time it takes to perform a test of robustness - a conservative estimate extrapo-

lated from traditional peer review is 10 hours per reviewer and the experiences in this thesis suggests

20 to 100 hours may be more realistic - the peer review infrastructure should be revamped to yield

downstream benefits from this work. An imagined endpoint that attempts to leverage yields from

robustness testing is discussed further in the recommendations section.

0.1.1.7.4 Opportunities for robustness testing While a refactor is the most appropriate

approach to test the state-of-the-art, the process of refactoring and modularization of steps should

lend components of these analyses to be easily swapped out (i.e., a test of robustness). This task is

a fortuitous opportunity as there is a renewed interest in systematic benchmarking of bioinformatic

tools [96] and statistical methods [97], both of which greatly benefit from reproducible setups,

especially modularized and parameterized workflows. Systematic robustness testing has not been

conducted in any forum, but an extension of the REPLICats SCORE program [98], which reviews

papers in eight social sciences fields, has proposed tests of robustness as an upcoming exercise.

0.1.1.7.5 Relationship between robustness testing and benchmarking A proper under-

standing of robustness testing requires disentangling its relationship of robustness testing, as bench-

marking and robustness testing can be viewed opposite sides of the same coin. Robustness testing,

as we define it here, involves evaluating an analysis under shifting tools, parameters, references, and

data subsets. Benchmarking is an umbrella term for a variety of systematic tool measurements,

but in this context, we can define benchmarking as testing tools or models against each other using

defined gold standard truth sets or rubrics. In competitive machine learning circles such as Kaggle

competitions, this gold standard would typically be a holdout test set sequestered from entrants.

A well-known gold standard truth set in bioinformatics is Genome in a Bottle [99], a collection

of "High-confidence" variant calls and regions used in variant calling competitions. A benchmark

without loss criteria or subjective judging is called a "bake-off" and typically involves groups with

pipelines rather than individual tools.

Disciplines that exhibit a high level of decision entropy and changing landscape of analytic tools,

such as bioinformatics, are more likely to experience an extended vetting period in which both the
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Figure 6: A high-level conceptual flow diagram illustrating the relationship between reproducibility-
based evaluation concepts in scientific computing

tools and the analyses those tools are used in evidence for and against each other. As bioinformatics

is one of the few disciplines where every paper draws scrutiny of both the underlying theory and the

tools used to study it, every paper is an opportunity to engage simultaneously in benchmarking and

robustness testing.

Tool papers are notorious for utilizing "straw-man comparison," unfairly favoring their own tool by

overfitting to test datasets and leaving competitors often untuned or otherwise hobbled. Official

benchmarking projects such as therefore, tend to take great care in establishing gold standard truth

sets, typically triangulated through the intersection of several methods but also informed and refined

by the tools themselves.

An interesting and novel part of this dissertation will involve a "user testing" component of robust-

ness. Reviewers will be charged with swapping out a tool or statistical test from each analysis with

an equivalent replacement and reporting the results.
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Bioinformatic analyses lend themselves to tests of robustness because they often suggest several

analysis choices of equal suitability. As discussed below, these analytical choices stem from different

assumptions about the underlying biology, mathematical models at hand, computing power, and

other criteria which change over a long period. An example of this phenomenon (one not used in

this dissertation) is the decomposition or manifold learning of single-cell data. Single-cell studies

study individual cells or clonal populations rather than bulk heterogeneous populations. A variety

of genomic, transcriptomic (scRNA-Seq), and proteomic methods can be used to distinguish these

populations. Most single-cell studies attempt to cluster and visually distinguish cell subtypes using

dimensionality reduction (DR). The go-to technique for this since 2008 has been T-distributed

Stochastic Neighbor Embedding (t-SNE) [100]. However, t-SNE has itself been criticized for low

reproducibility in terms of achieving a given cluster for the same data, when adding new data to an

existing set ("prospective stability"), or in preserving local or global cluster distances. A technique

called UMAP reportedly produced more similar clusters using various subsamples of a data set than

other tools, including t-SNE [101]. As a first-order test of robustness, it would be desirable to

implement UMAP on the raw data of a paper that uses t-SNE.

The above sections described existing case studies into reproducibility and presented robustness

testing, in which tools, parameters, and data subsets are swapped out of existing analyses, as a

natural extension of existing approaches that has been enabled by reproducible research and a

practice that could be applied to peer review. These case studies informed the methods chosen

for this dissertation. The next section presents my primary research questions guiding my work to

implement robustness testing on existing published manuscripts with the intent to study both the

requirements of packaging analyses for this exercise and evaluate the feasibility of this practice as a

potential element of peer review.

0.1.2 Goals and Objectives

This dissertation addresses the primary question of whether reproducibility-enabled peer review, as

implemented with tests of robustness designed to evaluate the strength of analyses, is feasible and

practical given the state-of-the-art tools and standards. Secondly, this thesis is designed to reveal

what is required for reviewers to conduct a test of robustness in terms of both software organization

and computational environment. Finally, the dissertation seeks to identify the next steps to improve
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this process should it become standard practice.

The specific objects objectives of this dissertation are to

• Q1: Survey attitudes about reproducible research and tests of robustness from the participants,

specifically feasibility and effectiveness. Do they differ from past surveys of reproducibility,

notably Baker et al. [1]

• Q2: What did the refactor process performed to prepare reviewers to perform subsequent tests

of robustness, reveal about the underlying reproducibility and technical barriers to implement-

ing these in practice?

• Q3: What did the tests of robustness reveal in the three papers?

• Q4: What are the pros and cons of the three approaches - faithful reproduction, workflow-

library, and advisor-led - used during this study for tests of robustness?

• Q5: What gaps were identified in the process, and what solutions, metadata-based and other-

wise, present themselves as next steps?

0.1.3 Study Design

0.1.3.1 Methods

This study employed a mixed-method methodology consisting of both user surveys and respondent-

produced or respondent-directed analyses. A sample of three high-impact research papers was

selected, each with open data and utilizing bioinformatic tools. These analyses, described only

in the methods sections, were then refactored into pipeline frameworks to provide a basis for tests

of robustness to be performed. Three different approaches were used. The first involved a complete

reproduction of the paper for participants to manipulate, the second involved providing scaffolding

for the use of pre-existing workflow libraries, and the third involved implementing expert suggestions

in the form of tool swaps.

Three papers in genomics were selected based on criteria including data availability, significance,

and critical reception. None of the papers featured open source code so refactors were based on de-

scriptions in the methods section. Three different approaches were taken in these tests of robustness
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- a faithful reproduction of the original manuscript into a framework that could be manipulated by

participants, a workflow-library approach in which participants were encouraged to employ modern

"off-the-shelf" pre-built pipelines to triangulate tests, and an advisor-led approach in which senior

experts suggested alternate tools to be implemented and I generated a report for their evaluation.

Participants were contacted about this opportunity via several means - through Twitter, Slack

groups, message boards, and direct personal contacts. IRB approval was obtained before conducting

the survey and test of robustness.

Figure 7 outlines the study design abstract. Three papers without source code, with often vague or

high-level methods sections, were refactored - prepared for robustness testing by providing organized

and reproducible source code that could be used to conduct robustness testing. The refactored code is

available in Github. The refactoring process is meant to examine what is necessary for consumption

by reviewers, in particular, what pain points are involved in preparing data for tool swaps.

0.1.3.2 Paper and environment selection

0.1.3.2.1 Identifying Candidate Papers Candidate papers refer to studies that will un-

dergo the tests of robustness. The candidate papers should be peer-reviewed life science research

manuscripts, as opposed to software or tool papers. These should be recent publications (>=2010)

with at least a nominal citation count (>= 5 citations/year). Refactors in this scenario demand

candidate papers that have a strong in-silico analytic focus, with substantial workflow and report

components, as well as figures, tables, and test statistics to serve as targets. They must include open

data (e.g., SRA or TCGA/GDC level 1, HMP) and either no open code or minimal refinement. Hav-

ing no existing workflows are preferable in order to encourage full evaluation of the methods. Papers

that feature highly parameter-sensitive approaches such as deep learning present some interesting

possibilities, but the reproducibility challenges of deep learning are more complex than simpler

approaches - being highly sensitive to random seeds and often the inclusion of non-deterministic

steps.

0.1.3.2.2 Pipeline framework selection Pipeline frameworks provide means of abstracting

file transformations common to bioinformatic analyses. Modern frameworks consist of domain-

specific languages, which provide syntax used within full-featured programming languages, and
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Figure 7: Study design diagram illustrating tests of robustness and evaluation phases

configuration-based frameworks, which rely on formatted files with limited inline scripting to rep-

resent tools and steps of a workflow. There are four popular pipeline frameworks and languages

used today - Snakemake, a DSL that relies on Python and uses a wildcard syntax to relate file

inputs and outputs. Nextflow, a DSL in Groovy which uses abstracted channels to organize the
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flow of files through a pipeline rather than rely on filenames, Workflow Description Language, a

JSON-based language developed at the Broad Institute that runs on an engine called Cromwell, and

Common Workflow Language, a consortium-developed YAML-based language that runs on some

graphical workbench portals in addition to command-line usage. CWL is the most verbose of these,

but also offers the highest level of descriptive syntax for tools. It may be too verbose and heavy-

weight for rapid development and was therefore set aside for this exercise. WDL is very popular for

genomic applications that rely on the Genome Analysis Toolkit (GATK), ENCODE pipelines, and

other sequencing applications. Nextflow has a very strong community dedicated to building reusable

pipelines, nf-core. Snakemake is popular among Python users and has a low barrier to entry. Because

DSLs offer more flexibility in terms of rapid implementation and metadata management, they were

used for the refactors. Snakemake was chosen for the Leiby paper as Sunbeam was already written

in Snakemake. It was also used for Funnell et al. due to the amount of "business logic" involved in

sample management, some of which overlapped with Leiby. Nextflow was chosen for the Dominissi

paper to attract nf-core users and test the workflow library approach to robustness testing.

0.1.3.2.3 Computational environment If possible, a workflow portal to accommodate these

analyses could be beneficial. To our knowledge, there are no free workflow portals - SevenBridges

Genomic and DNANexus - are all for profit, but more importantly, not often used in institutions

without close relationships to those companies.

Terra, a portal from the Broad Institute, uses the Workflow Description Language. The vast majority

of public workflows in Terra are from the Broad Institute. A grant application to dispatch these

reproductions on BioDataCatalyst - designed to encourage public workflows on such portals - was

submitted but denied because the research was not novel.

All of the pipelines used in tests of robustness were suited toward running on Amazon web services or

Google cloud platform. AWS offers a very convenient integrated development environment, Cloud9,

which enables users to access an editor, terminal, and file browser from the web.

0.1.3.3 Test of Robustness Approaches

Three approaches were employed to conduct tests of robustness over the course of this dissertation.

These approaches were not planned a priori but rather evolved from the experience of conducting the



38

initial faithful reproduction - which resulted in conservative parameter sweeps instead of aggressive

tool swaps. Interviews revealed this behavior was largely a matter of the intimidation factor involved

in overhauling an existing workflow. The workflow library and advisor-led approaches were then

implemented to ensure reviewers made more "aggressive" changes to assess robustness.

0.1.3.3.1 Faithful reproduction The faithful reproduction involves either interpreting a high-

level methods section, as was done in this study or existing source code and refactoring it into

available reproducible best practices for the benefit of the reviewers. These reviewers can then

produce variations of the analysis as they choose to evaluate robustness.

Figure 8: Faithful reproduction approach

0.1.3.3.2 Workflow Library approach The workflow library approach involves using off-the-

shelf prepackaged workflows to process data from a manuscript. This ensures the analysis will be

radically different from the original. Often these workflows offer variations in tools or parameters

which can be explored for further refinement.

Figure 9: Workflow library approach
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0.1.3.3.3 Advisor-led approach The advisor-led approach involves relying on the expert guid-

ance of field experts to suggest tests of robustness, which are then implemented by an analyst. The

results are sent back to the experts for interpretation.

Figure 10: Advisor-led approach

0.1.3.4 Selected Papers

The following papers were selected for the refactors and tests of robustness based on various qualities

they brought to the table. Leiby et al’s "Lack of detection of a human placenta microbiome in samples

from preterm and term deliveries" introduces a high decision-entropy area c16s and metagenomics)

combined with a clear but important result of interest - that of the sterile placenta. Dominissini’s

"Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq" was chosen because

of its highly disputed citation record. Finally, Funnell et al. "CLK-dependent exon recognition and

conjoined gene formation revealed with a novel small molecule inhibitor" was chosen because it

targeted an area that has been traditionally underserved by toolsets (read-through splicing events)
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and utilized two types of sequencing.

Paper Topic Citations Reasons for Selection Refactor Chal-

lenges

Approach

Leiby et al. 2018 microbiome 152 High impact, workflow

components, negative

result

Tool decay,

demanding refer-

ence generation

Faithful repro-

duction

Dominissini et al

2012

epigenomics 2384 Disputing citations Arcane nf-core

sample manifests

Workflow-library

Funnell et al.

2017

splicing 30 Rare phenomena,

dual-mode sequencing

Complex exper-

imental design,

deprecated se-

quencing formats

Advisor-led

Table 2: Selected papers for tests of robustness

0.1.3.4.1 Leiby et al Leiby et al. [102] employs a multi-modal approach to studying a long-

standing question of whether the human placenta inherits a maternal colony of bacteria (microbiome)

or is sterile. Conditions include vaginal and Caesarean section delivery, preterm or full-term birth.

Positive controls were taken from the mother’s saliva.

16S rRNA qPCR’ed samples were sequenced on the Illumina MiSeq platform. 16S represents a small

section of the ribosomal RNA that evolves at an appropriate rate to compare bacterial species and

is a standard and well-established method of microbiome diversity studies. The majority of this

analysis is done in Dada2 [103], and Qiime1 [104].

A shotgun metagenomic analysis was performed on the samples as well. This amplifies genes from

all cells in a sample, including background host tissue. Metagenomic analysis is arguably a more

rapidly changing area of microbial bioinformatics. The majority of the metagenomic analysis was

performed with Kraken [105].

The findings in this paper, while addressing an issue having important implications for health. Unlike

the majority of scientific papers, this manuscript features a "negative result" as its primary finding.
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This negative result has some implications for the role reproductions and tests of robustness can play

in a review - typically, an author will be hypothesizing for specific microbial composition changes

while here, the authors are simply claiming a sterile placenta. Though no replications have been

performed, subsequent studies [106] have primarily confirmed the findings in this paper,
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Figure 11: Original and reproduced bacterial abundance plots
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Figure 12: Original and reproduced PCoA of unweighted UniFrac distances for all samples

As evidenced in Figures 11A, 11B and 12A, and 12B, the reproduction is not identical to the original

and warrants further investigation. As described below, missing details in the methods section may
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have contributed to these discrepancies.

0.1.3.4.2 Issues in the Leiby refactor To review verbiage, we consider a reproduction to

essentially mean a third party repeats an analysis with readily available source code. A refactor

implies either the source code is missing or it is substantially replaced and reconfigured to high

reproducibility standards. As mentioned in the proposal, papers were chosen based on having little

to no source code. This was explicitly decided to force the refactor to closely examine the challenge of

confronting decision entropy presented by inadequate methods sections. While the refactor involves a

lot more reverse engineering and guesswork, it eliminates the possibility of glossing over impenetrable

sections of source code, which may behave unpredictably. It can also detect insidious errors that

arise from various common bugs such as:

• assumptions of column or row order (typical slicing bug in R)

• Assumptions of mistaking index ordinal for cell value

• Assumptions in calling for indices instead of cell value (Python)

• cell shifts (as happened in the Potti scandal)

Leiby et al. presents typical challenges in terms of reproducing a paper with no source code and little

in the way of supplemental in silico methods section. The tools and methods employed, while not

exotic, still require a thorough reading of tutorials to reproduce these steps even before addressing

more pressing issues of sample and parameter selection. Overall about 60 hours of labor were required

to reproduce this paper. Dependency management and decay in the availability of dependencies,

namely the dependence of python2 for Qiime1, required it to be isolated from other tools. Qiime1

also had numerous third-party dependencies that were deprecated or entirely missing (UCLUST

implementation). Many scripts within Qiime1 attempt to fetch dependencies by unorthodox or non-

standard means but are unable to find them, which required a system to preempt that processes

within the Conda and pip dependency management systems. A significant amount of time was

spent in what could be considered "data cleaning" tasks - mainly the alignment of naming schemes

between SRA metadata schemes, files, and the sample metadata contained in the supplemental tables

included with the paper. The refactor also required substantial effort to generate a multiple sequence

alignment and tree building suitable to use with Phylotree within a reasonable time. Several tree
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building steps took on the order of hours and occupied nearly 100GB of RAM. Building the Kraken

indices used by Sunbeam required over 8 hours of processing time and nearly 1TB of disk space.

Vague methods obscured which operations were performed by potentially overlapping operations

offered by Dada2, Qiime1, Phylotree, and RAXML. It would not be reasonable for a peer reviewer

to engage in this level of reproduction for the sake of analysis, though such forensics have been done

in the past on papers with no source code.

0.1.3.4.3 Causes of decision entropy The Leiby paper contains several "decision points"

common to microbiome studies, some of which are omitted from the methods section. As with many

studies, rationale explaining methodological decisions that stray from established best practices or

default parameters are not provided. Other causes of entropy and ambiguity include:

• Inadequate detail - which premade SILVA freeze and stringency (e.g. 97/99) was used

• Treatment of redundant sequence

• Treatment of chimeric sequences that can be placed in multiple clusters

• The effect of quality trimming [107] on analyses in Qiime is significant.

• The unknown granularity of genus counts

• The cycle of threshold (Ct) qPCR data was not available to reproduce the figure

• SILVA version was not given

• Operational Taxonomic Unit (OTU) compared to Amplicon sequence variant (ASV) approaches.

The OTU approach uses a degree of sequence identity to form clusters. This prevents sequence

data with small errors from being misclassified as novel species, although it can potentially

cluster distinct species. Within OTU clustering are reference-free approaches, in which se-

quences are clustered de novo without a reference database, and reference-based clustering

approaches which rely on prebuilt taxonomic databases such as SILVA, RDP, or Greengenes.

Amplicon sequence variant (ASV) approaches such as the one implemented in Dada2 uses exact

nucleotide patterns to distinguish marker sequences [103]. In the Leiby paper, the early taxo-

nomic assignments are handled by Dada2, but later measures of beta-diversity are calculated

in Qiime using a reference-based OTU approach.



46

Dominissini/m6a

The second paper candidate for a test of robustness was selected based on its profile as a paper

with a very high number of contrasting citations in scite.ai, an index that performs lexicographic

full-text analysis on phrases flanking citations in scientific literature. In scite.ai, the vast majority

of citations are neutral or "mentioning," some are "supportive," and a few are "contrasting." This

assignment is performed solely by a machine-learning model based on the verbiage in those citing

articles.

A highly-cited paper from 2010, Dominissini et al.’s "Topology of the human and mouse m6A RNA

methylomes revealed by m6A-seq", received 13 "contrasting" citations in scite.ai, indicating some

groups found different mRNA splicing in METTL3 knockdown cells, number of peaks, peak location,

overall methylation levels. This paper is one of the first to develop a means of detecting a type of

post-transcriptional modification, the methylation of adenine that has been implicated in expression

and splicing and implicated in cancer and neurological diseases. While the wet lab advances in this

paper were profound, the bioinformatic analysis was fairly conventional.

Post-publication reviews allowed the advantage of hindsight to identify a paper with glaring repli-

cation issues, which would not be available in a real-world situation. For a proof of concept, we can

nonetheless examine if our approach could have identified such issues using robustness tests.

0.1.3.4.4 Workflow library approach The experience of the Leiby microbiome paper indi-

cated most reviewers would tend to make fairly conservative changes to the pipeline rather than

completely upend tools, the latter requiring more intimate knowledge of intermediate steps than

could be afforded in limited time. An alternate approach was adopted to address this: rather than

attempt to faithfully reproduce this paper using its original analysis stack, have used a couple of

off-the-shelf pipelines to reanalyze this data.

The nf-core is a library of 50 Nextflow-based pipelines. These pipelines address a wide range of

common analyses in bioinformatics including germline and somatic variant calling, RNA-Seq, ChIP-

Seq, ATAC-Seq, to support several sequencing-based analyses. In particular, the workflows https://

github.com/eQTL-Catalogue/rnaseq and https://github.com/kingzhuky/meripseqpipe were

evaluated as appropriate. Reviewers could engage with the experimental layout using a custom

generator that was developed to produce input manifests for these two pipelines. No reproduction
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code was provided to the reviewers to ensure they used nf-core modules and new tools.

0.1.3.4.5 Decisions in epitranscriptomic studies

0.1.3.5 Funnell/CLK

Funnell et al.’s "CLK-dependent exon recognition and conjoined gene formation revealed with a

novel small molecule inhibitor" (2017) investigates the effect of CDC-like kinase (CLK) inhibition.

Alternative splicing is a fundamental biological process by which a multitude of mature messenger-

RNA (mRNA) transcript isoforms are created from pre-mRNAs in eukaryotes. This occurs typically

by splicing together (or skipping) exons or exon segments. Kinases are ubiquitous proteins that

phosphorylate residues and are central to cell signaling. Because alternative splicing is mediated by

RNA-binding proteins that interact with spliceosomes in the nucleus, kinases can affect both the

quantity and variety of mRNA isoforms.

The authors of this paper created a novel molecule, T3, to inhibit CLK2, a known splicing-related

kinase, to examine its effect on splicing patterns. They discovered that T3 produces more alternative

splicing events, the skipped exons were enriched for RNA-binding motifs (DNA patterns that are used

for recognition by RNA-binding proteins), and perhaps most interesting, a dose-response increase in

conjoined genes (see below). Conjoined genes, or "transcription-induced chimeras" are the results

of either readthrough events in which the RNA polymerase continues transcription into the next

downstream gene or, less commonly, a distant gene.

This paper was selected because the bioinformatic tools to investigate differential splicing and iso-

form reconstruction are rapidly in flux and have changed considerably since its publication. Iso-

form detection and estimation took something of a back seat to simpler "percent-spliced-in" exon-

centric differential splicing during the short-read era. Because genes are long (mean 3522 bp) and

sequencing-by-synthesis (i.e., Illumina) reads are relatively short, transcript reconstruction must

take an indirect approach of inference. This can involve de-novo assembly, which is computationally

expensive.

Secondly, the group employed both short (Illumina MiSeq) and long read (Pacbio SMRT) sequencing,

which further complicates the analysis, and leveraging these mixed reads is an ongoing area of
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research. Finally, the phenomenon of trans-splicing, read-through events where the transcripts of

two genes are conjoined into single transcripts, is unusual and not a typically reported measure of

transcriptome analysis tools. It remains a mystery how the conjoined genes in this analysis were

detected using the MISO package as this is not a listed alternative splicing type in its documentation,

nor are there other examples in the literature of using MISO in this manner [108].

0.1.3.5.1 Approach: Advisor Model Tests-of-Robustness Due to the age of the manuscript

and some of the tools within a direct reproduction of this paper was not attempted, but instead,

three external advisors (YX, EL, were asked how they would investigate the phenomena described.

I then implemented their suggestions and compared them to the results in the manuscript, a "naive"

test of robustness. I term this proxy approach, in which a dedicated analyst performs the software

development and implementation of the "advisor model," and its advantages and disadvantages to

reviewer-implemented tests of robustness are discussed below.

0.2 Results

The results refer to results of the participant survey and critical first-order scientific observations

drawn from performing tests of robustness rather than assessments of the exercise itself.

0.2.1 Survey Results

A survey questionnaire was distributed to each participant to collect views on reproducibility and

specific gaps in reproducibility concerning reproducibility-enabled peer review. This survey was

conducted simultaneously with the robustness exercise. Professional demographics and overall fa-

miliarity with reproducibility concepts, knowledge and usage level software, daily engagement with

reproducibility best practices were surveyed. Several questions were used verbatim from Baker et

al.’s "1,500 scientists lift the lid on reproducibility" and State of Open Data 2019[109] to assess any

drift in attitudes, and the results are mostly in line with those. While an N of 10 respondents is not

an adequate sample size from which to draw firm conclusions, the survey can be viewed as a decent

filter for the questions themselves (many questions exhibited low entropy). More interesting were

ranking-style questions that forced a participant to prioritize.
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Figure 13: A) The mechanism of alternative splicing to produce different mRNA isoforms, and B)
the different primary types of alternative splicing events
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One notable question lifted directly from Baker, ranking factors by how much they contribute to

a failure to reproduce results. The top five reasons listed were lack of protocols, lack of raw data,

selective reporting, insufficient oversight, and poor statistical power. This varies somewhat from the

Baker results of selective reporting, pressure to publish, low statistical power, not replicated within

the original lab.

Figure 14: Survey of factors contributing to reproducibility failures

Some questions were designed to tease out a preference for replication vs robustness. Given replica-

tion is a far more well-known concept in reproducibility, it was assumed it would be more warmly

received. However, votes were split evenly between them, with two favoring replicability, two ro-

bustness, and four stating these were equally important.

While 90% felt it was more (50%) or equally (40%) important that a scientific finding replicates

with new data than with existing data. Six participants were unaware of preregistrations (Q8.3).

Participants were also divided other where they would avoid journals that did not accept preprint

(Q8.4)

Attitudes toward the open data, data sharing, need for increased recognition, difficulty in obtaining

raw data from others, and the effect of missing methods (Q7.5), difficulty identifying paper figure
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provenance (Q7.8), and glossing of computational details (Q7.10) were strongly selected. Most

agreed runnable analyses would be useful for peer review (Q9.2). Less pronounced were problems

with label figures (Q7.6) and the role of sequencing providers(Q7.7).

In terms of ranking large categories of existing technologies as to how they contribute to reproducibil-

ity (Q6.2), all respondents identified dependency managers and containers, lightweight pipeline

frameworks, and notebooks as contributing “ a lot" or “a great deal," while workbenches, code

commenting received slightly less enthusiasm.

Metadata played a role in some of the more important questions. Question 7.4 revealed that “pa-

rameters used in an analysis" were viewed as most lacking, with raw omics, runtime environments,

lab protocols tied, and bioinformatic tool metadata trailing. Q7.11 asked respondents to rank which

metadata would help improve collaborative review most – metadata about raw data beat out tools

and statistical tests, with metadata about other papers (by topic or method) judged less important.

Figure 15: Survey of metadata to help improve collaboration

Perhaps the most divided question was “do you find too much information about files is stored in

filenames" (Q7.12), with four strongly agreeing and two either strongly or somewhat disagreeing.

See Appendix for Full Survey Results
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0.2.2 Robustness Testing Results

The following section describes results of the robustness testing conducted by reviewers (in the faith-

ful reproduction and workflow-library approaches) or by the analyst in the advisor-led approaches.

0.2.2.1 Leiby/placenta

0.2.2.1.1 Reviewer I Reviewer I is a tenure-track assistant professor with extensive experience

in microbiome studies. During the entry interview, IB expressed confidence in the approach taken

by Leiby et al. but less confidence over the rigor of microbiome papers in general.

Reviewer I conducted several permutations involving clustering algorithms, reference databases, and

alterations of forward-only or forward-reverse alignments in UCLUST. The reviewer reported little

substantial differences in Qiime beta diversity results from these permutations and provided Github

code for those producing these permutations, though a readable report itself was not returned.

Figure 16: Reviewer I permutations revealed very similar beta diversity principal component analysis
clusters

Reviewer I permutations revealed very similar beta diversity principal component analysis clusters

0.2.2.1.2 Reviewer II Reviewer II is a bioinformatics software engineer with authorship on

several microbiome papers. Reviewer II performed several swaps of the "pooled" versus "consensus"
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chimera removal step in Dada2. Chimeras refer to artefactual sequences composed of two or more

parent sources due to PCR amplification errors [110]. Reviewer II performed iterations of terms

of taxonomic assignment and sequence tabulation using the Ribosomal Database Project (RDP),

Genome Taxonomy Database (GTDB), RefSeq, and SILVA 16S databases

Figure 17: Differences in phyla assigned by DECIPHER using three different 16S rRNA databases

Reviewer II produced iterations of parameters sent to DECIPHER and dada2 - namely choice of 16s

database, chimeric removal, and randomized taxonomic classifications performed by DECIPHER

showing substantial differences in choices between gtdb, RDP, and SILVA 16s databases. Part

of these differences can be discrepancies between naming conventions (Firmicutes vs Firmicutes

A/B/C), and large differences in the assignment to the "unknown" phylum. The reviewer did not

follow up to test if these assignments varied systematically between treatment groups.
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0.2.2.1.3 Reviewer III The three participants were asked to collaborate on developing a high-

level description of metadata that would have assisted in a first pass review of a microbiome

manuscript. Reviewer III led this effort.

0.2.2.2 Dominissini/m6a

Dominissini et al. "Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq"

is a highly cited (>2000 citations on GS) paper that explores a type of RNA modification called

N6-Methyladenosine or (m6A). Adenosine methylation is the most prevalent post-transcriptional

modification in RNA [111], and has been identified as a core biological regulatory mechanism and

dysregulation has been implicated in several diseases, particularly cancer and neurological disorders

[112].

Dominissini et al. is one of the first to comprehensively map m6a sites using meRIP and also

examined the effect of m6a methylation on transcription using a knockdown of a known acetylation

complex component METTL3 using HepG2 cells, a human liver cancer cell line that is very common

in splicing studies. Another experiment in this paper uses mouse cell lines.

This particular paper was chosen for a test of robustness based on a methodical search using scite.ai,

a text-mining and lexicographic tool designed to measure the context surrounding citations. Scite.ai

uses deep learning models to classify citations as supporting, contradicting, or "contrasting," or

merely neutral or "mentioning" [113]. The vast majority of classifications in scite.ai are neutral.

A scite.ai search revealed several papers that contained a high number of contrasting statements

and also had accessible data in the NCBI Sequence Read Archive. A Twitter poll was conducted to

gauge interest in these candidate papers, and Dominissini et al. was a clear favorite among the 14

respondents. Dominissini et al. has 175 supporting, 2600 mentioning, and 13 contrasting statements

as of June 2021. The flanking text in all of the contrasting statements leaves little doubt that they

are in fact, contrasting, which suggests there may be some false negatives in the neutral category

(i.e. the classification algorithm is conservative).

Several contrasting statements are garnered from review articles that summarize later m6a publi-

cations which could be loosely considered replications. Because Dominissini et al. featured one of

the first uses of m6A-seq aka MeRIPseq (methylated RNA immunoprecipitation sequencing) and
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associated peak calling, RNA-Seq, overlaps, in both human and mouse cells, there are downstream

replications that are relevant. Contrasting statements included disputes about the level of mRNA

splicing in METTL3 knockdown cells, number of peaks, peak location, and overall methylation

levels.

The contrasting citations are important in that the instructions given to participants were instructed

to use them as guidelines for further examination. This type of post-publication replication hindsight

would not be available in a traditional peer-review model.

0.2.2.2.1 The workflow-library approach It was decided to accelerate the robustness exercise

for this manuscript using "off-the-shelf" components, rather than modifying an attempt at a faithful

reproduction. This was decided for three reasons. First, from the experiences with Leiby et al, as

none of the participants were able to progress past the 16S section of the paper. This meant that

the reproduction of the metagenomic components of the paper was done without proper robustness

testing, though lessons were learned in the process. Secondly, the workflow-library approach offers

some interesting advantages - such pipelines are well tested, reflect updated mainstream popular

tools and approaches, have a large user base for support, often come with built-in reference sets,

often have multiple implementation choices built-in, and are designed to work on several comput-

ing environments out of the box. Some disadvantages would make some papers inappropriate to

be robustness tested in this manner - difficulty in customization, a lack of exotic or cutting edge

protocols, and the need to conform to file manifests that may not match a specific experimental

layout. However, these disadvantages did not seem to be insurmountable for this particular exercise.

Finally, the age of this paper (11 years) made it somewhat impractical or desirable to reproduce

faithfully.

Nf-core is a collection of prebuilt analysis workflows using the Nextflow pipeline framework [114].

Over 47 pipelines are either released or under development in nf-core. Nf-core has a highly organized

curation and testing process, with preliminary vetting guidelines for software development, including

formatting, comments, and code organization. Finally, the nf-core community maintains an active

Slack channel, making it easy to identify beginners or students who have the time and interest to

participate in this exercise. To prepare participants to use nf-core for tests of robustness, manifest

generators were developed for two pipelines identified as crucial - RNA-Seq, the most mature of

pipelines in nf-core, and MeRIPseqPipe [115], a new pipeline with applicable tools.
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As identified in scite.ai, many later experiments failed to replicate some of the global changes iden-

tified in Dominissini. A review by Widalgo et al. [116] identified differences between the METTL

knockdown experiments in mice conducted by Dominissi and two subsequent studies and a compre-

hensive and deeply sequenced gradation knockdown performed by Ke et al. [117] in mice. Some of

these discrepancies may be due to species differences, some may be due to cell lines, but in no case

were subsequent analyses harmonized to remove the analytic components as a confound. This result

suggests that quantitatively little methylation or demethylation occurs in cytoplasmic mRNA. In

addition, only 10% of m6As in CA-RNA are within 50 nucleotides of 5‘or 3‘splice sites, and the vast

majority of exons harboring m 6 A in wild-type mouse stem cells is spliced the same in cells lacking

the major m 6 A methyltransferase Mettl3. It was noted that an open post-publication peer review

site, PubPeer, identified the Dominnisi samples as being very contaminated with mycoplasma as

identified by a survey of SRA [118]. This suggests a number of steps should be taken to avoid the

deposition of contaminated samples pre-submission and begs the question of what role in silico peer

review has in that process.

0.2.2.2.2 Issues in the Dominissini refactor The Dominissini refactor consisted of generating

run manifests for the RNA-Seq and MeRIPseqPipe modules. Without the benefit of hindsight, it

would have been very difficult to identify crux issues with this paper, being the first of its kind to

use m6a-seq.

0.2.2.2.3 Reviewer I To examine the RNA-Seq data, one participant ran the RNA-Seq samples

through the nf-core RNA-Seq pipeline. This reviewer discovered large descrepancies in the number

of reported differentially expressed genes. Log-fold shrinkage is a feature of modern differential

expression packages that reduces the apparent log-fold changes of genes or transcripts that appear

to be artifactually inflated. Apeglm shrinkage applies a heavy-tailed Cauchy prior distribution for

effect size, to lower variance for genes with low read counts or high variance [119]. The use of log-fold

change shrinkage became default behavior with DESeq2, but Dominissini et al. used the original

DESeq, in which this shrinkage treatment was optional. In practice, this may have resulted in

inflated DEG counts. After applying the filtering methods described in the supplemental methods,

a more concordant count was found, though an overlap of only 59.8% was found between the original

and refactored sets (Figure 18).
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Figure 18: Venn diagram of original and refactored differentially expressed genes in Dominissini et
al. as discovered by reviewer I

0.2.2.2.4 Reviewer II To examine the possible effect of workflow on the lack of replication by

Ke et al, a participant was interested in performing a mini-replication within this exercise. This

participant reported Ke et al. contained too much variety of paired-end and single-end reads to work

easily with nf-core RNA-Seq, so the user switched to Xu et al. [120], a mouse METTL3 knockdown.

This allowed the comparison with the previously calculated human METTL3 knockdown data (the

users were in contact through a Slack channel dedicated to this project within nf-core). It also

allowed the study of the overlap of mouse m6a peaks reported in Dominissini et al. A permutation

test showed the number of overlapping genes found between these two studies, one gene, was within

random expectation.

0.2.2.2.5 Reviewer III Reviewer III attempted to use the MeRIPseqPipe framework to repli-

cate the controversial figure 4. This pipeline is a candidate nf-core module, not yet vetted by the
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Figure 19: log fold-change versus log2 mean expression between two treatments in a Xu et al
citeXu2021-dx METTL3 knockdown in mouse.

organization, and so created numerous issues in usage, some of which were later corrected in later

versions of the pipeline that were released during the analysis. Some conventions - such as relying

on gene_type in gff files - made using older freezes impractical or highly inconvenient.

0.2.2.3 Funnell/clk

0.2.2.3.1 Issues in the Funnell refactor Funnell et al. consists of a mix of 170 Illumina

and Pacbio libraries, with a variety of treatments (T3 at four doses, various siRNA knockdowns),

human cancer cell lines (HCT116,184-hTert), and stranded/unstranded library preps. The panoply

of sequence files required the development of a metadata management library ("metautils.py") to

assist in generating both Snakemake targets and the appropriate input manifests for all the software

requested by the expert advisors.

A WDL-based workflow based on the GTEX RNA-Seq pipeline located on a private workbench

portal hosted at Truwl.com was used to accelerate the processing and take advantage of other QC
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outputs.

Various issues with the experimental metadata created difficulties in the refactor. The specification

of which libraries are stranded/unstranded RNA is not located anywhere in the metadata except

deeply embedded in sample names ("Untreated HCT116 whole transcriptome (unstranded)"). While

not fatal, this added an additional step to the parser which would not be useful for other projects.

A universal SRA manifest-generator would have to accommodate these types of edge cases. The

use of older bas.h5 PacBio reads required an archived tool "bash5tools.py" which only worked with

Python 2.7, which was deprecated at the end of 2020. This required a separate Conda environment.

Several installation and runtime issues were experienced with rMATS-Iso and SUPPA. While rMATS

is production-level software used by hundreds of researchers, rMATS-Iso is still a beta distribution

and was selected by one of the reviewers to evaluate its potential.

The lack of widespread user testing for rMATS-Iso led to some lack of a base from which to draw

proper parameters for the older-style PacBio reads included with the Funnell paper.

Figure 20: Complex differential splicing patterns as revealed by rMATS-ISO
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SUPPA utilizes pseudo-alignments generated against the transcriptome (typically in Salmon or

Kallisto). As such the consistency between transcript FASTA files and gene models (GTF) must

be preserved. One bug encountered was the additional transcript identifiers found in definition

lines caused errors in SUPPA, which were not reported anywhere. Another cryptic bug appeared

with low numbers of mapped reads, which forced the omission of certain replicate files provided as

addendums.

The initial mapping qualities for Illumina reads using the default k-mer index of Salmon (31) were

very low (<50%). Upon closer inspection of the fastq files, many reads were shorter than 45bp,

indicating some quality trimming was done prior to submission to SRA. This was not indicated in

any SRA metadata. An index length of 17 was chosen to accommodate these shorter reads based

on advice in help forums.

Very low mapping rates continued to appear for the PacBio reads. It was noted that "consensus

generated" reads at EBI were mapping better than h5 extract fastq files. Upon closer inspection

of the manuscript, there were suggestions that the PacBio reads, which constituted 60 of the 169

sequence files, were mainly used in an ad-hoc confirmatory basis. Finally, the inclusion of so many

similar tools is that many auto-fetched roughly, but not identical, reference files. This required

carefully harmonization of decoy sequences and other reference-specific anomalies to be rectified.

Counts of fusions by Arriba largely confirm the monotonic dose-response, with the vast majority of

fusions being classified as readthrough events.

0.3 Discussion

Research questions about the survey (Q1), refactor process (Q2), tests of robustness results (Q3),

tests of robustness approaches (Q4) and gaps and next steps (Q5) were presented in the introduction.

0.3.1 Q1: Survey responses

The survey was largely in line with earlier surveys such as the landmark Baker et al. [1], with

more sentiments leaning toward nefarious intentions. More importantly, a general acceptance of the

principle of robustness testing in peer review, and paid peer review, which has not been surveyed or
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Figure 21: Percent spliced in (PSI) and counts of fusions by Arriba largely confirm the monotonic
dose-response, with the vast majority of fusions being classified as readthrough events.

studied in depth.

0.3.2 Q2: Refactor issues

Before commencement the thought that the refactor issues would be centered around dependency

management. These are largely resolved by bioconda, which provides dependencies for nearly all

tools used in these analyses.

Participants were encouraged to accept a full Cloud9 IDE environment in the Amazon Web Services,

which would provide the file browser, terminal, and code editor in one web application that can be
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accessed anywhere and retains state.

Notebooks do not yet play as big a role in bioinformatics as in data science, due to the large number

of bulk operations that have typically been involved. However, knitr/RMarkdown reports were

generated for all three analyses. As an exercise, two of these were ported to CodeOcean. They did

not play a factor in the tests of robustness because most of the decision points were upstream, in

the processing steps normally handled in the workflow rather than the notebook.

0.3.3 Q3: Validating the Theory of Robustness Testing

The theory of robustness testing presented here is not well vetted within the life sciences, and the

term robustness itself is more likely to be used in the context of methods than analyses and is rarely

discussed in the context of peer review. There is a precedent from other fields, namely multiverse

analysis in psychology [121] which is defined as alternatively processed data sets corresponding

to a large set of reasonable scenarios. Note this is different from triangulation, which involves

interrogating a scientific phenomenon using a multi-omics approach [14]. This dissertation attempts

to measure the feasibility of this approach from a logistical standpoint rather than attempting to

quantify the effectiveness of robustness testing in comparison to conventional peer review, as the

latter seems largely dependent on the source papers.

0.3.4 Q4: Comparison of Approaches

Figure 22: Comparison of approaches
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The tests of robustness were conducted using three different strategies: refactor alterations, a work-

flow library, and supervised approaches. Unfortunately, the papers were not round-robin divided

among the three approaches. In retrospect, this would have eliminated some of the confounds

surrounding this study.

The faithful reproduction and refactor, applied to the Leiby microbiome paper, generated fairly

detailed explorations of parameters but little in the way of major tool swaps. In essence, participants

did not feel emboldened to completely dismantle the workflow. Some obvious low-hanging fruit would

have been major upgrades to Qiime2 or MOTHUR (as opposed to Qiime) and Kraken2 (as opposed

to Kraken). None of the participants chose to focus on the metagenomic portions of the analysis.

The workflow library approach was conducted to accelerate the process of evaluation both for the

developer and participants and liberate the participants to work in a framework they were familiar

with. This approach forced the use of state-of-the-art tools but was not able to directly interrogate

all the approaches used by the author as the library of nf-core workflows is wide but not exhaustive.

The workflow library approach produced arguably the single most revealing or interesting test of

robustness, but that success could be attributed to the talents and aptitude of the reviewer and

glaring problems with the original manuscript. In addition to encouraging refactors, this approach

can more likely reveal systematic labeling errors and bugs that can remain hidden in existing code

submissions and are likely to be missed by reviewers.

The supervised approach posed advantages in terms of having a technician who was familiar with the

sample layout combined with senior third-party experts who, while unable to dedicate hours to a test

of robustness. In both CLK and m6a these sample metadata and the generation of tool manifests

proved very unwieldy, with several combinations of treatments and file types, and posed the single

biggest challenge to the quick implementation of refactors. These are not intellectual or scientific

challenges but merely data cleaning steps that favor a dedicated professional. In data science circles

these data cleaning experts are key members of a data science team, and may someday serve a role

in the peer review process.

As tests of robustness are a new concept, communicating the goals to potential reviewers is crucial, as

they will have no past exposure to the practice. This study suffered from a lack of communication

with some participants, though others were receptive. Packaging of tests of robustness ranged

wildly. Reviewers in the Leiby returned essentially intermediates, while reflecting a large number of
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permutations, were difficult to interpret without taking them downstream. Many participants were

understandably reluctant to interpret their findings, not clear if the robustness tests represented

support, contradiction, or simply noise.

0.3.5 Gaps & Recommendations

The following recommendations are derived from the results and discussion above. Some of these rec-

ommendations are specifically geared toward the possibility of implementing reproducibility-enabled

peer review as a reality, however unlikely, while others are more general guidelines for reproducibility

that may prove useful in other contexts.

For clarity, we can organize these along the analytic stack comprised of input data, tools, notebook-

s/reports, pipelines/workflows, and publications. These correspond to the "analytic stack" discussed

in "The Role of Metadata in Reproducible Computational Research" [122].

Figure 23: High level recommendations for implementing reproducibility-enabled peer review

0.3.5.1 Input data

0.3.5.1.1 Open data / Open code For this study it was decided to use papers with no available

source code, mostly as a mechanism to learn about what is required to produce a usable study for a
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test of robustness. In a real-world scenario of peer review, lack of access data or code is unacceptable.

As reproducibility standards increase, it seems inevitable that some researchers will attempt to use

privacy as a shield against scrutiny. While the public release of identifiable data is a valid concern,

there are proper mechanisms for maintaining privacy while enabling reviewers to evaluate analyses

that rely on patient data. These can range from mechanisms to isolate data from transfer while

allowing inspection and reanalysis to sophisticated cryptographic techniques such as homomorphic

encryption [123].

0.3.5.1.2 Domain-specific minimal reporting standards for studies All Leiby partici-

pants independently reported that a high level of decision entropy, seemingly anecdotal choices in

analytic strategy, and associated missing details in free-text methods were defining features of mi-

crobiome papers. As a follow-up, Leiby participants were requested to contribute to a checklist

specifying "minimal information for a microbiome analysis".

Minimal Information for a Microbiome Analysis

• Details on study design

• The number and type of samples (e.g., strain for animals, demographics for humans)

• How samples were taken, including inclusion/exclusion criteria if they apply

• Identity of material being collected

• How the material was collected, stored, and transported to sequencing

• Time between data collection and sequencing

Minimal data to reproduce a microbiome paper:

• FASTQs

• Mapping (samples’ metadata) file

• 16S Database, including clustering identity (e.g. Greengenes clustered at 97% identity)

• Taxonomic database (Kraken, kaiju, ...)

• Annotation database (NCBI-NR, SwissProt, UniProt, kegg mapping, ...)

• host reference genome (if applied, preferably a link to the same or an upload on zenodo etc.)

Minimal list of software/methods to reproduce a microbiome paper:

• FASTQ primer and low-qual removal software (trimmomatic, cut-adapt, qiime)

• FASTQ merge software (pandaseq, vsearch, etc)

• FASTQ host-filtering process (blast, bwa, bowtie, minimap)
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• 16S "Pipeline" (qiime1, qiime2, dada2, mothur, etc)

• OTU picking method (uclust, usearch, vsearch, etc)

• OTU picking strategy (de novo, closed-reference, open-reference)

• Programs/R libraries to process OTU/ASV tables (phyloseq, etc) and their versions

• Setting a seed under R or python or other approaches if possible to reproduce the run.

• QIIME tracks provenance, so similar information (sessionInfo() from R)

Minimal list of analytical steps to report

• The number of samples included in the final analyses (e.g., those that passed QC)

• All outcomes-of-interest, and their number (if categorical) or range (if continuous)

• Details on whether and how outcomes-of-interest are pre-processed

• How lowly abundant OTUs/ASVs were filtered (called prevalence filtering)

• Whether and how diversity is measure

• Whether zeros were imputed or replaced, and how

• What transformation or normalization procedure was applied

• The covariates considered to be potential confounders, and criteria used to select them

• The number and type of statistical tests and presented in the results

• The number and type of statistical tests performed but not presented in the results

• The method used to adjust p-values

Additional list (other data and methods that should also be included if used):

• Primers (if not using standard Illumina V3-V4 primers)

• If Longreads are used, then definitely need the signal level information (either fast5 or subread bams)
and the process to generate them. Variation between the various kits used and data quality seems to
be improving day by day.

• Fastq barcode splitter (if FASTQs are barcoded)

• Taxonomy assignment/classification method

• Dereplication method

• Clustering method

• Chimera removal method

• Denoise method

• Assembly method (if not amplicon)

All methods should declare program version and parameters used
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0.3.5.1.3 Reducing format decay Harmonizing intermediate and final results from comparable

software for comparison is essential to robustness tests. First-mover status of certain tools places them

to enforce certain output formats, which can take hold. It is inevitable that as a field matures certain

new formats will become more accommodating, generalizable, performant, or parsable. This trend places

the burden on authors to update their software to support newer formats either as a natively or through

a translator. Tool papers often force tool builders to port over older tool results in order to perform

benchmarks, but these are essentially isolated or anecdotal incidents. There is no practice, formalized or

otherwise, of preventing format decay.

0.3.5.2 Tools

0.3.5.2.1 Relating specific tool uses cases to individual studies The Funnell CLK paper

revealed several unknowns in terms of the predicted behavior of both traditional differential splicing software,

isoform discovery and abundance and estimation, and gene fusion detection for conjoined genes in particular.

While various free-text searches may reveal appropriate articles, a Google Scholar search of "detection of

conjoined genes" is unsatisfactory (and ironically points back to the CLK paper). The difficulty of unknown

performance has a profound effect on the potential for reviewers to identify alternative tools to conduct

robustness testing quickly.

0.3.5.2.2 Potential of recommendation engines for tests of robustness One solution to the

"tool finding problem" is tool recommendation engines, which associate either manuscript text or workflow

provenance traces to patterns of tool usage. This approach has been used extensively in tool recommenders

[124], tool registries [125], and within pipeline frameworks and workflow languages [126, 127]. In the context

of workflows, certain tool combinations tend to be chained in predictable usage patterns driven by applica-

tion; these patterns can be mined for tool recommender software used in workbenches [128]. For better or

worse, this reduces the need for workbench developers to manually annotate tools with ontologies, replacing

them with a machine learning black box.

0.3.5.2.3 Autogeneration of Requirement Summary Panels From a reproducible research

perspective, it makes sense that these templates should be auto-generated from computational workflows,

rather than manually entered. This would require a decorator or tagging scheme by which relevant metadata

can be reliably identified even if still embedded as functional variables in workflows. In essence such a schema

can guide an entity search engine to easily extract these pertinent details from workflows that conform to

a markup standard, thereby saving authors from having to tediously fill out forms but also enabling some
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freedom of implementation.

Figure 24: Requirement summary panel

Requirement summary panels provide a mid-level organized table of a project’s software requirements and

parameters, existing as a middle conduit between raw code and methods sections. A key feature of these is

that not every version and requirement is listed - various secondary and superficial tools would only distract
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from their pertinence. As of the present, all requirement panels are generated manually for publication, but

in most cases it should be possible to autogenerate LaTeX or Markdown formatted panels from dependency

management systems, given a domain-specific template.

0.3.5.3 Reports & Notebooks

0.3.5.3.1 Expose resource metadata Some steps in the analysis, particularly the building of the

Kraken index for Leiby, took many hours to complete. Other tools, such as Mintie, were so slow as to

be impractical for high throughput analysis. For the quick dispatch of tests of robustness in the, top level

running time and resource specifications CPU/Memory/Running Time estimates for each step of an analysis

should be transparently provided.

0.3.5.3.2 Adoption of benchmarking frameworks tags into tool sets In the case of param-

eter sweeps, it became quickly clear that Leiby participants were not prepared to design an entire framework

for evaluating the results of their changes and simply sent in the code and intermediates they generated

instead of collecting metrics. One reason for this is the relative difficulty of building benchmarking frame-

works for each such exercise, a problem often experienced in data science where exhaustive hyperparameter

exploration of machine learning models is the norm. One possible solution that is emerging is benchmarking

frameworks such as Databrick’s MLFlow, which integrates with standard programming languages to provide

decorator syntax to mark inputs and outputs of interest, where they can be displayed in a local or remotely

hosted web interface. The use of benchmarking frameworks is relatively unknown in science, but may provide

a means of accelerating robustness testing, especially if prepackaged with tools.

0.3.5.3.3 Bridging the gap between notebooks and pipeline frameworks Distinguishing

high-level choices from low-level details while still permitting that the devil is in the details. Statistical

ontology to categorize steps in a workflow that are essentially one of

• Group & matching samples

• Removing samples

• Normalization

• Transformation

• Clustering

• Glue steps
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0.3.5.3.4 Accelerate reanalysis by focusing on identifying individual findings Consider-

able time was spent in the refactor preparing for downstream or secondary findings that were not examined

in the test of robustness. A proper analysis should both prioritize and denote the provenance of results at

a high enough level that refactors can

0.3.5.3.5 Increasing the quality and decreasing selective bias of tool benchmarks While

formal benchmarking projects enable a level playing field for tools to be evaluated, there are opportunities

for tool papers to reveal strengths and weaknesses over a range of datasets, rather than a biased training

set.

0.3.5.4 Pipelines and Workflows

0.3.5.4.1 Automation of publication checklists directly from workflows Another impor-

tant trend is the emergence of reporting guidelines, essentially checklists, many of which are found in the

EQUATOR network [129], perhaps the most prominent being CONSORT (Consolidated Standards of Re-

porting Trials) originally from 1996 but updated in 2010 [130]. Newer examples include STORMS (Strength-

ening The Organization and Reporting of Microbiome Studies), Strengthening the Reporting of Observa-

tional Studies in Epidemiology (STROBE). Such guidelines, while useful for authors, are rarely paired with

metadata schema to allow them to be machine-readable.

0.3.5.4.2 Greater enforcement of prerequisite and intermediate data types as workflow

sanity checks - the BioSanity project Virtually every advance that has improved computational

reproducibility in science has been motivated other than pure reproducibility. Dependency managers are

largely software development tools, containerization was designed to spin up test instances in e-commerce,

literate programming was designed to provide context, notebooks made literate programming interactive,

A common theme that has been presented here is that there is no structured format for understanding or

communicating the rationale behind certain tool choices in the context of specific analyses. Bioinformatics

still alarmingly relies on folk wisdom mixed in with largely biased tool papers, and a handful of well-conducted

benchmarking papers.

The EMBRACE Data And Methods (EDAM) ontology provides high-level descriptions of tools, processes,

and biological file formats [131]. An elegant portal and API for the discovery of omics that utilizes this

ontology, bio.tools, allows tool developers to annotate their tools according to common topics, operations,

types of data, and data formats. Given its capabilities, bio.tools is an underutilized resource. I have created
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over 60 bio.tools entries for popular bioinformatic tools that have been in existence for many years, suggesting

the bio.tools usage may be low.

Bioinformatic pipelines have become a valued tool to aid reproducibility - as they facilitate the recording of

processing and report steps using the incentives of automation, reentrancy, and reuse.

Quality control steps, including those inspecting files directly off of instrumentation and also the output of

intermediates and statistical tests, are also an essential part of any solid analysis, but they require manual

inspection.

In an otherwise automated workflow, manual pruning steps create an impediment to reproducibility. Often

these are a necessary response to quality control (QC) steps that invalidate certain samples or input data

out of the analysis. Removing samples upstream, either by omission or tagging, without any accompanying

provenance information informing others of this decision, is a small step away from p-hacking and other

undesirable behaviors. Furthermore, this manual step does not address new samples which may be introduced

into the analysis or reuse of the pipeline. Most bioinformatics QC software, such as FastQC [132] and

MultiQC [133], is designed to produce reports but not filter. If a workflow is composed of interpreted

steps inside a programming environment, such as R or Python, the task of filtering becomes trivial, but

high-throughput analyses are more likely composed of compiled executables run on large files.

Another problem with pipeline frameworks is that they are designed with the assumption that intermediates

are suitable as input for the next step, when in fact, they may be corrupt, empty, or insufficient to converge.

This weakness allows pipelines to "drive off a cliff" when they encounter such files.

There have been attempts to integrate semantic sanity checks in workflows, namely in WINGS [134], but

these have largely focused on self-reported file type rather than edge cases. For example, these solutions

only ensure that the reported output of a step is an alignment based on apparent file suffix conventions, but

would not validate that the output file consists of more than just a header.

A solution I propose is a sanity checker which dispatches to various bioinformatic utilities (e.g. fastp,

samtools, vcftools) to answer basic QC-related assertions:

./biosanity "is EDAM:format\_1997 and numrecs > 100" --onfail die < myfile

Biosanity will methods typically stored within separate libraries into a common QC-centric focus in a

command-line tool. It will feature a limited syntax with basic conditionals and a finite number of re-

porting or exit strategies to cooperate with various pipeline frameworks. Biosanity will also be a gentle

introduction to the use of ontologies for analysts who are not familiar with using them.
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0.3.5.5 Publication and Peer Review Process

0.3.5.5.1 Develop strategies for overcoming code inertia Developers carry an internal con-

ception of how to accomplish tasks, which makes it uncomfortable for them to dive into a stranger’s code. In

the Dominissini analysis, this tendency was overcome by simply allowing developers to quickly triangulate

the paper using off-the-shelf libraries, nf-core. This workflow-library strategy may prove effective only for

the most generic of analyses. For robustness testing of newer approaches, original code will have to be

used. This limitation could have the undesirable effect of rewarding groups which produce opaque code,

avoiding scrutiny through obfuscation. While basic data carpentry can play a role, incentivizing three main

requirements, that have been recurrent issues throughout this analysis:

• software and dependencies should be installable through Bioconda

• pipelines should keep hard-coding parameters to a minimum

• samples identifiers both in the manuscript and workflow need to reflect their SRA identifiers

0.3.5.5.2 Publish with caveats One argument against paid peer review is that article processing

charges (APCs) are not collected for work that is not accepted, leaving the journal responsible, or that

authors would have to pay for each review process at each journal.

0.3.5.5.3 Harmonize preregistration, embargo, and reviewer access to data A non-

trivial issue in the refactors was the use of internal file identifiers to identify samples. While SRA and EBI

(the two primary centers for sequence submissions) maintain those names faithfully within uploads, the key

identifier is always the SRR or "Run Accession". At present, upload of sequences to SRA is often a later

step taken during manuscript submission, only required for final publication.

Ideally, data should be made available to reviewers in the same way that readers will encounter if they

choose to reproduce the paper. This ensures that reproducibility is not lost before publication, that data

is in fact released (because it needs to be deposited for reviewers before submission), and that centralized

quality control can be conducted by repositories that handle the greatest number of sequences.

A minor controversy erupted when it was revealed that a meta-analysis [135] had redistributed data that

had been mistakenly released by The Jackson Laboratory due to misconfigured changes in embargo period

policy. It was revealed that 14,857 data sets were under embargo.
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0.3.5.5.4 Standardization of cohort-dependent intermediates Some analyses with sensitive

or identifable data will supply deidentified intermediates, rather than raw data. In other instances, a data

point may be tangentially or indirectly rely on private data. One example of private-by-association is the

dependence on large identifiable genomic cohorts used in joint genotyping. Obtaining enough statistical

signals that indicate a variant is artifactual (strand bias, call quality, mapping quality, max depth), requires

several data points to achieve predictive ability under a Bayesian framework (a prior). Additional samples

provide more statistical power to infer a variant is due to artifacts. Conversely, obtaining enough evidence

that a variant is real also requires more data, only obtainable from additional samples. Sequencing artifacts

are highly variable, instrument and library construction, and often specific to individual runs. While cohort-

dependent files will never achieve the same level of provenance that standard references or primary data,

developing a system of reliably identifying cohorts is essential to the assessment of bias in peer review.

Paying for reproducibility-enabled peer review The concept of compensating peer reviewers

for their time and effort is not new - and was a common practice before 1980. A recent proposal, the

$450 Movement, has garnered the attention of the broader scientific community [136] and has spawned a

debate over the feasibility, ethics, and possible side-effects of this idea have been discussed in several forums

[137]. Reproducibility and the replication crisis are often discussed hand-in-hand with paid peer review

- the gist being that terse or low-quality reviews are at least in part responsible for the proliferation of

irreproducible results. Virtually none of this discussion has focused specifically on reproducibility-enabled

in silico peer review. The typical peer review takes 5 hours to complete [138]. While participants in this

thesis project were not asked how many hours they spent on their analyses, direct personal communications

with several participants in the unsupervised refactor and workflow library groups indicate at least 20 hours

were required to complete this task. A casual twitter poll was conducted for this thesis to gauge what

authors would "expect for their money," of the 585 votes, improvement in turnaround speed (70.4%), length

or comprehensiveness of reviews (19.1%), help with English (2.2%), and help with analysis (8.2%).

0.3.5.5.5 Improving conceptual-level DAGs The ENCODE portal [139] provides some of the

best DAGs in the form of high-level association graphs, and these tend to be more understandable than

the "spaghetti" DAGs. The use of such conceptual DAGs may help distinguish provenance from lower-level

noise.

ENCODE portal directed acyclic graphs for processes
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Figure 25: ENCODE portal directed acyclic graphs for processes

0.3.5.6 Applicable Metadata Standards

The review paper "The Role of Metadata in Reproducible Computational Research" exhaustively compiled

a list of applicable metadata standards for reproducible research. Some of these standards appear applicable

to tests of robustness.
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Tool Type of Standard Description

BioCompute Objects[140] Workflow Provides lab and runtime parameter standards for workflows and

tools

GoGetData Data Data as a dependency tool

EDAM[131] Tool Bioinformatic tool ontology

BioConda[141] Tool Dependency resolution

labelschema Tool Docker label metadata standard

Common Workflow Lan-

guage[142]

Workflow pipeline framework language

Workflow Description Lan-

guage[143]

Workflow pipeline framework language

Drake[144] Analysis Analysis pipeline framework

OBCS[145] Analysis Statistical ontology

CodeMeta[146] Analysis Code metadata standard

Bagit[147] Analysis Analysis file archival standard

ReproZip[140] Analysis Analysis file archival standard

DataPackageR[148] Analysis Analysis archival standard

Binder[149] Analysis Containerized notebook live viewer

YesWorkflow[150] Analysis Analysis pipeline markup

Manubot[151] Publication Automated git-driven publications

RRID[58] Publication Resource tags for papers

Research Objects[26] Publication Metadata describing and bundling the entire experiment

Table 3: Tools and metadata supporting reproducible research

0.3.6 Conclusion

This dissertation investigates the feasibility of using tests of robustness in the context of reproducibility

enabled in silico peer review. Tests of robustness involve manipulating software tools, parameters, and
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statistical models with the intention of evaluating the underlying validity of an existing analysis. This

practice is presented as a natural extension of technological advances in the last 5 years combined with

growing awareness and case studies of reproducibility and issues of scientific quality.

The research problem was investigated through a unique human research mixed-model in which participants

were engaged in the reproducibility-enabled peer review process, either actively or expert advisors, using

high-impact genomic manuscripts selected to elicit review findings. Pre- and post-hoc surveys were also

conducted to measure attitudes about reproducibility and the tests of robustness. The development of the

materials for these tests, bioinformatic pipelines which I designed, were also explicitly intended to evaluate

the process. This practice of refactoring papers without source code demonstrated many weaknesses of

conventional scientific publishing standards.

Three papers - on the microbiome, m6a methylation, and CLK-induced splicing changes were approached by

different means as difficulties and opportunities revealed themselves. It was discovered, perhaps not surpris-

ingly, that reviewers would be reluctant to manipulate complex pipelines beyond parameter exploration to

overhauls of core tools, and so findings were limited to such parameter sweeps and were largely inconclusive.

A workflow library approach was conducted for the m6a paper, by which participants were asked to use

off-the-shelf pipelines to triangulate the inspection of a paper with known problems. The workflow library

approach appeared ostensibly more successful than the other approaches, though the paper choice remained

a confounding factor. The final paper involved a mixed exotic combination of both long and short reads and

an unusual phenotype - conjoined genes, making it better suited toward attempting swaps with the latest

tools. Experts were consulted, and I performed the tests of robustness independently. Some of these tests

might have proven useful if they were conducted at the time of peer review.

0.3.7 Material Outcomes

Prior to this proposal, I composed a review article, book chapter, an online case study catalog, and finally,

a prospectus that set the foundation for some of the ideas described in this proposal. In "A Review of

Bioinformatic Pipeline Frameworks" [21], I attempted to classify existing software solutions for handling

serial and parallel abstracted bioinformatic workflows to process sequence data and metadata. This review

contends that existing frameworks differ on three key dimensions: using an implicit or explicit syntax, using

a configuration, convention, or class-based design paradigm, and offering a command line or workbench

interface. While not an absolute requirement for computational reproducibility, the use of pipeline frame-

works encourages reproducible research by abstracting file transformation steps into a parameterized and

configured sequence. Such frameworks offer cohesion between tools and data and analysis and encourage
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reuse and robustness through the advantages of easy extensibility and scalability, particularly through the

cloud. As of this date, the review has received 257 citations.

A follow-up to this review is the book chapter "Computational Pipelines and Workflows in Bioinformatics"

[152]. In this review I explored the ecosystem that has evolved around workflows - toolkits, ready-made

pipelines, and pipeline frameworks. Future directions of dependency management and configuration, cloud

computing, containerization, and notebooks. Of particular relevance to this is a discussion into the possibil-

ities of semantically encoded workflows and linked data, including existing solutions built on the PROV-O

ontology [153, 154]. A discussion on the difficulties of encoding and binding upstream experimental metadata

to end results that emerged from this chapter informs much of this proposal.

The Role of Metadata in Reproducible Computational Research, exhaustively explores metadata standards

that are applicable to reproducible computational research, organized with respect to the analytic stack,

and accompanied by numerous source code examples. It was accepted into Cell Patterns for an August 2021

edition. It has received ten citations.

Awesome Reproducible Research [48] is a Github repository storing my research into case studies and other

reproducible research resources that I have collected over my studies. It has 183 stars and has received

contributions from 9 users.
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0.4 Appendix

0.4.1 General Survey Responses

See https://figshare.com/articles/dataset/Survey_responses/17054270 for full survey responses.

0.4.2 Individual Reports

0.4.2.1 Leiby et al.

The Leiby et al refactor and links to individual participant reports are available at: https://github.com/

leipzig/placenta.

0.4.2.2 Dominissini et al.

The Nextflow templates, manifest generator and links to the Dominissini et al reports are available at

https://github.com/leipzig/m6a.

0.4.2.3 Funnell et al.

The tests of robustness performed for Funnell et al are available at https://github.com/leipzig/clk.
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