
1 

 

17 

Cognitive control for decision and human-robot 
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Erwin Lopez, Ute Leonards and Guido Herrmann  

 

This chapter focuses on the concept of cognitive control in robotics and 

how it is linked to decision, control and Human Robot Interaction (HRI). 

Achieving a control paradigm that enables robust, flexible goal-driven 

performance in a myriad of scenarios involving unstructured changing 

environments and interaction between robots and other agents such as humans has 

been sought during the last decade (e.g. Avery, Kelley, and Davani 2006, Baud-

Bovy et al. 2014, Herrmann and Leonards 2018). In order to achieve this, 

inspiration has been taken from nature with a focus on the way humans and other 

animals undertake their decision and control processes (see Chapter 1). Indeed, by 

creating controllers inspired by human flexibility and adaptability, some or all the 

qualities found in human cognitive processes are pursued (i.e. adaptability, 
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robustness, goal-driven behaviour with sensor and sub-task prioritization) in 

artificial programmable systems. 

Firstly, this chapter includes an introduction to the concept of control in 

the context of industrial processes, and expands it to robotics in general; 

challenges behind robot control will be raised, highlighting the need for novel 

decision and control architectures for modern robotics such as close human 

interaction, dealing with unstructured environments and learning to better perform 

a task - hence cognitive control. 

Secondly, the word “cognitive” in the context of control will be defined 

after an overview about how ”cognition” has been used in the literature 

beforehand; the definition of what a cognitive controller is will include aspects 

about both its architecture and inputs, highlighting how it relates to the term used 

originally in human behavioural studies and cognitive neuroscience. 

Finally, a modelling approach for cognitive control will be proposed, 

which integrates the principles of multi-agent interaction into a decision making 

(i.e. discrete and probabilistic) and control action (i.e. continuous and dynamic) 

framework. This is followed by a discussion around the framework’s elements 

and their wider impact in different areas of application such as autonomous 

driving, teleoperation and human-humanoid interaction.   
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17.1 Control in robotics 

When considering any system that interacts with the environment and 

manipulates it in any means or ways, the concept of control needs to be 

considered. Starting from industrial control or process control (Ogata 2010), the 

main objective of ‘control’ science is to be able to manipulate one or several 

variables of a system and make them behave as one desires. Control problems can 

be described generically as either a trajectory-following problem (i.e. make a 

system’s variable to follow a set of values) or a regulation problem (i.e. keep a 

system’s variable at a fixed value). Most modern control problems deal with 

closed-loop control architectures, using sensor or estimation inputs from the 

system to feed back to the controller; this feedback allows a comparison of 

expected system outputs with real outputs, which is a prerequisite to modify 

control outputs based on the state of the system (i.e. outputs). When considering 

the controller in a system description (Ogata 2010; Maciejowski 2002), it can be 

described based on its inputs (i.e. single-input (S.I.) or multiple-input (M.I.)) and 

its outputs (i.e. single-output (S.O.) or multiple-output (M.O.)), with its 

subsequent combinations (e.g. single-input single-output S.I.S.O. or single-input-

multiple-output S.I.M.O etc.). This relates to the system’s complexity and the 

control goals, i.e. the amount of inputs being how many sensor inputs or control 

goals the system requires and amount of outputs as control signals or controlled 

variables. When considering the controller’s inner workings, an explicit 
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understanding of the system to be controlled is used and most of the times needed, 

in the form of a mathematical description of its dynamics. This understanding and 

the requirements for control determine how the controller inputs relate to the 

desired outputs. Based on the level of detail that these models require, they could 

be described using any sort of mathematical description such as linear operators, 

nonlinear equations and probability distributions, usually in a dynamic 

framework. Performance criteria are imposed on the controller as to have a 

complete description of how each variable is controlled (e.g. time to reach the 

desired value, percentage or error when reaching desired value, maximum error if 

controller overshoots). Finally, controllers can be designed to deal with 

uncertainty from the system model and to be adaptable to changes in the 

environment or changes in the model itself. Figure 17.1 shows a general 

description of a control architecture, considering its required input (i.e. system’s 

demanded output), the controller that looks to achieve this input, the system, plant 

or environment to be controlled and the sensory input that comes from the system 

itself. 
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Figure 17.1 General control architecture 

 

Bringing these concepts from industrial machinery to the realm of robotics 

was a straight-forward task in the early stages of robotics, as industrial robots had 

similar physical shapes and objectives compared to industrial machinery (i.e. 

industrial manipulators dealing with repetitive tasks with high precision at high 

speeds). Indeed, most industrial controller designs focused on dealing with low-

level control for each link or motor, whilst high-level path and trajectory planning 

was dealt with through solutions based on the robot’s geometrical properties (e.g. 

kinematic description using a Jacobian for end-effector positioning or forward 

kinematics and motion planning or inverse kinematics). These approaches were 

highly successful for a wide variety of industrial applications (see LaValle 2006, 

Scassellati 2002 and Visioli and Legnani 2002).  

However, as the field of robotics expands, the desire to move robots from 

industrial setups to more general environments brings challenges beyond what 

previous approaches could solve. First of all, the goals of a robot outside an 

industrial setup are potentially more generic and difficult to define completely in 

advance. Robots thus need to be able to change/adapt over time. For example, 

taking care of an elderly person could start with only checking their temperature 

and helping with mobility inside a room, but might then evolve into reaching for 

objects, general social companionship, administering medicine and more. In 
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addition, using robots outside an industrial setup involves dealing with 

unstructured, complex and changing environments that could be difficult to assess 

or predict at all time. Finally, some applications such as robots for retailing, 

teaching and medical care would require interaction and/or cooperation with other 

autonomous agents – be it other robots or human beings (i.e. human robot 

interaction). These are all challenges that go well beyond what traditional 

frameworks focusing on motion control would be able to deal with. Going back to 

the closed loop controller description, any such system requires multiple multiple-

input multiple-output (M.I.M.O.) controllers with potentially nonlinear models, 

configured for both trajectory-following and regulation just to focus on general 

movement alone; for example, to move the robot body to a known location, 

traverse unknown terrain, mediate closeness to interacting robots or humans 

whilst maintaining safety. Additional components such as high-level decision-

making and multimodal communication, supported by specialized hardware such 

as sensing, actuating and communication devices would be necessary to 

complement the proposed controller (Whitsell and Artemiadis 2017). 

The goal here is to find an architecture or methodological approach that 

can help solve such problems in a complete and integrated manner. To achieve 

this, inspiration has been drawn from nature and, particularly, from human 

cognitive processes to better replicate and improve robots in so-called “human 

like capabilities” such as dealing with unstructured and uncertain environments, 
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or prioritizing between sub-tasks and sensory input whilst maintaining a goal-

driven task execution that is adaptable and changes in time. Indeed, human beings 

are the best-known system to date that can adapt to new environments, perform 

robustly and prioritize whilst reaching a goal. In addition, it has been suggested 

that a robot that tries to copy or mimic human capabilities by relying on similar 

mechanisms as the person they are interacting with might be the easiest to be 

understood intuitively (e.g. non-verbally) by a person if interaction between 

artificial agents and humans are needed (Eder, Harper, and Leonards 2014). 

17.2 Cognition in control and robotics 

The use of the word “cognition” for control has been suggested as it takes 

inspiration from human cognitive processes. Cognition in humans covers mental 

processes and their role in thinking, feeling and behaving, as defined by Kellogg 

(Kellogg 2015). Cognition includes perception, i.e. the processing and 

understanding of the outside world by sensory inputs (Fischer and Demiris 2019), 

memory or  how information is stored, manipulated and used (Baddeley 2012), 

decision making or how to decide on the best action to reach a certain goal 

(Haefner, Berkes, and Fiser 2016a), or acquisition of knowledge and expertise 

including the abstracting high-level understanding and learning from its 

interaction with the world (Moulin-Frier et al. 2018), among other factors such as 

creativity and reasoning as aspects of human capabilities. 
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17.2.1 Cognitive architectures 

In robotics, the concept of cognitive architecture comes from research in 

the field of Artificial Intelligence to describe a list of components, organizational 

structures, information flow, representations and computational procedures that 

enable some intelligent behaviour (Kotseruba and Tsotsos 2020; see also Chapter 

10); these mechanisms mimic ways the brain is thought to deal with and 

manipulate information. Such architectures tend to work as blueprints, with no 

consideration or explanation as to how to be implemented in any specific agent. 

This means that they can be software-based only or embodied in the form of a 

robot body (Kazuhiko Kawamura et al. 2008; Wei and Hindriks 2013; see 

Chapter 11). They focus on describing different ‘cognitive’ modules that enable to 

mimic certain intelligent capabilities such as short- and long-term memory 

modules for better decision making (Ratanaswasd, Gordon, and Dodd 2005). 

Such modular descriptions tend to focus on the modules’ interconnections, their 

interaction with the outside world (i.e. environment) in the form of sensor inputs 

(i.e. stimuli) and possible control outputs (i.e. action).  

A wide range of cognitive architectures has been proposed over the past 40 

years; each author tackling the problem of representing human-like intelligence or 

capabilities in their own way (see Kotseruba and Tsotsos 2020 for a recent 

review, and Chapter 10). A possible general classification for these architectures 

lies in the way information is processed and represented, either by using a hand-
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crafted symbolic representation (i.e. symbolic or cognitivist systems), a sensor 

and data-based representation (i.e. emergent or connectionist systems) or a mix of 

both (i.e. hybrid systems) (Kotseruba and Tsotsos 2020). Symbolic systems tend 

to have a long design process as they require a large initial knowledge base 

including rules, conditions, label descriptions or possible scenario descriptions. 

They achieve great predictability and reproducibility; yet, at the expense of 

flexibility and robustness to changing environments. In contrast, emergent 

systems are highly adaptable, suited for learning from the environment and easier 

to design, but they require potentially long training processes, losing transparency 

in their results and traceability due to these learning processes. It thus becomes 

difficult to know what to learn, what exactly is being learnt and when to stop 

learning in order to achieve optimal performance. 

The above classification serves as a parallel to one often used in control 

science to describe the mathematics used to design and create the controller itself 

(Lopez Pulgarin et al. 2018): model-based controllers are designed using a 

mathematical representation of the system (i.e. plant model) that describes the 

dynamics surrounding the system. Such controllers are in stark contrast to a data-

driven controller that uses available environment measurements to construct a 

relation between how a system is manipulated (i.e. actions) and the system itself 

(i.e. states) based on rewarding or punishing certain behaviours, with limited to no 
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knowledge about the system itself (e.g. Al-Tamimi, Lewis, and Abu-Khalaf 2007; 

Na et al. 2012; Lewis, Vrabie, and Vamvoudakis 2012). 

 

17.2.2 Cognitive controllers 

 

Figure 17.2 Adaptive controller architecture 

 

Cognitive controllers are then those that allow the creation of a controller 

by either implementing or taking inspiration from cognitive architectures (Haykin 

et al. 2012; Fatemi and Haykin 2014; Kazahiko Kawamura and Gordon 2006). 

Note that some authors define cognitive control as an addition to other low-level 

adaptive controllers (Haykin et al. 2012) or a supplementary way to deal with 

high sensor input in parallel in a data-driven fashion whilst ignoring non-critical 

information (Kazahiko Kawamura and Gordon 2006). Yet, even for such 

alternative uses of the word “cognitive”, authors generally agree on the idea of 

drawing inspiration from mental models or brain-inspired cognitive architectures. 

As many cognitive architectures exist, however, there is not one single standard of 
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how the components should look like (i.e. sub-modules, types of inputs or 

outputs, functionality implemented) and thus how these intelligent/mental 

capabilities are achieved. Figure 17.2 shows an adaptive controller, an extension 

of the architecture shown in Figure 17.1, that allows the model to learn from the 

environment and inform the controller of some previously unknown parameters in 

the system to allow it to adapt (Khan et al. 2012; Na et al. 2015). In cognitive 

architectures, these capabilities are embedded in a cognitive action module, where 

information derived from perception inform the system how to learn and adapt to 

the changing and unknown environment.  

The main difference between a modern or smart controller (Kazuhiko 

Kawamura et al. 2008) and a cognitive controller is their flexibility in goal 

description. Although both include interaction with the environment via sensory 

input and actuation output, having some kind of memory of the environment and 

the interaction of the controller with it, the cognitive controller is not restricted to 

one particular task; it has the capability to translate information to other tasks and 

thus goes beyond initial requirements. In other words, cognitive controllers have 

the ability to go beyond an initial task definition in order to achieve an 

overarching goal through generalisation and flexibility (Kotseruba and Tsotsos 

2020). 
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Figure 17.3 Cognitive control architecture with general functional blocks (inspired by (Kazahiko 

Kawamura and Gordon 2006; Ratanaswasd, Gordon, and Dodd 2005))  

 

Considering the goal of allowing high-level decision making and control 

by a cognitive controller (Kotseruba and Tsotsos 2020), a more detailed cognitive 

architecture can be formulated by considering the specifics of human cognitive 

processes (Kellogg 2015) (e.g. perception, memory, learning). Figure 17.3 

introduces the general information loop used in many cognition-inspired 

applications (Kazahiko Kawamura and Gordon 2006; Ratanaswasd, Gordon, and 

Dodd 2005), expanding the previously introduced Perception and Action 

modules. Sensing and actuation are separated, suggesting them to deal with only 

how sensory information is transformed into useful knowledge and information 

(i.e. perception) and how the selected decision or sets of actions are performed 

(i.e. actuation and low-level control), respectively (Haefner, Berkes, and Fiser 

2016a). A module is added that deals with both regulation and control of how 
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perception outcomes are used (Gold and Heekeren 2013) and how it can relate to 

a specific goal such as executive functions or more general goal-related 

information. An additional module (Ratanaswasd, Gordon, and Dodd 2005) is 

added that considers how all remaining modules can generate relevant 

information that could be stored and used to improve their functioning over time 

and how this process is performed (i.e. learning and memory); the inner workings 

of this module tend to take inspiration from working memory models in humans 

(e.g. Baddeley 2000; 2012).  

The information loop of decision-making and control in Figure 17.3 

implies that for a certain scenario the best possible decision is selected from any 

set of possibilities, cycling through them and performing any necessary motor 

control (e.g. limb movement, gaze control, speech). This loop resembles the 

problem faced in nonlinear control when dealing with uncertain or highly 

dynamic environments for which a certain controller has been specifically 

designed or tuned for optimal performance in a specific range of the dynamics, 

called gain scheduling (Yang et al. 2010). The challenges faced in gain 

scheduling could be seen as a reduced set of the ones arising in cognitive control: 

in the former, the cases for which a set of controllers is designed and the 

controllers themselves are known in advance, and the challenge is to tune the 

controllers and change from one to the other to maintain performance and 

stability; in the latter, an additional challenge is to select from an only vaguely-
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defined set of uncertain possibilities and to perform control over them with little 

to no prior knowledge. 

17.2.3 Control in Cognitive Robotics and HRI 

Cognitive robotics (Levesque and Lakemeyer 2008; see also Chapter 1) 

rises as the use of cognitive architectures or concepts inspired by these 

architectures in order to tackle challenges faced in robotics at both task (e.g. 

object manipulation, exploration) and application levels (e.g. autonomous 

operation, teleoperation, HRI), respectively. Tasks that have been performed in 

cognitive robotics range from command-following for object manipulation (e.g. 

Ratanaswasd, Gordon, and Dodd 2005, Dodd and Gutierrez 2005, Kazahiko 

Kawamura and Gordon 2006, Kazuhiko Kawamura et al. 2008) over autonomous 

navigation (e.g. Avery, Kelley, and Davani 2006, Wei and Hindriks 2013) to 

reaching a goal by changing tasks (e.g. Khamassi et al. 2011).  

Building on such achieved robotic capabilities (e.g. object reaching and 

navigation), applications that go beyond following an explicit human command 

have been proposed that tend to involve humans in some aspect or another (e.g. 

medical aid: Neerincx et al. 2019); hence, Human Robot Interaction (HRI) is 

involved. HRI is the term used to include all the tools and studies around the 

actuation and interaction of robots with human beings in any possible way (see 

also Chapter 19). Cognitive robotics proposed a range of methodologies to better 

interact with humans, such as knowledge and skill transfer from human to robot 
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(e.g. Tan and Liang 2011), knowledge acquisition and learning through 

interaction (e.g. Moulin-Frier et al. 2018; Nakamura, Nagai, and Taniguchi 2018), 

perspective taking (Fischer and Demiris 2019) to name but a few. However, 

robots with full autonomy have not yet been achieved. 

Building from the definition of HRI, a special category focused on 

scenarios where robot and human work together to reach a common goal is called 

Human Robot Collaboration (HRC). Two key methodological aspects of HRC 

highlighted by Bauer in his review of the most challenging aspects of HRC 

(Bauer, Wollherr, and Buss 2008) are intention and action; the former considers 

an initial agreement of the common / joint goal either by explicit (e.g. speech and 

haptic commands) or implicit means (e.g. hand gestures, eye-gaze, estimation 

from physiological signals), and the latter considers planning and re-planning 

capabilities to deal with unstructured dynamic environments and a potential joint 

action (e.g. carrying and sharing a moving load). 

HRI brings challenges beyond the ones previously stated. Even if 

cognitive processes could be mimicked to better deal with an unstructured and 

uncertain environment following a certain goal, the challenge of interacting with 

an autonomous agent who themselves deal with a similar cognitive architecture 

that requires dynamic change and adaptation, is a daunting task. As human beings 

can perform many different tasks and actions with no guarantee that they will do 

what the interacting robot expects, robots need to be equipped with the ability to 
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both predict human actions effectively and to clearly communicate their intentions 

to the interacting human (e.g. Scassellati 2002, Grigore et al. 2013, Eder, Harper, 

and Leonards 2014, Herrmann and Leonards 2018). 

17.3 A multi-agent inspired approach to control in cognitive 

robots 

After having introduced cognitive robotics and its challenges, particularly 

for advanced HRI applications, we here move on to a Decision and Control 

Action Scheme (DCAS) that provides a clear application framework in which we 

try to tackle some of the above-raised issues. This framework is focused on 

applications where spatially close interaction or cooperation between human and 

robot are either a necessity or would at least improve overall task performance 

(e.g. semi-autonomous vehicles or robotic care). The main challenge in these 

applications is to achieve safe, cooperative, human-centred and human-predictive 

decision making between a technological robotic device, and a goal-oriented 

human through intelligent control and decision making. 

17.3.1 Paradigm proposal for a multi-agent inspired Dynamic Decision 

and Action Framework for Human-Robot Interaction 

Current state-of-the-art HRI sees the human as “in-the-loop” and thus as 

an unpredictable part of the robot’s cognitive control system (see e.g. Eder, 

Harper, and Leonards 2014). The addition of the human inside a control loop tries 
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to model the human’s requirements, needs or general behaviour in order to 

minimize any negative effect on task performance or risk to harm the human in 

close proximity to the robot whilst the robot navigates an environment (Dondrup 

et al. 2015). The uncertainty that arises from the ‘unpredictable’ human can be 

dealt with safely and reliably as long as the environment in which such 

interactions happen is well controlled (Eder, Harper, and Leonards 2014). 

However, problems arise as soon as the environment itself becomes 

unpredictable. For most everyday environments, this is the case as it often 

includes both other humans or animals (i.e. autonomous agents), making not only 

the environment unpredictable, but demanding from the system to interact or 

coordinate not only with one unpredictable partner but potentially with a whole 

range of external agents at the same time. Moreover, many physical environments 

themselves are too complex to be predicted in their entirety; thus, leaving further 

risks of unpredictability. This means that we have an unpredictable part within the 

system itself as well as an unpredictable, continuously changing environment; a 

problem that is very hard to solve. 

One way to solve this issue is by changing the way one understands the 

directly collaborating partner and their role relative to the robot. If we understand 

the robot as an autonomous, yet collaborative agent in its own right, and take the 

human out of its direct loop by understanding them as an autonomous partner in 

its environment, then we have to solve only one issue, namely the dynamic 
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environmental uncertainty or unpredictability. As a partner, the human has built 

an internal model of the autonomous agent (e.g. robot or another human), as much 

as the autonomous agent has an internal model about the human co-lead / any 

other human in the environment. In cognitive psychology terms, such an internal 

model of an interaction partner’s mind would be based on a concept known as 

Theory of Mind (Baron-Cohen et al. 1985). Theory of Mind refers to the 

attribution of mental states (e.g. intention, beliefs and desires) to living beings; for 

an interaction scenario between two people, understanding of the other agent’s 

intentions and decision-making process is essential for seamless interaction. 

Translated to HRI, there is thus only an “intensity” proximity difference or 

connectivity between the human and other autonomous agents in the environment, 

comparable to human-human interaction in close proximity or further away (i.e. 

personal space or extra-personal space (Curioni, Knoblich, and Sebanz 2017)). 

Hence, we suggest a scenario in which an autonomous system and a human each 

act as independent autonomous agents. As in human-human interaction, the two 

interacting partners can then have substantially different abilities as long as their 

internal representation of each other is sufficiently accurate. 

This creates a redundant, safe and interchangeable cooperative dynamic 

partnership between “lead” and “co-lead” in which both robot and human can take 

on either role (Curioni, Knoblich, and Sebanz 2017). Communication and 

cooperation between the autonomous system and the human is a necessity for 
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safety reasons but also to achieve common objectives as determined by the 

human. The joint action process between an artificial agent and a human being 

can only achieve the optimal outcome of safe and efficient cooperation (i.e. 

shared control) if the autonomous system is able to synthesize, evaluate and 

predict the human co-lead’s intentions and to communicate its own possibly 

limited aims and capabilities to the interacting partner and the environment more 

generally (Figure 17.4). This can be achieved as a cooperative decision and a 

subsequent dynamic action. In fact, such communication and cooperation is key, 

yet highly problematic for HRI in general (Herrmann and Leonards 2018). The 

following suggestion of a Decision and Action Framework provides a possible 

basis for a Technical Dynamic HRI control paradigm to deal with interaction 

issues. 
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Figure 17.4 Autonomous robot: Roles and their interchange between human and autonomous 

system 

The above proposed paradigm shift in the way we think about fast 

dynamic interactions between people and artificial autonomous systems (i.e. 

robots) looks at the interaction and cooperation of two co-operative autonomous 

agents (Figure 17.5) who operate as an interchangeable lead and co-lead (Figure 

17.4). Both agents are engaged in the task and any inattention or objective track 

loss can be detected immediately. We propose a fluent change between who leads 

and who follows in joint actions in line with what is known for human-human 

interaction (Curioni, Knoblich, and Sebanz 2017). Indeed, coordination with 

others is implicit in many of our human behaviours. Such principles of 

cooperation can be nicely framed in a theoretical cooperative hybrid decision and 
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dynamic control framework, the technical instantiation of the paradigm shift in 

dynamic human-robot interaction. 

 

Figure 17.5 Human-autonomous agent interaction principles, lent from human-human interaction 

We propose that the solution to any human-artificial agent - interaction 

lies in creating an intelligent cooperative decision and actuation framework in 

which decision making-relevant information can be seamlessly merged with the 

human’s goals and interests through Theory of Mind, to the extent necessary and 

possible. Similar to human-human joint action, the autonomous agent becomes a 

partner in its own rights who is jointly involved in the decision-making process. 

Within this cooperative framework, it is important for each agent to be 

aware that there are other, possibly less capable, autonomous agents in the 

environment. In this development context, the autonomous system-human 

relationship can be seen as the pupil (robot)-teacher (human) relationship in a 
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learning stage, with a relationship of a close set of trusted partners as end goal. 

The willing and supportive autonomous agent learns how to better interpret and 

interact (i.e. the autonomous agent learns from and adapts to the human agent). 

There is also the need for a “human agent detection” method to pick up on “error 

signals” induced during a task (e.g. inattentiveness within the teacher), so 

corrective actions can be made. 

The successful interaction between human and autonomous agent would 

have to be fluid. This requires both cooperative decisions and cooperative 

dynamic actions to guarantee a safe and trusted cooperative process during the 

decisive change-over of lead and follower. For such a technical mechanism of 

cooperative interaction between two autonomous agents to work, the guiding 

principle which underlies this cooperation needs to be based on optimality, a 

principle well-known in engineering (Turnbull et al. 2016) and robotics 

(Mombaur, Truong, and Laumond 2010; Khan et al. 2012) but also an underlying 

concept to cognitive science (Berkes et al. 2011; Fiser et al. 2010) where it has 

been shown that under most circumstances humans decide and dynamically act in 

an optimal sense (e.g. Spiers, Khan, and Herrmann 2016, Haefner, Berkes, and 

Fiser 2016a).  

Putting the different concepts together, a hybrid optimal, yet adaptive, 

cooperative agent-based decision and control action scheme (i.e. DCAS) must 

provide the ‘intelligence’ as an active negotiation scheme between autonomous 
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agent and human. This scheme must resolve both the dynamic, physical and the 

behavioural event-driven interaction between human and autonomous system. To 

date, this is still an important unresolved step. 

 

17.3.2 Principles and characteristics of the Dynamic Decision and 

Action Framework (DCAS) 

Based on predictions of possible decisions a human agent could make 

(Lopez Pulgarin, Herrmann, and Leonards 2018), any DCAS should look at 

making decisions within a fraction of those prediction windows (e.g. one second) 

to then dynamically cue and actively influence the decisions of the human partner. 

Hence, human and autonomous agent would be able to cooperatively act within 

the time-period of the predicted decisions and actions thereafter. The following 

axioms would lead to the DCAS:  

(1) The realisation that we can treat the human as an “external source” or 

independent collaboration partner in relation to the autonomous agent 

instead of “in the loop”.  

(2) Learning from and adapting to the human and the signals people send in 

joint action situations, proxemics etc.; learning to understand and 

predict adaptability within the human and their trust into the 

autonomous system as an autonomous, collaborative agent or partner. 
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(3) Identification and subsequent learning from the “error” signals when 

situations go wrong. The principle of optimality of decisions and 

actions in human agents and control technology is an exploited 

commonality. 

(4) Identification and enabling of verbal and nonverbal communication 

channels in a human to indicate changes in “who is the leader, who is 

the follower” in joint action. 

(5) Subsequent “Joint” cooperative, agent-based Decision making and 

Dynamic Action taking 

Overall, a coherent modelling methodology for decisions and actions 

would have to be developed that is deeply rooted in complementary research on 

human decision making, cognition, communication and dynamic actions, and 

dynamic decision and action theories in control and computer science. 

This requires that agent models and their uncertainties, involved in the 

joint decision-making process, need to be pre-determined. This includes both the 

human and the autonomous system. The more the autonomous system relies on 

principles that underlie successful human-human interaction, the easier will the 

human be able to develop a Theory of Mind of the robot. Only an approach that 

allows the human to intuitively understand the “mind” of the robot and that takes 

into account that an agent’s own actions influence other agents’ actions and vice 
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versa (King et al.) makes joint actions amongst intelligent autonomous systems 

and humans possible (King, Rowe, and Leonards 2011). 

Autonomous artificial agent models take inspiration from the fact that 

human decision models (e.g. Bellet et al. 2009, Berkes et al. 2011) have strong 

similarity to Discrete Hybrid Stochastic Automata (DHSA) (Bemporad and Di 

Cairano 2005). There is a decision-making level which is responsible for the 

decisions resulting in subsequent dynamic actions at the automatic level. Hence, 

the decision-making level may imply a set of discrete, yet uncertain decisions 

followed each by an uncertain dynamic action. Decisions are carried out within a 

fraction of seconds, while dynamic actions can extend over intervals of several 

seconds. 

The probabilistic approach for analysis of human decision making based 

on Fiser’s sampling-based probabilistic representational framework (Haefner, 

Berkes, and Fiser 2016b; Fiser et al. 2010) is a possible guidance for the 

development of such agent models. In Fiser’s framework, both the human’s 

internal representation of visual, aural and tactile events during acting as a co-lead 

and the decision-making process in lead situations must be assessed. For the 

sequential character of decisions and dynamic actions, it becomes therefore 

necessary to explore how present moment decisions will depend on the series of 

decisions made in the recent past. This leads to an assessment process of cues 

given to the human and the decisions made. For modelling the human decision-
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making process, the optimality principle following a Bayesian method can be 

used such as the “cognitive tomography” method of (Houlsby et al. 2013). 

Applied to behavioural tasks this allows a quantitative description of an internal 

representation of a human based on discrete test choices (Figure 17.6). 

Alternatively, a machine learning-based understanding of the decision-making 

model (Lopez Pulgarin, Herrmann, and Leonards 2017) could be deployed and 

the synergies explored in which decision probabilities determine decision costs. 

Though such methods resemble emergent methods in cognitive architectures, they 

aim at presenting their results in a clearer and more predictable manner than 

traditional data-driven methods. 

 

Figure 17.6 Probabilistic internal decision model of a driver wanting to pass a car in front of them, 

adapted from (Berkes et al. 2011) 

For the lower automatic dynamic action level, i.e. the dynamic action 

following the decision, learning-based, regressive models based on data-driven 

methods might be preferable to strongly physical model-based methods. As they 
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may provide a continuous integral or summative optimal cost function that the 

human follows. Optimal cost function models allow to more flexibly predict the 

human’s actions. This is for example used in inverse optimal reinforcement 

learning (Mombaur, Truong, and Laumond 2010). Both levels are joint via the 

DHSA (Bemporad and Di Cairano 2005) and exploit mechanisms like Model 

Predictive Control (Morari and H. Lee 1999; Cairano et al. 2014; Rosolia, Zhang, 

and Borrelli 2018). 

As mentioned earlier, a joining principle in human decision, human action 

dynamics and many artificially designed technological processes is optimality. 

Each decision and action can be quantitatively associated with a cost. For a robot, 

a part of the cost in a dynamic action can be characterised, for instance, by its 

distance, either to a target for target tracking or to the distance from a human for 

safety. For both humans and robots, their energy consumption could be included 

in the cost, considering an expected increase over time whilst remaining limited 

for it to be optimized. Optimisation of energy consumption underlies many human 

functions such as locomotion (e.g. Warren 2006). 

In terms of decision making, the synergetic power of cognitive-science 

founded models (e.g. Fiser et al. 2010; Berkes et al. 2011) (Figure 17.6) and 

machine learning models (e.g. (Lopez Pulgarin, Herrmann, and Leonards 2017; 

2018)) has to be exploited. Humans develop an internal model for each perceptive 

decision which guarantees that the decision for an intended task is carried out 
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with the highest probability of success (Fiser et al. 2010; Berkes et al. 2011) 

considering the uncertainty of the environment (Figure 17.7). Hence, decision 

costs are inversely related to the probability of the decision made. Identifying not 

only the models and their uncertainty sources, but optimal criteria for joint action 

between agents, is key (Fiser et al. 2010). 

 

Figure 17.7 DCAS-overview 

The cooperative decision making process can use the set of 

aforementioned DHSAs within a cooperative agent-based process, using model 

predictive control principles, to speed up the decision process and to allow fast 

computation of dynamic control actions from the multi-agent framework. A 

probabilistic decision framework would possibly enhance such a process 

(Turnbull et al. 2016). For this, a virtual autonomous agent (Figure 17.7) can be 

erwin
Draft



29 

 

developed by applying the principles behind DCAS. This virtual agent represents 

the nominal action computed from a joint optimal criterion for safety and a 

nominal understanding of the human, the internal model of the virtual leader, 

including individual differences between human and in their intentions. The 

virtual model will act as agent to be compared with the human characteristics and 

its short-term predictions using the unconstrained human model. Hence, the 

human and the virtual agent are assessed for their cost function which evaluates 

whether the human cooperative partner is in-line with the virtual human model. 

Subcomponents for safety are prioritised in decision making together with 

representations of human intention to decide to what extent the human or the 

virtual agent lead within the collaboration within a network of decentralized 

agents. Principles of game-theoretic approaches and agent synchronization can be 

used for a control policy in the vital time frame of dynamic actions following a 

decision, thus leading to an action of the cooperative decision-making process. To 

minimise conflicts, the autonomous system will take the human’s desired actions 

as long as these do not compromise safety. 

17.3.3 Impact on autonomous systems and HRI 

Below we will analyse cognitive control for HRI with different types of 

robots and human-robot collaboration scenarios. 

Humanoid robots 
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Humanoid robots (Oh, Kim, and Kim 2005) and interaction with them (i.e. 

Human-humanoid Interaction (HhI)) (Herrmann and Leonards 2018) could be 

enabled or improved by implementing a DCAS similar to the one described 

above. Robots performing tasks that benefit from understanding the interacting 

human(s) whilst aiming at a final goal such as to jointly move an object, keep the 

human safe or to maintain a human’s vital signs inside a desired threshold are the 

key benefits of the DCAS. Similar to existing cognitive architectures that aim at 

achieving human-like capabilities, DCASs would allow many robotics 

applications to improve human life.  

By both understanding the interacting human and having the ability to 

share certain goals, a big step toward safe trustworthy human-robot interaction 

could be taken. For example, applications in medical assistive robotics could 

range from robots serving as partial-nurses or assistants to medical professionals 

to shared physical cooperative work (e.g. object carrying (Parker and Croft 2012) 

or object manipulation (Sheng, Thobbi, and Gu 2015; Whitsell and Artemiadis 

2017)). By understanding the final goal, i.e. patient care, both robot and medical 

professional share, auxiliary actions could be performed by the robot across the 

whole care experience.  

Also for cases in which the human is the recipient of the robot’s actions 

and not the cooperative leader or companion, substantial benefits would be 
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derived from understanding the human recipient’s mindset to take the appropriate 

decisions at the best time possible.   

Although DCAS’s main goal is not restricted to better understand a robot’s 

surrounding environment, it is one of its planned capabilities. Hence, the DCAS 

should improve the robot’s autonomy during its sensing and decision-making 

processes by means of a collaborative learning strategy (e.g. supervised learning). 

By learning from the sensed environment whilst keeping a pre-set goal, long term 

goals can be achieved autonomously and cooperatively as decision-making is 

improved across task iterations. 

Teleoperated robots 

Robotic teleoperation as understood by operation at a distance of a robot 

that allows one or many operators to interact with an environment (Li, Xia, and 

Su 2015), can benefit from the use of DCAS. As the scope of both operation and 

distance in teleoperation can be very wide (e.g. operation being a direct control or 

control by commands, and distance understood as either a physical distance or 

difference in scale) there are many applications that include a teleoperation setup 

(e.g. robotic surgeon, robotic manipulator for maintenance).  

As in other HRI examples, DCAS would improve interaction to achieve a 

shared goal. Even if tele-operated robots are not considered autonomous or able to 

take decisions, the robot could possess intelligent mechanisms to help improve 

overall task performance, for example, to deal with potential delays in 
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communication channels or complications introduced by control means or 

interfaces. By considering the robotic teleoperation device as a cooperative agent 

that understands and predicts the human operator’s actions, the impact of delays 

could be minimized as shared control would be made possible. This has been 

proposed before (e.g. Corredor, Sofrony, and Peer 2017), but here the idea is 

applied to a multitask and multidimensional space. Following a paradigm of a 

shared control, the level of autonomy in teleoperation devices could increase with 

improved understanding of the teleoperation task and increased safety. 

Particularly, higher autonomy of the system could speed up the operator’s 

learning curve to use the device. Learning curve theory started empirically in the 

30’s as cost reduction due to repetitive procedures in production plants was 

observed (see (Anzanello and Fogliatto 2011) for the full reference); its goal is to 

exemplify and track how proficiency in performing a task or in the use of a device 

is improved via repetition (i.e. experience). Learning curves have been applied in 

teleoperation (e.g. (Anvari 2007)) to evaluate how much training is needed with 

using a device to achieve proficiency (Doumerc et al. 2010)). Learning curves 

have been used in the field of medicine, particularly to evaluate both manual 

surgical procedures (e.g. (Hopper, Jamison, and Lewis 2007), (de Oliveira Filho 

2002)) and robotically-assisted surgical procedures (e.g. (Kaul, Shah, and Menon 

2006), (Chen et al. 2017)) and to compare the two types of procedures with each 

other. 
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Figure 17.8 Potential learning curve for teleoperation of robotic devices 

Building on the results around learning curves for robotic teleoperated 

devices, particularly in medicine (e.g. Yamaguchi et al. 2015, Samadi et al. 2007), 

a general learning curve can be proposed. Figure 17.8 shows the potential shape 

of the learning process behind a robotic device when plotting performance against 

experience. Three different phases can be identified: (i) an initial slow learning 

phase where the operator gets used to the device until it reaches some minimal 

proficiency  after certain experience , (ii) a second practicing phase where 

an acceptable proficiency  is achieved after continuous training , and (iii) a 

mastery phase where optimal performance  is reached with continuous 

training and repetition. 
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DCAS could reduce training times and  by making the teleoperation 

device both more intuitive and more responsive to the operator’s needs. In 

addition, the gap between  and  could be reduced following the principle 

previously explained, ultimately leading to improvement in overall performance 

(i.e. push  higher). 

Training of operators is an important task of teleoperation devices when 

autonomy levels of the teleoperation system are low. However, as autonomy of a 

tele-operated robot increases, following autonomy levels similar to those declared 

by the Society of Automotive Engineers (SAE) (SAE International 2016), the 

DCAS could be an important enabler of improved teleoperation. Indeed, in many 

respects a tele-operated task is similar to a vehicular driving task where increasing 

autonomy is introduced for improved performance, decreased human operator 

work load and, ultimately, higher levels of safety.  

Autonomous vehicles 

Autonomous vehicles are a key target of many companies, as it could 

potentially bring significant economical and societal benefits (Fagnant and 

Kockelman 2015). Enormous structural efforts are undertaken in terms of 

legislation and technology to enable autonomous driving. This includes the 

introduction of high bandwidth G5 communication technology as an important 
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enabler of autonomous driving through connectivity between cars or for high 

precision maps. At the same time, the diverse and historically grown character of 

cities poses a challenge in its own rights with partially outdated infrastructure, 

differences in road regulations and a highly dynamic environment due to other 

road users.  

Albeit error prone, humans are well capable to steer around a city’s 

complexities. They can interpret complex situations, make decisions, resolve 

problems and even reinterpret rules and road regulations within new contexts. 

Autonomous vehicles fail in such situations (see e.g. fatal accidents Uber and 

Tesla (Banks, Plant, and Stanton 2018)), meaning the human needs to remain 

included in the driving process. In addition, a significant number of countries, 

especially within Europe, demand a human-focused approach that requires the 

driver to be able to retake control at any moment; something that is not possible if 

a person has been occupied with a different task.  

However, not only autonomous cars make mistakes. Drivers can be 

expected to make more mistakes the higher the cognitive load they have to deal 

with or if they lack situational awareness through distraction or mind-wandering 

(De Winter et al. 2014). While some Advanced Driving Assist Systems (ADAS) 

and semi-autonomous driving technologies try to account for human 

inattentiveness (e.g. (Fagnant and Kockelman 2015)), the majority works 

independently. Yet, a more alert and experienced driving partner and co-pilot 

erwin
Draft



36 

 

would be able to help steer a driver out of a temporary problem by direct 

communication or supportive and intuitive cues for the driver.  

Whether to allow human passengers to interact with autonomous cars 

remains an unresolved problem affecting cockpit design (Fagnant and Kockelman 

2015), in addition to the afore-mentioned uncertainty of understanding the human 

within the vehicle as part of the car’s system (i.e. the human-in-the-loop) and 

separating it conceptually from the external environment. 

The DCAS suggested in this chapter interacts with the human in the car 

(i.e. the driver) in a co-operative way (Figure 17.5) like a human pilot would with 

their human co-pilot. As pilot and co-pilot swap roles, so do the artificial agent 

(i.e. autonomous car) and the human driver, considering the requirements at hand 

and allowing the human agent to retake control of the driving process if desired. 

17.4 Discussion 

A Decision and Control Action Scheme (DCAS) was introduced as a 

response to some of the challenges faced in modern robotics such as goal-driven 

task performance, flexible and robust interaction with autonomous agents and the 

environment, as well as learning and knowledge acquisition. This decision and 

control framework is inspired by cognitive architectures and expected to benefit 

many fields of application inside and beyond robotics. A list of DCAS’ mayor 

capabilities would be: 
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1. Enable the robot’s interaction with humans by understanding the human’s 

goals and current state. 

2. Agent-based description for both human and robot in order to enable joint-

action or cooperative work. 

3. Deal with partial or incomplete representations of the environment and the 

interacting agents using learning. 

4. Exploit commonalities of recent research in human decisions and actions 

and existing predictive decision and action methodologies in control and 

decision theory 

 However, many aspects of such a DCAS remain open questions, 

specifically of how to implement a cohesive mathematical framework around 

each of the scheme’s components or capabilities. Going back to the list of 

DCAS’s major capabilities, some of its key challenges are: 

1. Human state and intention estimation and prediction 

1.1. What measurements can be used to help estimate or predict a human 

intention related to a certain task?  

1.2. How to generate estimations or predictions of a human before, during or 

after a task is being performed? 

1.3. How to keep track of these estimations or predictions and update them as 

task is being performed? 

2. Task performance and coordination 
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2.1. How to make the robot perform a certain task or part of it? 

2.2. How to make the robot know when to stop performing the task? 

2.3. How to make the robot stop performing the task and release partial or 

complete control over a task? 

2.4. How to make the robot know when to take back partial or full control of 

the task? 

2.5. How to make the robot take back control of the task? 

3. Decision-making and action with incomplete models 

3.1. How to integrate a learning process in a decision-making and control 

application? 

3.2. How to learn from performing a task and interacting with a human? 

3.3. How to convert sensed data and the learning process into knowledge 

useful for task completion and goal reaching? 

Some technical inside has been given into how to answer these questions. 

A data-driven approach, taking advantage of both machine learning (e.g. (Lopez 

Pulgarin, Herrmann, and Leonards 2017; 2018; Khamassi et al. 2011) and 

probabilistic sampling techniques (e.g. (Nakamura, Nagai, and Taniguchi 2018; 

Haefner, Berkes, and Fiser 2016b; Fiser et al. 2010)), has been proposed as a 

feasible solution to improve understanding of the environment and to create 

knowledge, acknowledging challenges around modelling, and validating and 

integrating the proposed methods in a more general cognitive control framework. 
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Discrete Hybrid Automata (e.g. (Bemporad and Di Cairano 2005)) and Model 

Predictive Control (e.g. (Morari and H. Lee 1999)) have been proposed as 

solutions for handling several action paths simultaneously (i.e. decision-making) 

and implementing controllers, with some others using Reinforcement Learning 

(i.e. data-driven methods) to deal with both situations (e.g. (Lopez Pulgarin et al. 

2018; Haykin et al. 2012; Khan et al. 2012; Khamassi et al. 2011)). Hence, a 

suggested major joint guiding principle of these methods is optimality in discrete 

decisions and dynamic actions for dynamic autonomous agent based cooperation. 

Some authors have managed to integrate data-driven methods with dynamical 

systems for control (e.g. (Warren 2006)), which again keeps the discussion going 

about how to better achieve a cognitive controller that takes advantage of 

symbolic (i.e. model based) and emergent (i.e. data driven) representations in 

cognitive architectures for control. 

After introducing the concept of cognitive control and cognitive robotics, 

including its benefits and challenges, we hope to spark more interest in this 

promising research field whilst sharing some ideas and concepts developed over 

the past few years. 

Acknowledgement 

We would like to acknowledge the enormous contributions given by the 

following people in the form of discussions and ideas sharing, which shaped the 

erwin
Draft



40 

 

concepts described in this document. We would like to thank, in alphabetical 

order, Alessandra Sciutti, Alois Knoll, Arthur Richards, Eric Armengaud, 

Francesco Rea, Gabriel Baud-Bovy, Giulio Sandini, Henrik J. Putzer, József 

Fiser, Majid Mirmehdi, Markus Rickert, Murad Abu-Khalaf, Phil Barber, Robert 

Wragge-Morley, Tobias Kessler and Weiru Liu. 

 

References 

Al-Tamimi, Asma, Frank L. Lewis, and Murad Abu-Khalaf. “Model-Free Q-

Learning Designs for Linear Discrete-Time Zero-Sum Games with 

Application to H-Infinity Control.” Automatica 43, no. 3 (March 1, 2007): 

473–81. https://doi.org/10.1016/j.automatica.2006.09.019. 

Anvari, M. “Remote Telepresence Surgery: The Canadian Experience.” Surgical 

Endoscopy and Other Interventional Techniques. Springer, April 6, 2007. 

https://doi.org/10.1007/s00464-006-9040-8. 

Anzanello, Michel Jose, and Flavio Sanson Fogliatto. “Learning Curve Models 

and Applications: Literature Review and Research Directions.” International 

Journal of Industrial Ergonomics. Elsevier, September 1, 2011. 

https://doi.org/10.1016/j.ergon.2011.05.001. 

Avery, Eric, Troy Kelley, and Darush Davani. “Using Cognitive Architectures to 

Improve Robot Control: Integrating Production Systems, Semantic 

erwin
Draft



41 

 

Networks, and Sub-Symbolic Processing,” 2006. 

Baddeley, Alan. “The Episodic Buffer: A New Component of Working 

Memory?” Trends in Cognitive Sciences. Elsevier Current Trends, 

November 1, 2000. https://doi.org/10.1016/S1364-6613(00)01538-2. 

———. “Working Memory: Theories, Models, and Controversies.” Annual 

Review of Psychology 63, no. 1 (January 10, 2012): 1–29. 

https://doi.org/10.1146/annurev-psych-120710-100422. 

Banks, Victoria A., Katherine L. Plant, and Neville A. Stanton. “Driver Error or 

Designer Error: Using the Perceptual Cycle Model to Explore the 

Circumstances Surrounding the Fatal Tesla Crash on 7th May 2016.” Safety 

Science 108 (October 1, 2018): 278–85. 

https://doi.org/10.1016/j.ssci.2017.12.023. 

Baron-Cohen, Simon, Alan M Leslie, Uta Frith, and others. “Does the Autistic 

Child Have a ‘Theory of Mind.’” Cognition 21, no. 1 (1985): 37–46. 

Baud-Bovy, Gabriel, Pietro Morasso, Francesco Nori, Giulio Sandini, and 

Alessandra Sciutti. “Human Machine Interaction and Communication in 

Cooperative Actions.” In Bioinspired Approaches for Human-Centric 

Technologies, 241–68. Cham: Springer International Publishing, 2014. 

https://doi.org/10.1007/978-3-319-04924-3_8. 

erwin
Draft



42 

 

Bauer, Andrea, Dirk Wollherr, and Martin Buss. “Human-Robot Collaboration: A 

Survey.” International Journal of Humanoid Robotics 5, no. 1 (March 20, 

2008): 47–66. https://doi.org/10.1142/S0219843608001303. 

Bellet, Thierry, Béatrice Bailly-Asuni, Pierre Mayenobe, and Aurélie Banet. “A 

Theoretical and Methodological Framework for Studying and Modelling 

Drivers’ Mental Representations.” Safety Science 47, no. 9 (November 1, 

2009): 1205–21. https://doi.org/10.1016/j.ssci.2009.03.014. 

Bemporad, Alberto, and Stefano Di Cairano. “Optimal Control of Discrete Hybrid 

Stochastic Automata.” In Lecture Notes in Computer Science, 3414:151–67. 

Springer, Berlin, Heidelberg, 2005. https://doi.org/10.1007/978-3-540-

31954-2_10. 

Berkes, Pietro, Gergo Orbán, Máté Lengyel, and József Fiser. “Spontaneous 

Cortical Activity Reveals Hallmarks of an Optimal Internal Model of the 

Environment.” Science 331, no. 6013 (January 7, 2011): 83–87. 

https://doi.org/10.1126/science.1195870. 

Breazeal, Cynthia. “Social Interactions in HRI: The Robot View.” IEEE 

Transactions on Systems, Man and Cybernetics Part C: Applications and 

Reviews 34, no. 2 (May 2004): 181–86. 

https://doi.org/10.1109/TSMCC.2004.826268. 

erwin
Draft



43 

 

Cairano, Stefano Di, Daniele Bernardini, Alberto Bemporad, and Ilya V. 

Kolmanovsky. “Stochastic MPC with Learning for Driver-Predictive Vehicle 

Control and Its Application to HEV Energy Management.” IEEE 

Transactions on Control Systems Technology 22, no. 3 (2014): 1018–31. 

https://doi.org/10.1109/TCST.2013.2272179. 

Chen, Po Da, Chao Yin Wu, Rey Heng Hu, Chiung Nien Chen, Ray Hwang 

Yuan, Jin Tung Liang, Hong Shiee Lai, and Yao Ming Wu. “Robotic Major 

Hepatectomy: Is There a Learning Curve?” Surgery (United States) 161, no. 

3 (March 1, 2017): 642–49. https://doi.org/10.1016/j.surg.2016.09.025. 

Corredor, Javier, Jorge Sofrony, and Angelika Peer. “Decision-Making Model for 

Adaptive Impedance Control of Teleoperation Systems.” IEEE Transactions 

on Haptics 10, no. 1 (January 1, 2017): 5–16. 

https://doi.org/10.1109/TOH.2016.2581807. 

Curioni, Arianna, Gunther Knoblich, and Natalie Sebanz. “Joint Action in 

Humans: A Model for Human-Robot Interactions.” In Humanoid Robotics: A 

Reference, 1–19. Springer Netherlands, 2017. https://doi.org/10.1007/978-

94-007-7194-9_126-1. 

Dodd, Will, and Ridelto Gutierrez. “The Role of Episodic Memory and Emotion 

in a Cognitive Robot.” In Proceedings - IEEE International Workshop on 

Robot and Human Interactive Communication, 2005:692–97, 2005. 

erwin
Draft



44 

 

https://doi.org/10.1109/ROMAN.2005.1513860. 

Dondrup, Christian, Nicola Bellotto, Marc Hanheide, Kerstin Eder, and Ute 

Leonards. “A Computational Model of Human-Robot Spatial Interactions 

Based on a Qualitative Trajectory Calculus.” Robotics 4, no. 1 (March 23, 

2015): 63–102. https://doi.org/10.3390/robotics4010063. 

Doumerc, Nicolas, Carlo Yuen, Richard Savdie, M. Bayzidur Rahman, Kris K. 

Rasiah, Ruth Pe Benito, Warick Delprado, Jayne Matthews, Anne Maree 

Haynes, and Phillip D. Stricker. “Should Experienced Open Prostatic 

Surgeons Convert to Robotic Surgery? The Real Learning Curve for One 

Surgeon over 3 Years.” BJU International 106, no. 3 (August 1, 2010): 378–

84. https://doi.org/10.1111/j.1464-410X.2009.09158.x. 

Eder, Kerstin, Chris Harper, and Ute Leonards. “Towards the Safety of Human-

in-the-Loop Robotics: Challenges and Opportunities for Safety Assurance of 

Robotic Co-Workers’.” In The 23rd IEEE International Symposium on Robot 

and Human Interactive Communication, 660–65. IEEE, 2014. 

https://doi.org/10.1109/ROMAN.2014.6926328. 

Fagnant, Daniel J., and Kara Kockelman. “Preparing a Nation for Autonomous 

Vehicles: Opportunities, Barriers and Policy Recommendations.” 

Transportation Research Part A: Policy and Practice 77 (July 1, 2015): 

167–81. https://doi.org/10.1016/j.tra.2015.04.003. 

erwin
Draft



45 

 

Fatemi, Mehdi, and Simon Haykin. “Cognitive Control: Theory and Application.” 

IEEE Access 2 (2014): 698–710. 

https://doi.org/10.1109/ACCESS.2014.2332333. 

Fischer, Tobias, and Yiannis Demiris. “Computational Modelling of Embodied 

Visual Perspective-Taking.” IEEE Transactions on Cognitive and 

Developmental Systems, 2019. https://doi.org/10.1109/TCDS.2019.2949861. 

Fiser, József, Pietro Berkes, Gergo Orbán, and Máté Lengyel. “Statistically 

Optimal Perception and Learning: From Behavior to Neural 

Representations.” Trends in Cognitive Sciences. Elsevier Current Trends, 

March 1, 2010. https://doi.org/10.1016/j.tics.2010.01.003. 

Gold, Joshua I., and Hauke R. Heekeren. “Neural Mechanisms for Perceptual 

Decision Making.” In Neuroeconomics: Decision Making and the Brain: 

Second Edition, 355–72. Elsevier Inc., 2013. https://doi.org/10.1016/B978-0-

12-416008-8.00019-X. 

Grigore, Elena Corina, Kerstin Eder, Anthony G. Pipe, Chris Melhuish, and Ute 

Leonards. “Joint Action Understanding Improves Robot-to-Human Object 

Handover.” In 2013 IEEE/RSJ International Conference on Intelligent 

Robots and Systems, 4622–29. IEEE, 2013. 

https://doi.org/10.1109/IROS.2013.6697021. 

erwin
Draft



46 

 

Haefner, Ralf M., Pietro Berkes, and József Fiser. “Perceptual Decision-Making 

as Probabilistic Inference by Neural Sampling.” Neuron 90, no. 3 (May 4, 

2016): 649–60. https://doi.org/10.1016/J.NEURON.2016.03.020. 

Haykin, Simon, Mehdi Fatemi, Peyman Setoodeh, and Yanbo Xue. “Cognitive 

Control.” Proceedings of the IEEE 100, no. 12 (2012): 3156–69. 

https://doi.org/10.1109/JPROC.2012.2215773. 

Herrmann, Guido, and Ute Leonards. “Human-Humanoid Interaction: Overview.” 

In Humanoid Robotics: A Reference, 1–16. Dordrecht: Springer Netherlands, 

2018. https://doi.org/10.1007/978-94-007-7194-9_146-1. 

Hopper, A. N., M. H. Jamison, and W. G. Lewis. “Learning Curves in Surgical 

Practice.” Postgraduate Medical Journal. The Fellowship of Postgraduate 

Medicine, December 1, 2007. https://doi.org/10.1136/pgmj.2007.057190. 

Houlsby, Neil M.T., Ferenc Huszár, Mohammad M. Ghassemi, Gergő Orbán, 

Daniel M. Wolpert, and Máté Lengyel. “Cognitive Tomography Reveals 

Complex, Task-Independent Mental Representations.” Current Biology : CB 

23, no. 21 (November 4, 2013): 2169–75. 

https://doi.org/10.1016/j.cub.2013.09.012. 

Kaul, Sanjeev, Nikhil L. Shah, and Mani Menon. “Learning Curve Using Robotic 

Surgery.” Current Urology Reports. Springer, March 2006. 

erwin
Draft



47 

 

https://doi.org/10.1007/s11934-006-0071-4. 

Kawamura, Kazahiko, and Stephen Gordon. “From Intelligent Control to 

Cognitive Control.” In 2006 World Automation Congress, WAC’06. IEEE 

Computer Society, 2006. https://doi.org/10.1109/WAC.2006.376003. 

Kawamura, Kazuhiko, Stephen M. Gordon, Palis Ratanaswasd, Erdem Erdemir, 

and Joseph F. Hall. “Implementation of Cognitive Control for a Humanoid 

Robot.” International Journal of Humanoid Robotics 5, no. 4 (November 20, 

2008): 547–86. https://doi.org/10.1142/S0219843608001558. 

Kellogg, Ronald T (Ronald Thomas). Fundamentals of Cognitive Psychology. 

Edited by Sage Publications. Fundamentals of Cognitive Psychology. Third 

Edit. Thousand Oaks, California: SAGE Publications, Inc., 2015. 

Khamassi, Mehdi, Stéphane Lallée, Pierre Enel, Emmanuel Procyk, and Peter F. 

Dominey. “Robot Cognitive Control with a Neurophysiologically Inspired 

Reinforcement Learning Model.” Frontiers in Neurorobotics 5 (July 12, 

2011): 1. https://doi.org/10.3389/fnbot.2011.00001. 

Khan, Said G., Guido Herrmann, Frank L. Lewis, Tony Pipe, and Chris Melhuish. 

“Reinforcement Learning and Optimal Adaptive Control: An Overview and 

Implementation Examples.” Annual Reviews in Control 36, no. 1 (April 1, 

2012): 42–59. https://doi.org/10.1016/j.arcontrol.2012.03.004. 

erwin
Draft



48 

 

King, Dorothy, Angela Rowe, and Ute Leonards. “I Trust You; Hence i like the 

Things You Look at: Gaze Cueing and Sender Trustworthiness Influence 

Object Evaluation.” Social Cognition 29, no. 4 (August 9, 2011): 476–85. 

https://doi.org/10.1521/soco.2011.29.4.476. 

Kotseruba, Iuliia, and John K. Tsotsos. “40 Years of Cognitive Architectures: 

Core Cognitive Abilities and Practical Applications.” Artificial Intelligence 

Review 53, no. 1 (January 1, 2020): 17–94. https://doi.org/10.1007/s10462-

018-9646-y. 

LaValle, Steven M. Planning Algorithms. Cambridge university press, 2006. 

Levesque, Hector, and Gerhard Lakemeyer. “Chapter 23 Cognitive Robotics.” 

Foundations of Artificial Intelligence. Elsevier, January 1, 2008. 

https://doi.org/10.1016/S1574-6526(07)03023-4. 

Lewis, Frank L., Draguna Vrabie, and Kyriakos G. Vamvoudakis. 

“Reinforcement Learning and Feedback Control: Using Natural Decision 

Methods to Design Optimal Adaptive Controllers.” IEEE Control Systems, 

2012. https://doi.org/10.1109/MCS.2012.2214134. 

Li, Zhijun, Yuanqing Xia, and Chun Yi Su. Intelligent Networked Teleoperation 

Control. Intelligent Networked Teleoperation Control. Springer Berlin 

Heidelberg, 2015. https://doi.org/10.1007/978-3-662-46898-2. 

erwin
Draft



49 

 

Lopez Pulgarin, Erwin Jose, Guido Herrmann, and Ute Leonards. “Drivers’ 

Manoeuvre Classification for Safe HRI.” In Lecture Notes in Computer 

Science (Including Subseries Lecture Notes in Artificial Intelligence and 

Lecture Notes in Bioinformatics), 10454 LNAI:475–83. Springer Verlag, 

2017. https://doi.org/10.1007/978-3-319-64107-2_37. 

———. “Drivers’ Manoeuvre Prediction for Safe HRI.” In IEEE International 

Conference on Intelligent Robots and Systems, 8609–14. Institute of 

Electrical and Electronics Engineers Inc., 2018. 

https://doi.org/10.1109/IROS.2018.8593957. 

Lopez Pulgarin, Erwin Jose, Tugrul Irmak, Joel Variath Paul, Arisara Meekul, 

Guido Herrmann, and Ute Leonards. “Comparing Model-Based and Data-

Driven Controllers for an Autonomous Vehicle Task.” In Lecture Notes in 

Computer Science (Including Subseries Lecture Notes in Artificial 

Intelligence and Lecture Notes in Bioinformatics), 10965 LNAI:170–82. 

Springer Verlag, 2018. https://doi.org/10.1007/978-3-319-96728-8_15. 

Maciejowski, JM. Predictive Control: With Constraints, 2002. 

https://books.google.co.uk/books?hl=en&lr=&id=HV_Y58c7KiwC&oi=fnd

&pg=PR11&dq=Predictive+Control:+With+Constraints&ots=Ctf__ecoKm&

sig=6uSJcLrFAlZU0brKNZW7EQKiWLc. 

Mombaur, Katja, Anh Truong, and Jean Paul Laumond. “From Human to 

erwin
Draft



50 

 

Humanoid Locomotion-an Inverse Optimal Control Approach.” Autonomous 

Robots 28, no. 3 (April 2010): 369–83. https://doi.org/10.1007/s10514-009-

9170-7. 

Morari, Manfred, and Jay H. Lee. “Model Predictive Control: Past, Present and 

Future.” In Computers and Chemical Engineering, 23:667–82. Elsevier 

Science Ltd, 1999. https://doi.org/10.1016/S0098-1354(98)00301-9. 

Moulin-Frier, Clement, Tobias Fischer, Maxime Petit, Gregoire Pointeau, Jordi 

Ysard Puigbo, Ugo Pattacini, Sock Ching Low, et al. “DAC-H3: A Proactive 

Robot Cognitive Architecture to Acquire and Express Knowledge about the 

World and the Self.” IEEE Transactions on Cognitive and Developmental 

Systems 10, no. 4 (December 1, 2018): 1005–22. 

https://doi.org/10.1109/TCDS.2017.2754143. 

Na, Jing, Muhammad Nasiruddin Mahyuddin, Guido Herrmann, Xuemei Ren, and 

Phil Barber. “Robust Adaptive Finite-Time Parameter Estimation and 

Control for Robotic Systems.” International Journal of Robust and 

Nonlinear Control 25, no. 16 (November 10, 2015): 3045–71. 

https://doi.org/10.1002/rnc.3247. 

Na, Jing, Xuemei Ren, Cong Shang, and Yu Guo. “Adaptive Neural Network 

Predictive Control for Nonlinear Pure Feedback Systems with Input Delay.” 

In Journal of Process Control, 22:194–206. Elsevier, 2012. 

erwin
Draft



51 

 

https://doi.org/10.1016/j.jprocont.2011.09.003. 

Nakamura, Tomoaki, Takayuki Nagai, and Tadahiro Taniguchi. “SERKET: An 

Architecture for Connecting Stochastic Models to Realize a Large-Scale 

Cognitive Model.” Frontiers in Neurorobotics 12 (June 26, 2018): 25. 

https://doi.org/10.3389/fnbot.2018.00025. 

Neerincx, Mark A., Willeke van Vught, Olivier Blanson Henkemans, Elettra 

Oleari, Joost Broekens, Rifca Peters, Frank Kaptein, et al. “Socio-Cognitive 

Engineering of a Robotic Partner for Child’s Diabetes Self-Management.” 

Frontiers in Robotics and AI 6 (November 15, 2019): 118. 

https://doi.org/10.3389/frobt.2019.00118. 

Ogata, Katsuhiko. Modern Control Engineering. Modern Control Engineering. 

5th ed. Pearson, 2010. https://doi.org/10.1201/9781315214573. 

Oh, Kwang-Myung, Ji-Hoon Kim, and Myung-Suk Kim. “Development of 

Humanoid Robot Design Process-Focused on the Concurrent Engineering 

Based Humanoid Robot Design.” In IDC International Design Congress 

(IASDR) 2005, 2005. 

Oliveira Filho, Getúlio Rodrigues de. “The Construction of Learning Curves for 

Basic Skills in Anesthetic Procedures: An Application for the Cumulative 

Sum Method.” Anesthesia & Analgesia 95, no. 2 (August 2002): 411–16. 

erwin
Draft



52 

 

https://doi.org/10.1213/00000539-200208000-00033. 

Parker, Chris A.C., and Elizabeth A. Croft. “Design & Personalization of a 

Cooperative Carrying Robot Controller.” In Proceedings - IEEE 

International Conference on Robotics and Automation, 3916–21. Institute of 

Electrical and Electronics Engineers Inc., 2012. 

https://doi.org/10.1109/ICRA.2012.6225120. 

Ratanaswasd, Palis, Stephen Gordon, and Will Dodd. “Cognitive Control for 

Robot Task Execution.” In Proceedings - IEEE International Workshop on 

Robot and Human Interactive Communication, 2005:440–45, 2005. 

https://doi.org/10.1109/ROMAN.2005.1513818. 

Rosolia, Ugo, Xiaojing Zhang, and Francesco Borrelli. “Data-Driven Predictive 

Control for Autonomous Systems.” Annual Review of Control, Robotics, and 

Autonomous Systems 1, no. 1 (May 28, 2018): 259–86. 

https://doi.org/10.1146/annurev-control-060117-105215. 

SAE International. Taxonomy and Definitions for Terms Related to Driving 

Automation Systems for On-Road Motor Vehicles. SAE. SAE, 2016. 

https://doi.org/10.4271/J3016_201609. 

Samadi, David, Adam Levinson, Ari Hakimi, Ridwan Shabsigh, and Mitchell C. 

Benson. “From Proficiency to Expert, When Does the Learning Curve for 

erwin
Draft



53 

 

Robotic-Assisted Prostatectomies Plateau? The Columbia University 

Experience.” World Journal of Urology 25, no. 1 (March 28, 2007): 105–10. 

https://doi.org/10.1007/s00345-006-0137-4. 

Scassellati, Brian. “Theory of Mind for a Humanoid Robot.” Autonomous Robots 

12, no. 1 (January 2002): 13–24. https://doi.org/10.1023/A:1013298507114. 

Sheng, Weihua, Anand Thobbi, and Ye Gu. “An Integrated Framework for 

Human-Robot Collaborative Manipulation.” IEEE Transactions on 

Cybernetics 45, no. 10 (October 1, 2015): 2030–41. 

https://doi.org/10.1109/TCYB.2014.2363664. 

Spiers, Adam, Said Ghani Khan, and Guido Herrmann. “Biologically Inspired 

Control of Humanoid Robot Arms.” Cham: Springer International 

Publishing, 2016. 

Tan, Huan, and Chen Liang. “A Conceptual Cognitive Architecture for Robots to 

Learn Behaviors from Demonstrations in Robotic Aid Area.” In Proceedings 

of the Annual International Conference of the IEEE Engineering in Medicine 

and Biology Society, EMBS, 1249–52, 2011. 

https://doi.org/10.1109/IEMBS.2011.6090294. 

Turnbull, Oliver, Jonathan Lawry, Mark Lowenberg, and Arthur Richards. “A 

Cloned Linguistic Decision Tree Controller for Real-Time Path Planning in 

erwin
Draft



54 

 

Hostile Environments.” Fuzzy Sets and Systems 293 (June 15, 2016): 1–29. 

https://doi.org/10.1016/j.fss.2015.08.017. 

Visioli, Antonio, and Giovanni Legnani. “On the Trajectory Tracking Control of 

Industrial SCARA Robot Manipulators.” IEEE Transactions on Industrial 

Electronics 49, no. 1 (February 2002): 224–32. 

https://doi.org/10.1109/41.982266. 

Warren, William. “The Dynamics of Perception and Action.” Psychological 

Review 113, no. 2 (2006): 358–89. 

http://search.proquest.com/docview/214221535/. 

Wei, Changyun, and Koen V. Hindriks. “An Agent-Based Cognitive Robot 

Architecture.” In Lecture Notes in Computer Science (Including Subseries 

Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 

7837 LNAI:54–71. Springer, Berlin, Heidelberg, 2013. 

https://doi.org/10.1007/978-3-642-38700-5_4. 

Whitsell, Bryan, and Panagiotis Artemiadis. “Physical Human-Robot Interaction 

(PHRI) in 6 DOF with Asymmetric Cooperation.” IEEE Access 5 (2017): 

10834–45. https://doi.org/10.1109/ACCESS.2017.2708658. 

Winter, Joost C.F. De, Riender Happee, Marieke H. Martens, and Neville A. 

Stanton. “Effects of Adaptive Cruise Control and Highly Automated Driving 

erwin
Draft



55 

 

on Workload and Situation Awareness: A Review of the Empirical 

Evidence.” Transportation Research Part F: Traffic Psychology and 

Behaviour 27, no. PB (November 1, 2014): 196–217. 

https://doi.org/10.1016/j.trf.2014.06.016. 

Yamaguchi, Tomohiro, Yusuke Kinugasa, Akio Shiomi, Sumito Sato, Yushi 

Yamakawa, Hiroyasu Kagawa, Hiroyuki Tomioka, and Keita Mori. 

“Learning Curve for Robotic-Assisted Surgery for Rectal Cancer: Use of the 

Cumulative Sum Method.” Surgical Endoscopy 29, no. 7 (July 19, 2015): 

1679–85. https://doi.org/10.1007/s00464-014-3855-5. 

Yang, Weiwei, Guido Herrmann, Mark Lowenberg, and Xiaoqian Chen. 

“Dynamic Gain Scheduled Control in a Multi-Variable Control Framework.” 

In Proceedings of the IEEE Conference on Decision and Control, 7081–86, 

2010. https://doi.org/10.1109/CDC.2010.5717054. 

  

erwin
Draft


