Conference paper Open Access

Bayesian BERT for Trustful Hate Speech Detection

Miok, Kristian; Škrlj, Blaž; Zaharie, Daniela; Robnik-Šikonja, Marko


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="041" ind1=" " ind2=" ">
    <subfield code="a">eng</subfield>
  </datafield>
  <controlfield tag="005">20220329014947.0</controlfield>
  <controlfield tag="001">6390721</controlfield>
  <datafield tag="711" ind1=" " ind2=" ">
    <subfield code="a">In the Proceedings of the ICML 2020 Workshop on Uncertainty &amp; Robustness in Deep Learning</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Jožef Stefan Institute</subfield>
    <subfield code="a">Škrlj, Blaž</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Department of Computer Science, West University of Timisoara, Timisoara, Romania</subfield>
    <subfield code="a">Zaharie, Daniela</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">University of Ljubljana, Ljubljana, Slovenia</subfield>
    <subfield code="a">Robnik-Šikonja, Marko</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">592472</subfield>
    <subfield code="z">md5:a4e514858849c5cfdde83e31b365c240</subfield>
    <subfield code="u">https://zenodo.org/record/6390721/files/ICML_UDL_2020.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2022-03-28</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="p">user-embeddia</subfield>
    <subfield code="o">oai:zenodo.org:6390721</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">University of Ljubljana, Ljubljana, Slovenia</subfield>
    <subfield code="a">Miok, Kristian</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Bayesian BERT for Trustful Hate Speech Detection</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-embeddia</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">825153</subfield>
    <subfield code="a">Cross-Lingual Embeddings for Less-Represented Languages in European News Media</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;Hate speech is an important problem in the management of user-generated content. In order to remove offensive content or ban misbehaving users, content moderators need reliable hate speech detectors. Recently, deep neural networks based on transformer architecture, such as (multilingual) BERT model, achieve superior performance in many natural language classification tasks, including hate speech detection. So far, these methods have not been able to quantify their output in terms of reliability. We propose a Bayesian method using Monte Carlo Dropout within the attention layers of the transformer models to provide well-calibrated reliability estimates. We evaluate the introduced approach on hate speech detection problems in several languages. Our approach not only improves the classification performance of the state-of-the-art multilingual BERT model but the computed reliability scores also significantly reduce the workload in inspection of offending cases and in reannotation campaigns.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.5281/zenodo.6389323</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.6390721</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">conferencepaper</subfield>
  </datafield>
</record>
60
45
views
downloads
All versions This version
Views 6047
Downloads 4531
Data volume 26.5 MB18.4 MB
Unique views 4741
Unique downloads 3928

Share

Cite as