Preprint Open Access
Ricks, Wilson;
Norbeck, Jack;
Jenkins, Jesse
<?xml version='1.0' encoding='utf-8'?> <resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd"> <identifier identifierType="DOI">10.5281/zenodo.6385742</identifier> <creators> <creator> <creatorName>Ricks, Wilson</creatorName> <givenName>Wilson</givenName> <familyName>Ricks</familyName> <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0003-3385-1605</nameIdentifier> <affiliation>Princeton University</affiliation> </creator> <creator> <creatorName>Norbeck, Jack</creatorName> <givenName>Jack</givenName> <familyName>Norbeck</familyName> <affiliation>Fervo Energy</affiliation> </creator> <creator> <creatorName>Jenkins, Jesse</creatorName> <givenName>Jesse</givenName> <familyName>Jenkins</familyName> <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0002-9670-7793</nameIdentifier> <affiliation>Princeton University</affiliation> </creator> </creators> <titles> <title>The Value of In-Reservoir Energy Storage for Flexible Dispatch of Geothermal Power</title> </titles> <publisher>Zenodo</publisher> <publicationYear>2022</publicationYear> <subjects> <subject>Geothermal, Enhanced, Flexible, Storage, EGS</subject> </subjects> <dates> <date dateType="Issued">2022-03-22</date> </dates> <resourceType resourceTypeGeneral="Preprint"/> <alternateIdentifiers> <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/6385742</alternateIdentifier> </alternateIdentifiers> <relatedIdentifiers> <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.5281/zenodo.6377484</relatedIdentifier> <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://zenodo.org/communities/zero-lab</relatedIdentifier> </relatedIdentifiers> <rightsList> <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights> <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights> </rightsList> <descriptions> <description descriptionType="Abstract"><p>Geothermal systems making use of advanced drilling and well stimulation techniques have the potential to<br> provide tens to hundreds of gigawatts of clean electricity generation in the United States by 2050. With<br> near-zero variable costs, geothermal plants have traditionally been envisioned as providing &lsquo;&lsquo;baseload&rsquo;&rsquo; power,<br> generating at their maximum rated output at all times. However, as variable renewable energy sources (VREs)<br> see greater deployment in energy markets, baseload power is becoming increasingly less competitive relative to<br> flexible, dispatchable generation and energy storage. Herein we conduct an analysis of the potential for future<br> geothermal plants to provide both of these services, taking advantage of the natural properties of confined,<br> engineered geothermal reservoirs to store energy in the form of accumulated, pressurized geofluid and provide<br> flexible load-following generation. We develop a linear optimization model based on multi-physics reservoir<br> simulations that captures the transient pressure and flow behaviors within a confined, engineered geothermal<br> reservoir. We then optimize the investment decisions and hourly operations of a power plant exploiting such<br> a reservoir against a set of historical and modeled future electricity price series. We find that operational<br> flexibility and in-reservoir energy storage can significantly enhance the value of geothermal plants in markets<br> with high VRE penetration, with energy value improvements of up to 60% relative to conventional baseload<br> plants operating under identical conditions. Across a range of realistic subsurface and operational conditions,<br> our modeling demonstrates that confined, engineered geothermal reservoirs can provide large and effectively<br> free energy storage capacity, with round-trip storage efficiencies comparable to those of leading grid-scale<br> energy storage technologies. Optimized operational strategies indicate that flexible geothermal plants can<br> provide both short- and long-duration energy storage, prioritizing output during periods of high electricity<br> prices. Sensitivity analysis assesses the variation in outcomes across a range of subsurface conditions and cost<br> scenarios.</p> <p>Reference for published paper: Ricks, W., Norbeck, J., and Jenkins, J.D., &quot;The value of in-reservoir energy storage for flexible dispatch of geothermal power,&quot;<em> Applied Energy</em>, Volume 313, 2022, 118807. https://doi.org/10.1016/j.apenergy.2022.118807</p></description> </descriptions> </resource>
All versions | This version | |
---|---|---|
Views | 2,494 | 1,204 |
Downloads | 774 | 293 |
Data volume | 1.2 GB | 444.5 MB |
Unique views | 2,202 | 1,088 |
Unique downloads | 684 | 254 |