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Abstract

Decoupled search decomposes a classical planning task by
partitioning its variables such that the dependencies between
the resulting factors form a star topology. In this topology,
a single center factor can interact arbitrarily with a set of
leaf factors. The leaves, however, can interact with each other
only indirectly via the center. In this work, we generalize this
structural requirement and allow arbitrary topologies. The
components must not overlap, i. e., each state variable is as-
signed to exactly one factor, but the interaction between fac-
tors is not restricted. We show how this generalization is con-
nected to star topologies, which implies the correctness of
decoupled search with this novel type of decomposition. We
introduce factoring methods that automatically identify these
topologies on a given planning task. Empirically, the gener-
alized factorings lead to increased applicability of decoupled
search on standard IPC benchmarks, as well as to superior
performance compared to known factoring methods.

Introduction
Star-topology decoupled state-space search, decoupled
search for short, tackles the state explosion problem by ex-
ploiting the dependency structure of the given model. In
classical planning, decoupled search decomposes planning
tasks by partitioning the state variables such that the de-
pendencies between the resulting factors form a star topol-
ogy (Gnad and Hoffmann 2018). Here, a single center fac-
tor C can interact arbitrarily with the remaining set of leaf
factors {L1, . . . , Ln}. Thereby, decoupled search exploits a
form of conditional independence of the leaves; given a se-
quence of center actions, i. e., actions that have an effect on
the center, the leaves are independent. This allows for an
enumeration of the compliant leaf paths for each leaf sepa-
rately. The search is then performed over center actions only,
where each sequence of center actions πC ends in a decou-
pled state consisting of a single center state (an assignment
to C) and a non-empty set of leaf states (assignments to each
Li). The leaf states reached for an Li are exactly those Li-
assignments reachable by any sequence of Li-actions that
can be executed along πC , i. e., that is compliant with πC .
Thus, a decoupled state compactly represents exponentially
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many explicit states, which share the same center state and
result from all combinations of leaf states across leaf factors.

Application of decoupled search requires finding a suit-
able decomposition of the task into factors. Existing work
has explored several methods to automatically find such a
factoring. They partition the variables into factors by analyz-
ing their causal dependencies (Gnad, Poser, and Hoffmann
2017; Gnad and Hoffmann 2018), or using integer linear
programming (ILP) (Schmitt, Gnad, and Hoffmann 2019).
All known approaches focus specifically on star-topology
factorings with a designated center factor, where cross-leaf
interactions are limited to actions affecting the center.

In this work, we generalize the concept of star factorings
to generalized factorings, which allow arbitrary cross-factor
interactions. In fact, we even allow factorings without cen-
ter factor. Our main motivation for the generalization is that
very few actions (even a single one) can render star factor-
ings impossible if such actions lead to direct cross-leaf in-
teractions. By relaxing the requirements of factorings, such
actions can simply be made center actions, which are consid-
ered by the main search. We do so by extending the notion
of center actions to those that share precondition or effect
variables with more than one leaf factor. We prove the cor-
rectness of this novel form of decomposition by connecting
it to the known star topologies, extending the possibilities of
decoupled search while keeping all its desirable properties.

We illustrate the advantages of generalized factorings on
a collaborative robotics task and devise a new ILP encod-
ing with different optimization criteria to decompose plan-
ning tasks. Our evaluation in optimal and satisficing settings
shows that generalized factorings open up a wide range of
possibilities, enabling the use of decoupled search on plan-
ning tasks that could not be tackled before. While there is no
single best strategy for every domain or setting, the factor-
ings from our new strategies can significantly improve per-
formance over prior methods and explicit-state search.

Background
A planning task (Bäckström and Nebel 1995) is a tuple
Π = ⟨V,A, I, G⟩, where V is a finite set of variables,
and each variable v ∈ V has a finite domain D(v). A
is a finite set of actions. Each action a ∈ A is a triple
⟨pre(a), eff(a), cost(a)⟩, where preconditions pre(a) and
effects eff(a) are partial assignments to V , and the cost



cost(a) ∈ R0+ is a non-negative real number. A state is
a complete assignment to V , I is the initial state, and the
goal G is a partial assignment to V . For a partial assignment
p, we denote by vars(p) ⊆ V the subset of variables on
which p is defined. For V ′ ⊆ V , we denote the restriction
of p onto V ′ by p[V ′], i. e., the assignment to V ′ ∩ vars(p)
by p. We identify (partial) states with sets of variable/value
pairs. An action a is applicable in a state s if pre(a) ⊆ s.
Applying a in a (partial) state s changes the value of all
v ∈ vars(eff(a)) ∩ vars(s) to eff(a)[v], and leaves s un-
changed elsewhere. The outcome state is denoted sJaK. A
plan for Π is an action sequence π applicable in I that ends
in a state sG ⊇ G; it is optimal if its summed-up action cost,
denoted cost(π), is minimal among all plans for Π.

Decoupled search is a technique developed to avoid the
combinatorial explosion of having to enumerate all possi-
ble variable assignments of causally independent parts of a
planning task. It does so by partitioning the state variables V
into a star factoring, whose elements are called factors.

Definition 1 (Star Factoring) Let Π = ⟨V,A, I, G⟩ be a
planning task. A factoring F ⊂ 2V for Π is a partition of V .

A pair Fs = ⟨C,L⟩ is a star factoring for Π, if {C}∪L is
a factoring and for all actions a ∈ A either there exists an
L ∈ L such that vars(pre(a)) ⊆ C ∪ L and vars(eff(a)) ⊆
L, or vars(eff(a)) ∩ C ̸= ∅. C is called the center factor of
Fs, and L are its leaf factors.

By imposing a structural requirement on the interac-
tion between the factors, namely a star topology, decou-
pled search can efficiently handle cross-factor dependencies.
Here, the center C can interact arbitrarily with the leaves L,
but interaction between leaves is allowed only if the center is
affected at the same time. Actions affecting C, i. e., with an
effect on a variable in C, are called center actions, denoted
AC , and those affecting a leaf are called leaf actions, de-
noted AL. The actions that affect a particular leaf L ∈ L are
denoted AL. We define the set of leaf-only actions of a leaf
L as AL

̸C := AL \AC . A sequence of center actions applica-
ble in I in the projection onto C is a center path, a sequence
of AL-actions applicable in I in the projection onto L, is a
leaf path. A complete assignment to C, or to an L ∈ L, is
called a center state, or leaf state, respectively. SL is the set
of all leaf states and that of a particular leaf L is denoted SL.

A decoupled state sF is a pair ⟨center(sF ), prices(sF )⟩
where center(sF ) is a center state, and prices(sF ) : SL 7→
R0+ ∪ {∞} is a pricing function, mapping each leaf state
to a non-negative price. By πC(sF ) we denote the center
path that starts in the initial decoupled state IF and ends
in sF . The pricing function is maintained during decoupled
search in a way so that the price of a leaf state sL is the cost
of a cheapest leaf path that ends in sL and that is compli-
ant with πC(sF ), i. e., that can be scheduled alongside the
center path executed up to sF . A decoupled state sF satis-
fies a condition p, a partial state, denoted sF |= p, iff (i)
p[C] ⊆ center(sF ) and (ii) for every L ∈ L there exists
an sL ∈ SL s.t. p[L] ⊆ sL and prices(sF )[sL] < ∞. We
define the set of leaf actions enabled by a center state sC

as AL|sC := {aL | aL ∈ AL ∧ pre(aL)[C] ⊆ sC}. For
a center state sC and a pair of leaf states sL1 , s

L
2 ∈ SL, by

csC (s
L
1 , s

L
2 ) we define the cost of a cheapest path of AL

̸C |sC
actions from sL1 to sL2 . If no such path exists csC (sL1 , s

L
2 ) =

∞. A decoupled state sF represents a set of explicit states,
its member states, namely those states s where sF |= s.

Definition 2 (Decoupled State Space) Let Π be a planning
task, and F = ⟨C,L⟩ a star factoring for Π. The decoupled
state space is a labeled transition system ΘF

Π = ⟨SF ,AC ,
cost|AC , T F , IF ,SF

G ⟩ as follows:

(i) SF is the set of all decoupled states.
(ii) The transition labels are the center actions AC .

(iii) The cost function is that of Π, restricted to AC .

(iv) T F contains a transition sF
aC

−−→ tF ∈ T F whenever
aC ∈ AC and sF , tF ∈ SF are such that:
1. πC(sF ) ◦ ⟨aC⟩ = πC(tF ),
2. sF |= pre(aC),
3. center(sF )JaCK = center(tF ),
4. for every leaf L ∈ L and leaf state sL ∈ SL,

if sL |= pre(aC)[L], then prices(tF )[sLJaCK] =
prices(sF )[sL]. Additionally, prices(tF )[sL] =
mintL∈SL prices(tF )[tL] + ccenter(tF )(t

L, sL).

(v) IF is the decoupled initial state, where center(IF ) :=
I[C], πC(IF ) := ⟨⟩, and, for every leaf L ∈ L,
prices(IF )[I[L]] = 0 and for all other leaf states
sL ∈ SL, prices(IF )[sL] = ccenter(IF )(I[L], s

L).
(vi) SF

G = {sFG | sFG |= G} are the decoupled goal states.

Decoupled search runs a search over center actions only,
enumerating, for each leaf separately, the set of leaf states
that can be reached in the form of the pricing function. Every
search algorithm and heuristic function can be employed on
the decoupled state space (Gnad and Hoffmann 2018).

Beyond Star Topologies
In this section, we generalize the concept of star factorings
by introducing generalized factorings. The key novelty is
that we no longer impose any structural restriction regarding
the dependencies between factors, i. e., any partition of the
state variables is a generalized factoring.

Definition 3 (Generalized Factoring) Let Π be a planning
task. A pair Fg = ⟨C,L⟩ is a generalized factoring for Π, if
either L or {C} ∪ L is a factoring for Π. C is the (possibly
empty) center factor of Fg , and L are its leaf factors.

In addition to allowing arbitrary cross-factor interactions,
we also consider empty center factors, i. e., factorings where
all components are leaves. Note that every star factoring is
also a generalized factoring, but not vice versa. Next, we re-
solve complications with respect to the interaction between
factors by introducing the notion of global actions, which
replace the center actions from star factorings.

Definition 4 (Global Action) Let Fg = ⟨C,L⟩ be a gener-
alized factoring for the planning task Π. An action a ∈ A is
a global action iff there does not exist an L ∈ L such that
vars(pre(a)) ⊆ C ∪ L and vars(eff(a)) ⊆ L. The set of all
global actions is denoted AG.



While leaf and leaf-only actions are defined as before, we
need to adapt center actions to be able to handle more com-
plex interactions. We call the new type of action global to
make the distinction clear, since global actions not necessar-
ily affect the center. Essentially, an action a is global if it is
not a leaf-only action of any leaf. In particular, actions with
preconditions or effects on more than one leaf, but without
center effect become global actions.

The basic concept of decoupled search remains intact. In
Definition 2, we replace mentions to center actions AC by
global actions AG. The search then branches over global ac-
tions, and all leaf states reachable via leaf-only actions are
enumerated for each leaf separately. The center state associ-
ated with a decoupled state can now be empty (if C = ∅).
Hence, while we generalize the notion of factorings, the
underlying idea of the decomposition is preserved. In par-
ticular, even though it might seem we adopt the flexibil-
ity of traditional factored planning approaches—and thus
their weaknesses—our search still strictly distinguishes be-
tween center/global transitions where components interact,
and leaf-only transitions that do not affect another leaf.

Example 1 We show the advantages of generalized fac-
torings on a collaborative robotics task where n battery-
powered agents (ai variables) move on a map. Mov-
ing consumes battery (bi variables), and an agent can
charge another one by sharing its battery charge. A sin-
gle agent has a non-empty battery initially, all agents
need to reach a goal location. Formally, the task is de-
fined with variables V = {a1, b1, . . . , an, bn}, domains
D(ai) = {l1, . . . , lm},D(bi) = {0, . . . , B}, actions A =
{move(ai, lx, ly, k), charge(ai, aj , l, x, y)}, where i ̸= j,
initial state I = {a1 = l1, b1 = B} ∪ {ai = li, bi = 0 |
i > 1}, and goal G = {ai = l1}. The actions are defined
as follows: pre(move(ai, lx, ly, k)) = {ai = lx, bi = k},
eff(move(ai, lx, ly, k)) = {ai = ly, bi = k − 1}, and
pre(charge(ai, aj , l, x, y)) = {ai = l, aj = l, bi = x, bj =
y}, eff(charge(ai, aj , l, x, y)) = {bi = x− 1, bj = y + 1}.

With generalized factorings, we can have every agent with
its battery in a leaf Li = {ai, bi}, the center is empty, result-
ing in a factoring where the number of leaves scales with the
number of agents. The search then branches over the global
charge actions, the move actions are leaf-only actions.

Due to the charge actions, however, by which any pair of
agents can interact, in a star factoring we can only place a
subset of the agents (and possibly their battery) into one leaf,
and the remaining variables in the center. Thus, only a linear
state-space reduction can be achieved by decoupled search.
We remark that there actually exists a scaling star factoring
(i. e., where |L| = n), namely placing all battery variables in
the center, and each agent in a separate leaf. As we will show
in Proposition 1, though, this does not lead to any state-
space reduction, since all actions are center actions.

Correctness
We prove the correctness of decoupled search with general-
ized factorings using a polynomial mapping from a task Π
and a generalized factoring Fg to a modified task Πs and a
star factoring Fs such that the decoupled state spaces Θ

Fg

Π

for Π and Fg and ΘFs

Πs
for Πs and Fs are the same.

Definition 5 (Star-Mapping) Let Fg = ⟨C,L⟩ be a gener-
alized factoring for Π = ⟨V,A, I, G⟩, and AG the global
actions for Π and Fg . S(Π,Fg) = ⟨Πs,Fs⟩ is a star map-
ping constructed as follows: Πs := ⟨Vs,As, Is, G⟩ is the
star-mapped planning task and Fs := ⟨Cs,L⟩ the star-
mapped factoring for Πs given Π and Fg , where:

• Vs := V ∪ {x}, x ̸∈ V , with D(x) := {0},
• As := {as | a ∈ AG, pre(as) := pre(a), cost(as) :=
cost(a), eff(as) := eff(a) ∪ {x = 0}} ∪ (A \ AG),

• Is := I ∪ {x = 0}, and
• Cs := C ∪ {x}.

In words, we map a generalized factoring Fg for a task Π
to a star factoring Fs for a modified task Πs by introducing
a new state variable x with unary domain. Then x is added
to the center factor Cs of Fs and we add an auxiliary effect
{x = 0} to all global actions. It is easy to see that Fs is
indeed a valid star factoring for Πs, where leaf-only actions
AL

̸C of a leaf L ∈ L affect only L and are preconditioned
by C ∪L, as for the generalized factoring. All other actions,
namely the global actions of Fg , are made center actions for
Fs by adding the effect on x. Note that the set of plans for Π
is exactly the same as for Πs, i. e., solutions are not affected.

For the proof of Theorem 1 we need to introduce
some additional notation. We define a projection func-
tion S\x, which takes as input (partial) states and ac-
tions, and removes all occurrences of x from these inputs.
More precisely, for a (partial) state s we have S\x(s) =
s[vars(s) \ {x}], and for an action a, we have S\x(a) =
S\x(⟨pre(a), eff(a), cost(a)⟩) = ⟨pre(a)[vars(pre(a)) \
{x}], eff(a)[vars(eff(a))\{x}], cost(a)⟩. We extend S\x to
sets of actions by applying it separately to every action con-
tained in the set, and to decoupled states by applying it to all
factor states.

Theorem 1 (Correspondence) Let Fg be a generalized
factoring for Π, let S(Π,Fg) = ⟨Πs,Fs⟩, and let ΘFg

Π and
ΘFs

Πs
be decoupled state spaces of Fg and Fs, respectively.

Then Θ
Fg

Π = ΘFs

Πs
\ x.

Proof: Let ΘFg

Π = ⟨SF
g ,AG, cost|AG , T F

g , IFg ,SF
Gg⟩ and

ΘFs

Π = ⟨SF
s ,AC , cost|AC , T F

s , IFs ,SF
Gs⟩ denote the re-

spective decoupled state spaces.
By definition, we have AG = S\x(AC), so cost|AG =

cost|AC . For the initial states, let IFg = ⟨center(IFg ),

prices(IFg )⟩, and IFs = ⟨center(IFs ), prices(IFs )⟩. Again,
by definition, we have center(IFg ) = S\x(center(IFs )) =

S\x(I[C] ∪ {x = 0}). For the pricing functions, observe
that for every leaf L ∈ L, the sets of leaf-only actions AL

̸C
for the two factorings coincide, so the same action sequences
can be applied to the initial leaf states I[L], which leads to
the exact same pricing function prices(IFg ) = prices(IFs ).

By a similar argument for arbitrary decoupled states
sFg ∈ SF

g , we get that sFs ∈ SF
s , where center(sFs ) =

center(sFg ) ∪ {x = 0} and prices(sFs ) = prices(sFg ).



Let sFg
a−→ tFg ∈ T F

g be a transition in Θ
Fg

Π . We next
show that sFs

as−→ tFs ∈ T F
s is a transition in ΘFs

Π , where
sFg = S\x(sFs ), a = S\x(as), and tFg = S\x(tFs ). Like
just shown, the decoupled states sFs and tFs exist in SF

s . As
shown above, as is a center action. It remains to show that
(1) as is applicable in sFs and that (2) applying it results in
tFs . Part (1) is easy to see, since pre(as) = pre(a) by defi-
nition. For (2), observe that eff(as) = eff(a) ∪ {x = 0}, so
center(tFg ) ∪ {x = 0} = center(tFs ). For the pricing func-
tion prices(tFs ), we get, for all leaves L ∈ L and sL ∈ SL,
whenever prices(tFg )[s

L] = prices(sFg )[s
L] because sL |=

pre(a)[L], then, because the leaf preconditions and effects
of as equal those of a, it also holds that prices(tFs )[s

L] =
prices(sFs )[s

L]. Finally, since the sets of leaf-only actions
are the same for both factorings, for all leaf states sL ∈ SL,
it holds that prices(tFs )[s

L] = prices(tFg )[s
L].

Lastly, the set of decoupled goal states is not affected, i. e.,
sFg ∈ SF

Gg iff sFs ∈ SF
Gs, where center(sFs ) = center(sFg )∪

{x = 0} and prices(sFs ) = prices(sFg ). □

With Theorem 1, we can perform decoupled search with
generalized factorings like with star factorings, and all prop-
erties of decoupled search with star factorings are preserved.

Corollary 1 Decoupled search with generalized factorings
is sound, complete, and preserves optimality.

Characteristics of Generalized Factorings
Gnad, Poser, and Hoffmann (2017) observed that the so
called mobility is an important property of factorings,
closely related to the state-space reduction of the decoupled
search. For a generalized factoring Fg , a leaf L ∈ L is mo-
bile if there exists a leaf-only action for L, i. e., |AL

̸C | > 0. A
factoring is mobile if all its leaves are. Next, we show that a
state-space reduction is possible only with mobile leaves.

Proposition 1 (Non-mobile Leaves) Let Π be a planning
task and Fg = ⟨C,L⟩ a generalized factoring for Π. If a
leaf L ∈ L is not mobile, then in all decoupled states sF

reachable from the initial decoupled state IF there exists
exactly one sL ∈ SL where prices(sF )[sL] < ∞.

Proof: The claim is true in the initial state, since there ex-
ists no leaf-only action for L, so prices(IF )[I[L]] = 0
and prices(IF )[sL] = ∞ for all sL ̸= I[L]. Let sF be a
successor of IF via global action aG. Then the leaf state
sL = I[L]JaCK has a price of 0 in sF . Again, because there
are no leaf-only actions of L, no other leaf state of L is
reached in sF . This argument applies inductively to all de-
coupled states reachable from IF . □

Consequently, a leaf L ∈ L for which there can only ever
be a single reached leaf state can be merged into a new center
factor C∪L without affecting the set of member states of any
reachable decoupled state. In the extreme case where no leaf
is mobile, every decoupled state has exactly one member
state, so decoupled search degrades to explicit-state search.

While mobility can be seen as a qualitative property, prior
work also tried to quantify the “amount of work a leaf can

do on its own”. We adopt the definition of mobility of a fac-
toring as the sum of the number of leaf-only actions |AL

̸C | of
its leaves L ∈ L. This definition allows us to reason about
the reduction power of a factoring more accurately, since
the number of leaf-only actions provides an estimate on how
many leaf states can be reached in a single decoupled state.

Although the state-space reduction is exponential in the
number of leafs, sometimes we can obtained stronger reduc-
tion by moving leaf variables into the center.

Proposition 2 Let Fg = ⟨C,L⟩ be a generalized factor-
ing for Π with mobility M . If there exist non-mobile leaves
{L1, . . . Ln} ⊆ L, then there exists a mobile factoring with
|Fg| − n leaves with mobility M ′ ≥ M .

Proof: The mobility of a leaf L ∈ L equals the number of
leaf-only actions of L, namely |AL

̸C |. Thus, as L1, . . . , Ln

are not mobile, the factoring F ′
g = ⟨C ∪ L1 ∪ · · · ∪ Ln,L \

{L1, . . . , Ln}⟩ has at least the mobility of Fg .
We get a strictly higher mobility if there exists a leaf ac-

tion a ∈ AL of an L ∈ L where, w.l.o.g. for L1, we have
vars(eff(a)) ⊆ L and vars(pre(a)) ⊆ L ∪ L1. Then a was
a global action for Fg , but is a leaf-only action for F ′

g . □

Given the construction in the proof, it can even make
sense to sacrifice a leaf with low mobility and merge it into
the center, since this can increase the number of leaf-only
actions for potentially many other leaves.

Relation to Other Forms of Factored Planning
Decoupled search on star topologies differs conceptually
from other factored planning approaches by requiring a spe-
cific structure to be present in a planning task. With general-
ized factorings, this is no longer the case. Like other factored
planning methods, this allows arbitrary variable partitions.

In localized factored planning (e. g. Amir and Engelhardt
2003; Fabre et al. 2010; Brafman and Domshlak 2006, 2008,
2013), the planning process performs a local search for the
individual factors. Solutions to these sub-problems are coor-
dinated by resolving cross-factor interactions using a global
constraint-satisfaction problem. Hierarchical factored plan-
ning (e. g. Knoblock 1994; Kelareva et al. 2007; Wang and
Williams 2015) refines top-level solutions for an increasing
number of factors while moving down a hierarchy of de-
creasing level of abstraction, resolving inconsistencies by
backtracking to higher levels. The crucial difference to de-
coupled search is that keeping global (center) and leaf ac-
tions separate allows to perform a monolithic search, just
over the more complex decoupled state space. Thus, there
is never the need to coordinate sub-solutions, or backtrack
from partial plans that cannot be refined. This also allows us
to use any standard search algorithm, planning heuristic, or
pruning method, which are orthogonal to the decomposition
performed by decoupled search (Torralba et al. 2016; Gnad
et al. 2017; Gnad, Hoffmann, and Wehrle 2019).

Obtaining Generalized Factorings
Following prior work (Schmitt, Gnad, and Hoffmann 2019),
we formulate the problem of finding a generalized factor-



ing as an integer linear program (ILP) and describe several
objective functions targeting different factoring properties.

First, we choose a set of candidates for leaves called po-
tential leaves. Then we set constraints so that the resulting
partition of variables is indeed a generalized factoring. Fi-
nally, we add more constraints ensuring that all leaves are
mobile, as we have shown in Proposition 1 and 2 that non-
mobile leaves do not contribute to the state-space reduction.

Before getting to the specifics of the ILP encoding, we de-
fine the notion of action variable schemas expressing causal
dependencies between the center and leaves.

Definition 6 Given an action a ∈ A, an action variable
schema (or a-schema for short), denoted by Aa, is a tuple
Aa = ⟨pre(Aa), eff(Aa)⟩, where pre(Aa) = vars(pre(a)),
and eff(Aa) = vars(eff(a)). The set of all a-schemas is de-
noted by K = {Aa | a ∈ A}. Given a set of variables
L ⊆ V , K(L) = {A ∈ K | eff(A) ⊆ L} denotes a set of
a-schemas affecting L. And given an a-schema A ∈ K, |A|
denotes the number of actions with a-schema A.

Besides the planning task Π, the ILP encoding depends on
the choice of a set of potential leaves, Λ ⊆ 2V . We choose
potential leaves as the sets of variables affected by at least
one action, i. e., Λ = {eff(A) | A ∈ K}. Clearly, a set of
variables V such that eff(A) ̸⊆ V for every A ∈ K can
never be a mobile leaf, which makes our selection of Λ the
set of minimal possible variable sets that can become mobile
leaves. We experimented with supersets of these potential
leaves, e. g., by combining pairs of intersecting or causally
related leaves. However, this lead to a significant increase in
the size of the encoding and never paid off in practice.

Our ILP encoding uses the following binary variables:

(i) XL for every potential leaf L ∈ Λ; XL is set to 1 when
L becomes a leaf, and it is set to 0 otherwise.

(ii) YL,A for every potential leaf L ∈ Λ and every a-
schema A ∈ K(L). This variable is set to 1 when the
actions a ∈ A with the a-schema A are mobile for L.

(iii) Zv for every variable v ∈ V . This variable is set to 1 if
v becomes a center variable in the resulting factoring.

The XL variables correspond to the actual choice of the
variable partition that is made, YL,A and Zv are used to en-
sure that we obtain a proper factoring.

The following constraints ensure that the solution to our
ILP is indeed a mobile generalized factoring. There are con-
straints XL + XL′ ≤ 1 for every L,L′ ∈ Λ s.t. L ̸= L′

and L ∩ L′ ̸= ∅, enforcing a partition of the leaf variables.
Constraints Zv ≤ 1−XL for every L ∈ Λ and every v ∈ L,
ensure that the center is disjoint with all leaves.

A necessary condition for a leaf L to be mobile is that
there exists an action a such that vars(eff(a)) ⊆ L. So, it
is enough to consider a-schemas A with eff(A) ⊆ L, i.e.,
the set K(L). For every potential leaf L ∈ Λ we add the
constraint:

XL −
∑

A∈K(L)

YL,A ≤ 0 (1)

The next constraint serves two purposes. First, it ensures
that any variable YL,A is set to 1 only if the correponding

variable XL is set to 1. Second, in combination with the pre-
vious constraint it enforces mobility of each leaf. The mo-
bility of a leaf L requires that there exists at least one action
a such that (a) vars(eff(a)) ∈ L, and (b) every outside pre-
condition of a (i.e., vars(pre(a)) \ L) is part of the center.
As the constraint Eq. (1) takes care of (a), the following con-
straint ensures that (b) holds as well. For every potential leaf
L ∈ Λ and every action schema A ∈ K(L), we define the
following constraint:

|pre(A) \ L| · YL,A −
∑

v∈pre(A)\L

Zv ≤ XL − YL,A (2)

Finally, the following set of constraints makes sure that
if a variable v is not part of any leaf, then it is part of the
center: 1−

∑
L∈Λ,v∈L XL ≤ Zv for every variable v ∈ V .

Every solution to the ILP described above is a generalized
factoring with mobile leaves. Next, we discuss different op-
timization criteria that can be applied.

Towards Finding Good Factorings
Our main target is to obtain factorings that reduce the state-
space the most, i. e., where each decoupled state has as many
member states as possible. We consider several objective
functions that correlate positively with this metric.

Maximize number of mobile leaves (L) This is desirable,
as the number of member states is exponential in the number
of leaves. In the ILP, the objective is to maximize

∑
XL.

Maximize leaf mobility (M) An increased leaf mobility
contributes linearly to the state-space reduction. In the ILP,
the objective is to maximize

∑
YL,A|A|.

Similar to previous attempts to maximize mobility,
though, this completely ignores how much each leaf con-
tributes to the overall mobility. Ideally, we want a balanced
contribution to maximize the search-space reduction. We
capture this with the new notion of balanced leaf mobility.

Maximize balanced leaf mobility We define bal-
anced leaf mobility as

∏
L∈L |AL

̸C | or equivalently∑
L∈L log(|AL

̸C |). That is, we multiply the number of mo-
bile actions per leaf so that factorings with a balanced num-
ber of leaf-only actions per leaf are preferred (e.g., we prefer
two leaves with 5 leaf-only actions each over one with 9 and
another with only 1). In the ILP encoding, we can achieve
this by introducing a binary variable WL,C for every com-
bination C ∈ 2K(L) of a-schemas from K(L) that can be
mobile for a potential leaf L. We add constraints such that at
most one WL,C can be set to 1 for every L. The objective is
to maximize

∑
L∈Λ log(

∑
Ai∈C |Ai|)WL,C .

This encoding is not practical, though, as its size is expo-
nential in the number of a-schemas of a potential leaf. Em-
pirically, we observed an increase in the ILP size by one to
two orders of magnitude on average, making it prohibitively
large (statistics are available in the TR). Thus, we introduce
an approximation that does not require additional variables.

Maximize (approximate) balanced leaf mobility (bM)
For every potential leaf L, we divide the set of affecting
actions AL := {a ∈ A | vars(eff(a)) ⊆ L} into those



whose precondition is contained in L, AL
⊤ := {a ∈ AL |

vars(pre(a)) ⊆ L}, and the rest, AL
pre := AL \ AL

⊤. Note
that, if L is chosen as leaf factor, all actions in AL

⊤ will be
leaf-only actions, regardless of what variables are in the cen-
ter. The remaining actions AL

pre will be leaf-only actions iff
vars(pre(a)) ⊆ L ∪ C. Hence, the minimum and maxi-
mum balanced mobility of L are ML

min = log(|AL
⊤|) and

ML
max = log(|AL|), respectively. Moreover, let AL

pre|A de-
note the actions that have a-schema A and are in AL

pre. Our
objective function maximizes the following expression:∑
L∈Λ

ML
minXL +

∑
A∈K(L)

YL,A(M
L
max −ML

min)
|AL

pre|A|
|Apre

L|
The intuition is that the approximation is correct at the ex-

tremes, whenever none or all actions in AL
pre are leaf-only

actions. This is always the case if |K(L)| ≤ 1, which hap-
pens in many domains. In the middle, the function grows
with the number of leaf-only actions, so that factorings with
more leaf-only actions are always preferred.

Maximize average leaf fact flexibility (F) Prior defini-
tions of mobility attempt to maximize the number of leaf-
only actions, but ignore their effects. Yet, this is important
because the number of member states of a decoupled state
is exponential only in the number of leaves with more than
one reached leaf state. If all leaf-only actions have exactly
the same effect, then the number of leaf states with finite
price is limited. Thus, we aim to maximize the percentage
of actions affecting each leaf fact.

This can be encoded in the ILP by introducing a real vari-
able Wv=d with domain [0, 1] for every fact v = d of Π,
where v ∈ V and d ∈ D(v). The value of each Wv=d corre-
sponds to the percentage of actions with effect v = d that are
leaf-only actions. To set the value of Wv=d, we introduce a
constraint Wv=d = (

∑
L∈Λ,A∈K(L) |Av=d|YL,A)/|Av=d|,

where Av=d is the subset of actions a with a-schema A
where eff(a)[v] = d, and Av=d is the set of all actions with
that effect. The objective is to maximize

∑
Wv=d. We re-

mark that this ignores the distribution of facts across leaves.

Constraint on minimum leaf flexibility While the previ-
ous objectives aim to maximize overall mobility across all
leaves, here we target a minimum amount of mobility per
leaf. Given a parameter fmin, we restrict the minimum flex-
ibility of a potential leaf L by introducing an additional con-
straint per candidate leaf L ∈ Λ:

fmin ·XL ≤
∑

A∈K(L)

|A|YL,A

|{a ∈ A | eff(a) ∩ L ̸= ∅}|
(3)

Here, to select L as a leaf, the ratio of leaf-only actions
affecting L must be at least fmin. As soon as fmin > 0, this
is strictly more constrained than Equation 1, requiring not
only that the leaf is mobile but that at least some minimum
percentage of actions affecting it are leaf-only.

Polynomial Test of Existence
The ILP can become very large for some tasks, so it is ben-
eficial to check in advance if a non-trivial mobile factoring
exists. There is an exact check that is quadratic in |A|:

Proposition 3 (Existence of Mobile 2-Leaf Factoring)
There exists a mobile generalized factoring with at least
two leaves iff there exist two distinct actions a1, a2 such
that vars(eff(a1)) ∩ vars(eff(a2)) = ∅, vars(eff(a1)) ∩
vars(pre(a2)) = ∅, and vars(pre(a1))∩vars(eff(a2)) = ∅.

Proof: Let a1, a2 be two actions such that vars(eff(a1)) ∩
vars(eff(a2)) = ∅, vars(eff(a1)) ∩ vars(pre(a2)) = ∅, and
vars(pre(a1)) ∩ vars(eff(a2)) = ∅. We construct a gen-
eralized factoring Fg with center C and two leaves L1, L2

as follows: L1 = vars(eff(a1)), L2 = vars(eff(a2)), and
C = V \ (L1 ∪ L2). We next show that Fg is a proper gen-
eralized factoring with mobile leaves.

(i) By construction Fg is a partition of V , so a generalized
factoring. There are two non-empty leaf factors; the
center C is non-empty if L1 ∪ L2 ⊂ V .

(ii) Each leaf factor Li is mobile because (a) by construc-
tion there exists an action a ∈ A that affects only Li,
and because (b) vars(pre(a1)) ∩ vars(eff(a2)) = ∅
there exists an action such that vars(pre(a)) ⊆ C∪L1.
The same argument also holds for L2.

Let now Fg = ⟨C,L⟩ be a mobile factoring with cen-
ter C and at least two leaves L1 ̸= L2 ∈ L. Because
Fg is mobile, there exists a leaf-only action ai for each
of the leaves Li where vars(pre(ai)) ⊆ C ∪ Li and
vars(eff(ai)) ⊆ Li. Thus, for a1 and a2 it holds that
vars(eff(a1)) ∩ vars(eff(a2)) = ∅, and vars(eff(ai)) ∩
vars(pre(aj)) = ∅ for {i, j} = {1, 2}. □

With Proposition 3, we have an efficient way to check if
a mobile 2-leaf factoring exists at all. We just need to iterate
over all pairs of actions and check the stated conditions.

Experimental Evaluation
We implemented our factoring strategies in the decoupled
search planner of Gnad and Hoffmann (2018), which is
based on Fast Downward (Helmert 2006). Our experiments
were conducted using Lab (Seipp et al. 2017). We used
all benchmarks of the International Planning Competitions
(IPC) from 1998-2018 in the optimal as well as satisficing
tracks, eliminating duplicate instances that appeared in sev-
eral IPC iterations. For optimal planning, we report results
for blind search and A∗ with hLM-cut (Helmert and Domsh-
lak 2009); in satisficing planning, we use greedy best-first
search (GBFS) with the hFF heuristic (Hoffmann and Nebel
2001), with and without preferred operator pruning (PO) us-
ing the common dual-queue approach (Richter and Helmert
2009). To compute these heuristics for decoupled states,
prior work has introduced a task compilation that enables, in
principle, the use of any heuristic. Via Theorem 1, this com-
pilation is directly applicable to generalized factorings. The
experiments were performed on a cluster of Intel E5-2660
machines running at 2.20 GHz with the runtime/memory
limits of 30min/4GiB. Our code and data are publicly avail-
able (Gnad, Torralba, and Fišer 2022).

In our evaluation, we include the four ILP encodings that
maximize the number of mobile leaves (L), the leaf mobil-
ity (M), the approximated balanced leaf mobility (bM), and
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Figure 1: Coverage (on y-axis) of our new factoring strategies, with fallback to Base if a method abstains, as a function of the
minimum leaf flexibility (x-axis). We also show the coverage of the baselines Base, Fork, and IFork.

the leaf-fact flexibility (F). For all these strategies, we run
two variants. Our basic variant takes the set of all a-schema
effects as potential leaves, the second one additionally con-
siders the set of all strongly-connected components (SCC)
in the causal graph (if there are at least two). We indicate
the latter configurations with a postfix “s”, e. g., Ls consid-
ers all a-schema effects and SCCs. We perform a system-
atic study of the influence of the minimum leaf flexibility
on the performance of decoupled search. To do so, we run
each of the aforementioned eight variants with increasing
fmin: 0%− 30%, in steps of 5, and 40%, 60%, 80%, 100%.
For non-zero flexibility, we indicate the used percentage in
the configuration alias, e. g., bM60 maximizes balanced leaf
mobility and enforces a minimum leaf flexibility of 60%.

We compare to explicit-state search (Base) and a set of
existing factoring strategies for decoupled search as base-
lines. In particular, we run fork and inverted-fork factorings
(Fork/IFork, in short Fo/IF), a strategy based on comput-
ing maximum independent sets of the causal graph (MIS), a
greedy strategy (IA), and two ILP-based methods that pro-
duce strict-star (LPS), respectively general star factorings
(LPG) (Gnad, Poser, and Hoffmann 2017; Schmitt, Gnad,
and Hoffmann 2019). Strict-star factorings are a special case
of star factorings where no action is allowed to touch, in pre-
condition or effect, more than one leaf. For the ILP-based
strategies, we include two variants in our evaluation, one
that maximizes the number of mobile leaves, and another
that maximizes leaf mobility. We only report data for the
variants that maximize the mobility, since these give consis-
tently better results. All baseline strategies (except the two
that maximize mobility) have in common that they return
the factoring with the maximum number of mobile leaves
among the respective subset of considered factorings. For all
factoring methods, we only consider candidate leaves with
size (product of variable domain sizes) below 232.

Like prior work on decoupled search, our methods abstain
from solving a task if the generated factoring has less than
two leaves. We say that a method tackles an instance if it
does not abstain. We impose a runtime limit of 30s on the
factoring process. On abstained instances, we sometimes (in
particular in Figure 1) report the performance of the explicit-
state baseline, because otherwise the underlying instance set
would vary for each method. In this case, we consider an
instance solved if the factoring method abstains or times out,
and the baseline solves the instance in the remaining time.

In Figure 1, we show results of our minimum-leaf-
flexibility investigation. For each of the eight base variants,
we report the coverage (number of solved instances) as a
function of the minimum flexibility for all four search set-
tings. In addition to our new strategies, we also include the
coverage of Base, Fork, and IFork for comparison. In gen-
eral, the graphs confirm that the minimum flexibility has a
significant impact on performance. For all methods, it is ben-
eficial to impose at least a mild minimum of around 5%; and
performance is worst without any restriction. Requiring a
flexibility of 100% almost never results in the highest cover-
age, either. There usually is a sweet-spot between the two
extremes that yields the best performance. For satisficing
planning, the data indicates a maximum coverage between
20% and 40%, with a peak around 25% for most methods.
Adding the causal-graph SCCs does not lead to significant
changes in satisficing planning. The SCCs do not seem to
increase the number of alternative factorings that result in
better performance in many cases. For optimal planning, the
best coverage is achieved with higher minimum flexibility,
between 40% and 80% for all but one configuration: blind
search with L has its maximum at 100%. Adding SCCs is
beneficial for all optimization criteria and results in signifi-
cantly higher coverage for all but F.

Comparing the objective functions, there is a split into
optimal and satisficing planning. For optimal planning bMs
performs best, and Ms is good, too; for satisficing planning
F is best. In all settings there are several configurations that
outperform even the best previous method (which is either
Fork or IFork), and all methods consistently beat Base with
a minimum flexibility > 5%.

In Table 1 we summarize the results for a selection of
our new factoring strategies for A∗ search with hLM-cut,
and GBFS with hFF and PO. We show Base and all prior
methods. From our strategies, we include the basic vari-
ant without enforced minimum flexibility and the best sub-
configuration for all four objective functions. In addition,
we show results for oracle configurations (Oracle(x), short
O(x)), where x ∈ {old, new, dec, all} denotes the set of
configurations that are considered by the oracle: “old” are
all previous strategies, “new” are the ones presented in this
paper, “dec” considers both, and “all” includes Base as well.
An oracle is a simulated best-case combination of all consid-
ered methods, which picks, per instance, the factoring that
results in the lowest search time. For instances not solved



Optimal Planning: A∗ with LM-cut
Base Fo IF IA MIS LPS LPG O(o) L L80s bM bM80s M M80s F F80s O(n) O(d) O(a)

Tackled 1630 417 382 894 641 1124 1125 1243 1248 790 1232 789 1230 790 1236 864 1293 1321 1047
Not t. before - - - - - - - - 78 1 76 1 76 1 76 3 78 78 45
# fork - 417 1 207 244 225 225 311 166 246 207 283 223 278 226 276 242 310 240
# inv-fork - 0 381 136 46 137 57 193 30 231 29 233 34 240 85 166 107 179 173
# strict-star - 0 0 551 351 762 274 625 40 199 35 195 20 202 26 155 91 544 431
# star - 0 0 0 0 0 569 114 217 6 240 6 231 6 261 34 249 116 80
# generalized - 0 0 0 0 0 0 0 795 108 721 72 722 64 638 233 604 172 123
C = ∅ - 1 1 0 0 0 0 0 1 3 1 3 1 1 3 2 2 0 0
Solved 790 266 132 475 397 549 567 638 585 423 597 438 599 434 606 480 672 681 850
+Base - 821 800 803 802 813 810 837 772 821 792 836 794 832 800 823 837 840 850
Solved\Base - 32 13 30 21 35 39 55 19 40 36 55 37 54 37 53 59 60 60
Base\Solved - 1 3 17 9 12 19 8 37 9 34 9 33 12 27 20 12 10 0

Satisficing Planning: GBFS using FF and preferred-operator pruning
Base Fo IF IA MIS LPS LPG O(o) L L20 bM bM30s M M5 F F20s O(n) O(d) O(a)

Tackled 1686 437 403 897 654 1173 1171 1309 1280 916 1270 896 1255 1093 1271 991 1335 1374 898
Not t. before - - - - - - - - 65 2 64 2 60 27 64 13 65 65 25
# fork - 437 1 207 244 225 225 318 166 166 207 240 223 223 226 255 214 303 128
# inv-fork - 0 402 96 46 140 41 219 9 143 19 191 26 121 97 156 166 183 169
# strict-star - 0 0 594 364 808 277 587 32 222 51 176 23 120 31 137 156 435 251
# star - 0 0 0 0 0 628 185 220 88 258 84 247 226 302 176 218 197 164
# generalized - 0 0 0 0 0 0 0 853 297 735 205 736 403 615 267 581 256 186
C = ∅ - 1 1 0 0 0 0 1 1 0 1 2 1 0 1 2 0 1 0
Solved 1370 427 366 775 574 996 993 1167 1006 845 1046 832 1070 985 1102 899 1254 1279 1499
+Base - 1382 1407 1383 1383 1361 1343 1440 1277 1439 1322 1439 1351 1437 1378 1440 1490 1493 1499
Solved\Base - 12 37 35 19 43 79 104 35 82 66 81 71 98 90 91 128 129 129
Base\Solved - 0 0 22 5 51 105 34 127 13 113 12 89 30 81 21 8 6 0

Table 1: Results summary on optimal and satisficing planning. See text for detailed explanations.
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Figure 2: Distribution of different factorings per instance
found by the 8 old and 88 new factoring methods.

by any method, it picks any of the methods that tackle the
instance, and abstains only if all methods do.

The overall conclusions are similar for both settings. First,
we observe that generalized factorings have opened up many
new possibilities and they can tackle a lot more instances, up
to 78 for O(n). This is largely due to generalized factorings,
as confirmed by the second part of the table, which reports
the kind of factorings found by each method. While, e. g.,
Fork and IFork obviously always return fork/inverted-fork
factorings, IA, MIS, LPS, and LPG produce a larger variety
of star topologies. Our new strategies make great use of gen-
eralized no-star factorings, sometimes with empty center.

But are those new possibilities any good? Definitely, at
least in some cases. Comparing the factorings preferred by
the oracles, it turns out that strict-star factorings often yield
the best performance. For both search settings these are
by far preferred by Oracle(all), but generalized factorings
are also performing better than all other factorings and the

baseline in 123 instances for optimal and 186 for satisfic-
ing planning. The “+Base” row reveals that our best new
methods outperform all prior ones, especially in satisfic-
ing planning. Some configurations, however, perform worse
than Base. Indeed, the best performing variants do not tackle
that many new instances, showing that minimum leaf flexi-
bility is a good criterion to decide when to use decoupled
search. All strategies are capable to solve many instances
not solved by the baseline (Solved\Base) and this is always
larger when we enforce a minimum leaf flexibility. The other
way around, there are often less instances that were tackled
and not solved, but solved by Base (Base\Solved).

Figure 2 shows that there are many planning tasks for
which our methods return a significant number of different
factorings. The main peak is at 2 factorings per instance,
but there exist tasks for which up to 82 different factorings
were generated. Across both benchmark sets, with a total of
2330 instances, there are only 494 for which no factoring
was computed, out of which in 340 no factoring with two
mobile leaves is provably possible by Proposition 3.

Finally, in Figure 3 we report per-instance runtime results,
comparing Oracle(new) to Base and Oracle(old). Every
point below the diagonal indicates an instance where one
of the new factoring strategies performs better than Base
or than every of the existing methods. For blind search, the
results look worst. Here, Base is often better than the new
methods, though Oracle(new) actually solves 58 more in-
stances. The old strategies perform close to the new ones,
indicating that the oracles probably often chose the same
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Figure 3: Per-instance runtime comparison for Oracle(new)
(on y-axis) vs. Base and Oracle(old) on the x-axis.

factorings. Still, there are instances where the new strate-
gies result in a strong performance, sometimes several or-
ders of magnitude faster than Base, and even than the best
old method. For the remaining three search settings, the re-
sults look much more favorable for Oracle(new). There are
many cases where the performance is a lot better than Base
and Oracle(old), and it happens only very rarely that the
best of the new strategies performs a lot worse than both.

Additional Results
In Tables 2–5 we summarize the results for a selection of
our new factoring strategies for blind search, A∗ search with
hLM-cut, and GBFS using hFF with and without preferred op-
erator pruning, respectively.

We will go through the tables from top to bottom, explain-
ing the respective attributes along the discussion. For every
configuration, we report the number of tackled instances; for
the new strategies we also report the number of instances
that were not tackled by any existing method. Here, we ob-
serve that some new strategies can tackle close to 80 ad-
ditional instances (in optimal planning). The best perform-
ing variants, however, do not tackle many new instances. All
methods return a very high number of unique factorings, fac-
torings for an instance that were not also produced by an-
other method. This number is, in comparison, fairly low for
the new methods, as we consider all our different variants,
which naturally produce similar factorings in many cases.

The “solved” rows reveal that decoupled search also
solves many of the newly tackled instances, and, when
falling back to Base on abstained instances (row “+Base”),
there are always variants that outperform all prior strate-
gies. There are, however, even configurations that perform
worse than Base in this metric, which means that we would
be better off not using decoupled search, at least in terms
of total coverage. For all strategies, there is a fair num-

ber of instances solved that are not also solved by Base
(Solved\Base). The other way around, there are usually sig-
nificantly less instances that were tackled and not solved, but
solved by Base (Base\Solved).

The subsequent rows show statistics on the number of
special-case factorings obtained by each strategy. While,
e. g., Fork and IFork obviously always return fork, respec-
tively inverted-fork factorings, IA, MIS, LPS, and LPG
produce a large variety of topologies. The same is true for
our new strategies, which often result in generalized factor-
ings, sometimes with empty center factor. Comparing the
oracle configurations, it turns out that strict-star factorings
often yield the best performance. For both search settings
these are by far preferred by Oracle(all).

In the bottom part of the tables, we show the number of in-
stances where a method performed best (with respect to FD’s
“search time”) with an improvement factor of X compared
to all other methods. Here, a method is best for an instance
if X times its search time is smaller than the search time
of all other methods that do not employ the same factoring.
The main observation is that all methods solve instances at
least 10 times faster than all others in a remarkable number
of cases. On the other end, comparing the rows “Solved” and
“Best 0.1” we can observe that most methods are at most a
factor of 10 worse than any other method for most of the in-
stances. The number of uniquely solved instances, i. e., only
solved by that one method (for Base we only consider in-
stances tackled by at least one factoring strategy), indicates
the complementarity of the strategies. For every single one
of them, there are instances only solved by that method.

In Tables 6–9 we show per-domain results of the cover-
age (instances solved and falling back to Base if the strategy
abstains) for all four search settings. We include the same
configurations as in Tables 2–5. Domains in which all con-
figurations result in the same number of solved instances are
summarized under “Others”; we highlight the highest cov-
erage in bold face, and indicate domain/configuration pairs
where decoupled search abstained on all instances by italic
font.

In Table 10 we compare the average per-domain ILP en-
coding size (number of ILP variables and constraints) of
the balanced leaf mobility (bMO) vs. the approximated bal-
anced leaf mobility (bM). We show the size for our ba-
sic configurations that take the a-schema effects as poten-
tial leaves as well as the variant that includes the causal-
graph SCCs. While the encoding size does not increase too
much (or at all) in many domains when moving from the
approximation to the exact encoding, there are also several
exceptions where the size increases dramatically, up to the
point where the ILPs cannot be solved within the given lim-
its. Adding the causal-graph SCCs never leads to significant
changes for the approximation. With the exact encoding,
however, there are many domains in which the encoding size
explodes.

Conclusion
We have overcome the structural requirements of decoupled
search and extended its applicability to planning tasks that
could not be tackled before. The former restriction to star



Base Fo IF IA MIS LPS LPG O(o) L L80s bM bM60s M M80s F F60s O(n) O(d) O(a)
Tackled 1630 417 382 894 641 1125 1125 1242 1247 789 1232 815 1230 789 1235 875 1293 1320 994
Not t. before - - - - - - - - 77 1 76 1 76 1 76 3 78 78 48
Unique F - 69 29 431 219 369 426 - 148 56 117 21 131 12 147 22 - - -
Solved 571 163 75 315 260 367 374 445 371 269 388 310 386 279 408 326 486 492 661
+Base - 628 579 602 602 592 580 615 531 624 555 643 553 634 574 621 629 631 661
Solved\Base - 58 11 49 43 47 44 76 24 66 49 83 44 74 55 79 90 90 90
Base\Solved - 1 3 18 12 26 35 32 64 13 65 11 62 11 52 29 32 30 0
# fork - 417 1 207 244 225 225 395 166 246 207 274 223 278 226 270 259 391 337
# inv-fork - 0 381 136 46 137 57 189 30 231 29 216 35 240 85 117 97 188 163
# strict-star - 0 0 551 351 763 274 574 40 198 35 170 20 201 26 154 89 527 370
# star - 0 0 0 0 0 569 84 217 6 240 21 231 6 261 85 253 80 43
# generalized - 0 0 0 0 0 0 0 794 108 721 134 721 64 637 249 595 134 81
C = ∅ - 1 1 0 0 0 0 0 1 3 1 3 1 1 3 2 2 0 0
Best 0.1 398 155 61 291 246 340 306 432 256 257 289 295 285 265 323 307 453 481 196
Best 0.5 356 133 44 230 196 235 206 325 160 189 210 232 213 199 224 243 350 371 196
Best 1.0 326 119 22 174 132 161 155 235 122 145 155 178 157 147 164 187 272 298 196
Best 2 151 76 7 61 46 51 47 92 24 78 47 95 47 85 50 85 98 107 107
Best 10 41 63 6 42 37 42 39 69 19 64 39 80 39 71 42 74 83 83 83
Solved unique 30 0 0 0 0 0 0 0 0 11 1 11 1 11 3 13 14 14 14

Table 2: Results summary of optimal planning with blind search for explicit-state search (Base), existing factoring methods
(left part), and our new strategies (right part). See text for detailed explanations.

topologies is obsolete, and we can now decompose planning
tasks very flexibly by partitioning the state variables in an
arbitrary way. We proved the correctness of the novel gen-
eralized factorings by making a connection to the existing
star factorings. Thereby, all properties of decoupled search
using star factorings are inherited, most importantly sound-
ness, completeness, and optimality preservation.

We introduced a factoring strategy based on integer lin-
ear programming that is capable of producing generalized
factorings, while being adaptable with respect to the prop-
erties of the factoring that should be optimized. Our experi-
mental evaluation showed the effectiveness of our strategies
and illustrated the benefit of the new freedom to decompose
planning tasks for decoupled search. Given the vast space of
possible factorings, however, the question of what the best
decomposition for a given task is remains open. We believe
this to be an important research topic for future work, that
can further enhance the understanding, but also the perfor-
mance of decoupled search.
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Base Fo IF IA MIS LPS LPG O(o) L L20 bM bM10s M M10s F F25s O(n) O(d) O(a)
Tackled 1686 437 403 897 656 1173 1171 1309 1280 916 1269 991 1257 992 1270 980 1335 1375 986
Not t. before - - - - - - - - 66 2 65 13 63 13 65 10 66 66 18
Unique F - 85 27 474 233 405 494 - 153 91 148 79 168 71 176 44 - - -
Solved 1195 382 340 698 523 927 949 1088 924 787 955 831 959 845 1050 852 1182 1202 1404
+Base - 1224 1292 1221 1217 1247 1250 1327 1152 1317 1187 1313 1193 1326 1282 1344 1383 1384 1404
Solved\Base - 29 99 42 28 103 136 169 79 136 95 135 106 143 161 159 206 209 209
Base\Solved - 0 2 16 6 50 80 37 121 14 102 17 107 12 73 10 18 20 0
# fork - 437 1 207 244 225 225 243 166 166 207 216 223 248 226 257 229 264 141
# inv-fork - 0 402 96 46 140 41 248 7 143 19 147 25 158 97 158 163 192 183
# strict-star - 0 0 594 366 808 277 620 32 223 50 146 24 127 31 141 108 448 289
# star - 0 0 0 0 0 628 198 220 87 258 202 247 184 302 167 266 214 177
# generalized - 0 0 0 0 0 0 0 855 297 735 280 738 275 614 257 569 257 196
C = ∅ - 1 1 0 0 0 0 1 1 0 1 2 1 1 1 2 1 2 1
Best 0.1 848 345 317 631 482 846 871 1054 777 697 835 778 850 798 948 814 1172 1199 833
Best 0.5 616 303 273 530 436 726 721 971 563 573 673 715 659 705 738 719 1122 1182 833
Best 1.0 389 221 214 337 281 491 432 741 355 433 431 513 416 515 499 518 977 1116 833
Best 2 40 39 22 39 36 52 70 115 27 60 62 72 56 79 61 81 166 187 187
Best 10 23 27 2 18 17 20 39 52 16 38 36 37 36 48 36 48 67 72 72
Solved unique 20 0 0 0 0 2 2 3 9 4 13 10 9 10 10 9 40 40 40

Table 4: Results summary of satisficing planning with GBFS using hFF without preferred-operator pruning for explicit-state
search (Base), existing factoring methods (left part), and our new strategies (right part). See text for detailed explanations.

Base Fo IF IA MIS LPS LPG O(o) L L20 bM bM30s M M5 F F20s O(n) O(d) O(a)
Tackled 1686 437 403 897 654 1173 1171 1309 1280 916 1270 896 1255 1093 1271 991 1335 1374 898
Not t. before - - - - - - - - 65 2 64 2 60 27 64 13 65 65 25
Unique F - 86 27 474 231 405 495 - 152 93 150 22 169 111 176 43 - - -
Solved 1370 427 366 775 574 996 993 1167 1006 845 1046 832 1070 985 1102 899 1254 1279 1499
+Base - 1382 1407 1383 1383 1361 1343 1440 1277 1439 1322 1439 1351 1437 1378 1440 1490 1493 1499
Solved\Base - 12 37 35 19 43 79 104 35 82 66 81 71 98 90 91 128 129 129
Base\Solved - 0 0 22 5 51 105 34 127 13 113 12 89 30 81 21 8 6 0
# fork - 437 1 207 244 225 225 318 166 166 207 240 223 223 226 255 214 303 128
# inv-fork - 0 402 96 46 140 41 219 9 143 19 191 26 121 97 156 166 183 169
# strict-star - 0 0 594 364 808 277 587 32 222 51 176 23 120 31 137 156 435 251
# star - 0 0 0 0 0 628 185 220 88 258 84 247 226 302 176 218 197 164
# generalized - 0 0 0 0 0 0 0 853 297 735 205 736 403 615 267 581 256 186
C = ∅ - 1 1 0 0 0 0 1 1 0 1 2 1 0 1 2 0 1 0
Best 0.1 936 381 341 689 534 923 908 1135 872 775 888 773 895 876 992 829 1238 1265 809
Best 0.5 706 330 320 616 491 805 767 1029 690 689 723 706 744 769 823 741 1218 1252 809
Best 1.0 476 300 257 466 384 615 535 820 514 552 534 576 543 592 607 574 1075 1185 809
Best 2 33 16 32 49 31 22 29 69 24 47 35 58 29 46 30 45 118 127 127
Best 10 20 14 18 33 16 15 15 39 14 34 17 32 17 33 17 33 42 45 45
Solved unique 6 0 0 0 1 0 0 1 6 2 7 2 7 4 10 8 25 25 25

Table 5: Results summary of satisficing planning with GBFS using hFF and preferred-operator pruning for explicit-state search
(Base), existing factoring methods (left part), and our new strategies (right part). See text for detailed explanations.



Domain # Base Fo IF IA MIS LPS LPG O(o) L L80s bM bM60s M M80s F F60s O(n) O(d) O(a)
Airport 50 22 22 22 22 20 19 19 19 18 22 19 22 19 22 19 20 20 20 22
DataNetwork 20 6 6 6 9 9 7 6 9 9 9 7 9 6 9 8 9 9 9 9
Depots 22 4 4 4 4 4 4 4 4 4 4 3 4 4 4 3 4 4 4 4
Driverlog 20 7 11 7 11 11 11 11 11 6 11 10 11 9 11 10 10 11 11 11
Elevators 30 11 11 16 16 12 16 14 16 6 16 12 16 12 10 16 3 16 16 16
Floortile 40 2 2 0 2 2 2 2 2 0 0 2 0 2 0 2 2 2 2 2
Freecell 80 17 17 17 16 17 14 14 14 10 17 14 17 14 17 14 17 14 14 17
GED 20 15 15 15 15 15 15 13 15 13 15 13 15 13 15 13 15 15 15 15
Hiking 20 11 11 11 11 11 11 11 11 8 11 4 11 4 11 6 11 11 11 11
Logistics 63 12 27 13 26 26 27 27 28 12 19 27 27 27 27 27 27 28 28 28
Maintenance 5 5 5 5 5 5 5 5 5 5 5 5 4 5 5 4 5 5 5 5
Miconic 150 50 52 50 52 51 51 51 52 52 51 51 52 51 52 51 51 52 52 52
Mprime 35 19 19 19 17 19 14 14 14 8 19 9 19 8 19 10 19 15 17 19
Mystery 30 15 15 15 15 15 15 13 13 13 15 13 15 13 15 13 15 14 14 15
NoMystery 20 8 20 8 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
Openstacks 80 31 31 31 26 28 26 24 28 24 26 24 26 24 26 24 26 26 28 31
Organic-split 20 10 10 9 7 9 10 10 9 9 9 9 9 9 9 9 8 9 9 10
ParcPrinter 20 7 7 7 9 7 7 8 9 8 20 9 20 9 20 11 20 20 20 20
Pathways 30 4 4 4 4 4 4 4 4 4 4 5 4 5 4 5 4 5 5 5
Pipesworld 100 27 27 27 27 27 23 23 21 22 27 22 27 22 27 22 27 22 21 27
PSR 50 49 49 49 50 50 49 49 50 49 49 48 48 49 49 50 50 50 50 50
Rovers 40 5 6 6 7 7 7 7 7 7 7 7 7 7 7 7 6 7 7 7
Satellite 36 5 5 6 5 6 7 7 7 4 5 7 6 7 6 7 6 7 7 7
Scanalyzer 30 12 12 12 9 9 9 9 9 5 12 5 12 6 12 6 12 6 6 12
Spider 20 11 11 11 11 10 11 11 10 11 11 11 11 11 11 11 11 11 10 11
Storage 30 14 14 14 14 14 14 13 13 13 14 13 14 13 14 13 14 13 13 14
Tetris 17 9 9 9 6 9 8 9 6 6 9 6 9 6 9 6 9 6 6 9
Tidybot 30 16 16 16 16 16 16 16 16 16 14 16 16 16 16 16 16 16 16 16
TPP 30 6 24 6 6 6 6 6 24 5 16 5 24 5 24 5 24 24 24 24
Transport 59 17 17 18 18 17 18 14 18 18 18 11 18 11 18 18 7 18 18 18
Trucks 30 6 6 6 5 6 5 5 5 5 5 5 5 5 5 5 5 5 5 6
Woodworking 30 7 8 9 8 7 10 10 11 9 9 10 10 10 9 11 13 13 13 13
Zenotravel 20 8 12 8 10 10 8 8 12 9 12 10 12 8 8 9 12 12 12 12
Others 353 123 123 123 123 123 123 123 123 123 123 123 123 123 123 123 123 123 123 123∑

1630 571 628 579 602 602 592 580 615 531 624 555 643 553 634 574 621 629 631 661

Table 6: Per-domain coverage results (+Base) of the same configurations as shown in Table 2 with blind search. We use bold
face to highlight highest coverage and italic font to indicate domains in which a decoupled search configuration abstained in all
instances, so the number shown corresponds fully to Base.



Domain # Base Fo IF IA MIS LPS LPG O(o) L L80s bM bM80s M M80s F F80s O(n) O(d) O(a)
Airport 50 28 28 28 28 28 27 28 27 27 28 27 28 27 28 27 28 27 27 28
DataNetwork 20 12 12 12 14 14 13 13 14 14 14 13 14 13 14 14 14 14 14 14
Depots 22 7 7 7 7 7 7 7 7 6 7 6 7 6 7 6 7 7 7 7
Driverlog 20 13 13 13 13 13 14 14 14 12 13 13 13 13 13 13 13 13 14 14
Elevators 30 22 22 23 23 22 23 23 23 21 23 22 23 22 20 23 16 23 23 23
Floortile 40 13 13 11 8 8 8 2 11 3 11 2 11 2 11 2 11 11 11 13
GED 20 15 15 15 15 15 15 13 15 13 15 13 15 14 15 15 15 15 15 15
Gripper 20 7 7 7 7 7 7 7 7 6 7 6 7 6 7 6 7 6 6 7
Hiking 20 9 9 9 9 9 10 10 10 8 10 4 10 4 10 7 10 10 10 10
Logistics 63 26 34 27 35 35 34 34 35 22 29 34 35 34 34 34 34 35 35 35
Miconic 150 141 140 141 140 140 140 140 141 140 140 140 140 140 140 140 140 140 141 141
Mprime 35 22 22 22 20 22 22 22 22 21 22 22 22 22 22 22 22 22 22 22
NoMystery 20 14 20 14 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
Openstacks 80 31 31 31 26 28 26 27 28 25 26 26 26 26 26 27 26 27 28 31
Organic-split 20 15 15 14 13 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
ParcPrinter 20 10 10 10 13 10 14 17 17 16 20 18 20 18 20 18 20 20 20 20
Parking 40 5 5 5 5 5 5 5 5 3 5 5 5 5 5 5 5 5 5 5
Pathways 30 5 5 5 5 5 5 5 5 5 4 5 4 5 4 5 4 5 5 5
Pipesworld 100 29 29 29 29 29 29 28 28 29 29 28 29 28 29 28 29 29 29 29
PSR 50 49 49 49 50 50 49 49 50 50 49 49 49 49 49 50 50 50 50 50
Rovers 40 7 8 8 8 8 9 9 9 8 8 9 8 9 9 9 8 9 9 9
Satellite 36 7 7 12 9 8 12 12 12 9 8 12 12 12 12 12 12 12 12 12
Scanalyzer 30 15 15 15 15 15 15 15 15 12 15 11 15 11 15 11 15 12 12 15
Tetris 17 6 6 6 5 6 6 6 5 5 6 5 6 5 6 5 6 6 6 6
Tidybot 30 18 18 18 18 18 18 18 18 18 18 18 19 18 19 18 18 19 19 19
TPP 30 6 19 6 6 6 7 7 19 6 16 7 19 7 19 6 19 19 19 19
Transport 59 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 12 17 17 17
Trucks 30 10 10 10 11 11 11 11 11 10 10 10 11 10 10 10 10 11 11 11
Woodworking 30 17 21 22 20 17 21 22 23 17 22 21 22 22 22 21 23 24 24 24
Others 478 214 214 214 214 214 214 214 214 214 214 214 214 214 214 214 214 214 214 214∑

1630 790 821 800 803 802 813 810 837 772 821 792 836 794 832 800 823 837 840 850

Table 7: Per-domain coverage results (+Base) of the same configurations as shown in Table 3 with A∗ search with hLM-cut.
We use bold face to highlight highest coverage and italic font to indicate domains in which a decoupled search configuration
abstained in all instances, so the number shown corresponds fully to Base.



Domain # Base Fo IF IA MIS LPS LPG O(o) L L20 bM bM10s M M10s F F25s O(n) O(d) O(a)
Airport 50 36 36 36 36 34 35 35 35 34 32 35 40 35 40 35 40 40 40 41
Barman 40 20 20 20 20 20 1 3 4 8 20 7 20 2 20 5 20 18 18 29
Childsnack 20 0 0 2 2 0 0 0 2 0 2 0 2 0 2 0 2 3 3 3
DataNetwork 20 7 7 7 6 6 3 3 7 3 6 2 6 4 6 3 5 7 7 7
Depots 22 15 15 19 19 16 19 19 19 17 19 18 19 16 19 19 19 20 20 20
Driverlog 20 18 19 18 19 18 19 19 20 18 19 20 20 19 19 20 20 20 20 20
Elevators 40 39 39 40 39 39 40 40 40 29 40 34 40 34 40 40 40 40 40 40
Floortile 40 8 8 6 4 8 8 36 36 5 36 36 36 36 36 36 36 37 37 37
Freecell 80 80 80 80 79 80 79 80 80 79 80 79 80 80 80 80 80 80 80 80
Grid 5 4 4 4 3 3 3 3 3 2 3 3 3 3 3 3 3 4 4 4
Hiking 20 19 19 19 19 19 20 20 20 5 20 2 20 2 20 20 20 20 20 20
Logistics 63 52 63 63 63 63 63 63 63 63 56 63 63 63 63 63 63 63 63 63
Maintenance 20 6 6 6 5 6 5 12 14 9 6 14 6 11 6 11 6 16 16 16
Mprime 35 31 31 31 31 31 29 28 29 27 31 30 31 28 31 28 31 31 32 32
Mystery 30 18 18 19 18 18 18 17 19 16 18 16 17 17 17 17 19 19 19 19
NoMystery 20 8 19 8 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19
Openstacks 90 90 90 90 90 90 80 50 80 51 90 52 90 57 90 57 90 87 87 90
Organic-split 20 12 12 12 11 12 12 12 11 12 12 12 12 12 12 12 12 12 11 12
ParcPrinter 30 30 30 30 30 30 30 30 30 30 30 29 30 29 30 30 30 30 30 30
Parking 40 21 21 21 21 21 20 20 21 20 21 20 21 20 21 20 21 21 21 21
Pathways 30 11 13 11 13 13 16 16 22 20 21 18 18 20 21 20 21 29 29 29
Pipesworld 100 54 54 54 54 54 55 52 55 52 54 53 54 53 54 51 54 56 57 59
Rovers 40 22 22 40 21 22 22 22 40 40 34 24 23 26 26 39 40 40 40 40
Satellite 36 25 26 36 26 26 36 36 36 31 33 30 31 36 36 36 36 36 36 36
Scanalyzer 30 27 27 27 27 27 26 26 27 28 26 28 27 27 27 27 27 28 28 30
Storage 30 19 19 19 19 19 19 20 21 20 19 21 19 19 19 22 19 23 23 23
Tetris 20 7 7 7 6 7 7 7 6 7 7 7 5 7 5 7 5 8 8 8
Thoughtful 20 8 8 8 8 8 8 8 8 9 8 8 10 9 10 8 9 13 13 13
Tidybot 20 16 16 16 15 16 16 16 15 16 14 16 15 16 16 16 16 16 16 16
TPP 30 23 24 29 27 23 23 22 29 20 29 20 21 21 25 23 25 29 29 29
Transport 58 17 17 58 17 17 58 58 58 13 58 14 58 14 58 58 58 58 58 58
Trucks 30 14 14 14 14 14 14 14 14 13 14 13 13 14 12 13 14 16 16 16
Woodworking 40 34 36 38 36 34 40 40 40 32 36 40 40 40 39 40 40 40 40 40
Others 497 404 404 404 404 404 404 404 404 404 404 404 404 404 404 404 404 404 404 404∑

1686 1195 1224 1292 1221 1217 1247 1250 1327 1152 1317 1187 1313 1193 1326 1282 1344 1383 1384 1404

Table 8: Per-domain coverage results (+Base) of the same configurations as shown in Table 4 with GBFS using hFF. We use
bold face to highlight highest coverage and italic font to indicate domains in which a decoupled search configuration abstained
in all instances, so the number shown corresponds fully to Base.



Domain # Base Fo IF IA MIS LPS LPG O(o) L L20 bM bM30s M M5 F F20s O(n) O(d) O(a)
Agricola 20 12 12 12 12 12 12 12 12 12 12 11 12 11 12 12 12 12 12 12
Airport 50 37 37 37 37 36 36 36 36 34 34 35 34 35 35 36 40 40 41 41
Barman 40 28 28 28 28 28 22 19 29 26 28 27 28 25 27 24 28 40 40 40
Childsnack 20 6 6 20 20 6 0 0 20 2 20 3 20 5 20 4 20 20 20 20
DataNetwork 20 10 10 10 7 9 10 8 10 6 7 8 7 9 9 6 7 10 10 11
Depots 22 19 19 21 21 19 21 21 21 21 21 20 21 20 21 21 21 21 21 21
Driverlog 20 20 20 20 20 20 19 19 20 20 20 20 20 19 19 20 20 20 20 20
Elevators 40 39 39 40 39 39 40 40 40 39 40 40 40 40 40 40 40 40 40 40
Floortile 40 8 8 9 4 8 9 39 39 5 39 39 38 39 39 39 39 39 39 39
Freecell 80 80 80 80 80 80 80 80 80 78 80 79 80 80 80 80 80 80 80 80
Grid 5 4 4 4 5 5 4 4 5 4 5 4 5 5 5 4 5 5 5 5
Hiking 20 20 20 20 20 20 20 20 20 17 20 12 20 17 20 20 20 20 20 20
Logistics 63 61 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63
Maintenance 20 9 9 9 9 9 10 14 16 13 8 13 8 16 14 17 9 17 17 17
Mystery 30 16 16 16 16 16 16 17 17 17 16 16 16 17 18 17 15 18 18 18
NoMystery 20 9 19 9 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19
Openstacks 90 90 90 90 90 90 68 17 68 13 90 20 90 34 84 33 90 86 86 90
Pathways 30 21 21 21 21 22 19 18 25 21 25 21 22 22 25 22 24 29 29 29
Pipesworld 100 82 82 82 82 82 82 83 83 84 82 84 82 84 82 84 82 84 84 84
Satellite 36 36 36 36 34 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36
Scanalyzer 30 28 28 28 28 28 28 28 28 30 28 30 28 30 28 30 28 30 30 30
Spider 20 13 13 13 13 14 13 13 14 13 13 13 13 13 13 13 13 13 14 14
Storage 30 20 20 20 20 20 20 21 21 20 20 20 20 20 20 22 20 22 22 22
Tetris 20 14 14 14 15 13 13 13 15 13 13 13 14 13 10 13 10 15 15 15
Thoughtful 20 11 11 11 10 12 11 11 10 10 11 12 11 12 10 12 13 15 15 15
Tidybot 20 16 16 16 15 16 16 16 15 16 13 16 13 16 13 16 13 15 16 16
TPP 30 30 30 30 26 30 28 30 30 30 30 28 30 29 27 28 25 30 30 30
Transport 58 41 41 58 41 41 58 58 58 33 58 32 58 32 57 58 58 58 58 58
Trucks 30 16 16 16 14 16 14 14 16 14 14 14 17 16 17 15 16 19 19 20
Woodworking 40 40 40 40 40 40 40 40 40 34 40 40 40 40 40 40 40 40 40 40
Others 622 534 534 534 534 534 534 534 534 534 534 534 534 534 534 534 534 534 534 534∑

1686 1370 1382 1407 1383 1383 1361 1343 1440 1277 1439 1322 1439 1351 1437 1378 1440 1490 1493 1499

Table 9: Per-domain coverage results (+Base) of the same configurations as shown in Table 5 with GBFS using hFF and PO.
We use bold face to highlight highest coverage and italic font to indicate domains in which a decoupled search configuration
abstained in all instances, so the number shown corresponds fully to Base.



Domain # bM bMO bMs bMOs
Airport 41 443778 519862 443778 519862
Childsnack 22 489075 596215 489075 596215
DataNetwork 39 3765 114159 3765 114159
Depots 15 177054 386855 177054 386855
Driverlog 9 527 2888 540 19283
Elevators 61 2810 3033 2822 47613
Floortile 80 5798 71122 5798 71122
Freecell 80 31312 32853 31312 32853
GED 39 36757 478262 36757 478262
Grid 4 1039 4336 1039 4336
Gripper 15 1266 1705 1269 14815
Hiking 40 9582 20684 9582 20684
Logistics 37 173 73130 173 73130
Maintenance 24 10498 11294 10498 11294
Miconic 145 247 409 247 409
Mprime 24 8894 9584 8903 49035
Mystery 16 3813 4198 3831 57335
NoMystery 40 62 82 62 82
Openstacks 110 8700 10519 8700 10519
Organic 1 129 305 129 305
ParcPrinter 1 342 12764 436 43566
Parking 13 945503 965463 945503 965463
Pathways 11 4264 34570 4294 57181
Pipesworld 51 287124 295369 287124 295369
PSR 27 227 40653 231 73424
Rovers 24 2830 5912 2941 101162
Satellite 29 1216 194623 1328 199237
Scanalyzer 21 9969 11301 9969 11301
Storage 20 212972 219786 212972 219786
Tetris 6 756398 771894 756398 771894
TPP 12 1827 11028 1937 71156
Transport 117 692 784 700 8911
Trucks 16 1257 18545 1233 70082
Woodworking 11 2901 257168 2953 387977
Zenotravel 20 172 847 172 847

Table 10: Comparison of the average ILP encoding size
of some variants of the balanced leaf mobility optimization
function on instances where all methods are able to fully
construct the ILP.


