Dataset Open Access

Indoor3Dmapping dataset

Armando Arturo Sánchez Alcázar; Giovanni Pintore; Matteo Sgrenzaroli


JSON Export

{
  "files": [
    {
      "links": {
        "self": "https://zenodo.org/api/files/e10dae32-b20d-43cf-bfe7-52a82a5c307a/Indoor3Dmapping.zip"
      }, 
      "checksum": "md5:9d9e21f5031b408dbeaffd457ec36965", 
      "bucket": "e10dae32-b20d-43cf-bfe7-52a82a5c307a", 
      "key": "Indoor3Dmapping.zip", 
      "type": "zip", 
      "size": 123593016
    }
  ], 
  "owners": [
    310240
  ], 
  "doi": "10.5281/zenodo.6367381", 
  "stats": {
    "version_unique_downloads": 9.0, 
    "unique_views": 98.0, 
    "views": 128.0, 
    "version_views": 128.0, 
    "unique_downloads": 9.0, 
    "version_unique_views": 98.0, 
    "volume": 1112337144.0, 
    "version_downloads": 9.0, 
    "downloads": 9.0, 
    "version_volume": 1112337144.0
  }, 
  "links": {
    "doi": "https://doi.org/10.5281/zenodo.6367381", 
    "conceptdoi": "https://doi.org/10.5281/zenodo.6367380", 
    "bucket": "https://zenodo.org/api/files/e10dae32-b20d-43cf-bfe7-52a82a5c307a", 
    "conceptbadge": "https://zenodo.org/badge/doi/10.5281/zenodo.6367380.svg", 
    "html": "https://zenodo.org/record/6367381", 
    "latest_html": "https://zenodo.org/record/6367381", 
    "badge": "https://zenodo.org/badge/doi/10.5281/zenodo.6367381.svg", 
    "latest": "https://zenodo.org/api/records/6367381"
  }, 
  "conceptdoi": "10.5281/zenodo.6367380", 
  "created": "2022-03-18T10:24:57.376080+00:00", 
  "updated": "2022-03-20T01:49:32.965350+00:00", 
  "conceptrecid": "6367380", 
  "revision": 7, 
  "id": 6367381, 
  "metadata": {
    "access_right_category": "success", 
    "doi": "10.5281/zenodo.6367381", 
    "version": "0.1.0", 
    "language": "eng", 
    "title": "Indoor3Dmapping dataset", 
    "license": {
      "id": "CC-BY-4.0"
    }, 
    "related_identifiers": [
      {
        "scheme": "doi", 
        "identifier": "10.5281/zenodo.6367380", 
        "relation": "isVersionOf"
      }
    ], 
    "relations": {
      "version": [
        {
          "count": 1, 
          "index": 0, 
          "parent": {
            "pid_type": "recid", 
            "pid_value": "6367380"
          }, 
          "is_last": true, 
          "last_child": {
            "pid_type": "recid", 
            "pid_value": "6367381"
          }
        }
      ]
    }, 
    "communities": [
      {
        "id": "evocation-itn"
      }
    ], 
    "grants": [
      {
        "code": "813170", 
        "links": {
          "self": "https://zenodo.org/api/grants/10.13039/501100000780::813170"
        }, 
        "title": "Advanced Visual and Geometric Computing for 3D Capture, Display, and Fabrication", 
        "acronym": "EVOCATION", 
        "program": "H2020", 
        "funder": {
          "doi": "10.13039/501100000780", 
          "acronyms": [], 
          "name": "European Commission", 
          "links": {
            "self": "https://zenodo.org/api/funders/10.13039/501100000780"
          }
        }
      }
    ], 
    "keywords": [
      "point cloud", 
      "indoor", 
      "3D mapping"
    ], 
    "publication_date": "2022-03-18", 
    "creators": [
      {
        "affiliation": "GEXCEL, Italy", 
        "name": "Armando Arturo S\u00e1nchez Alc\u00e1zar"
      }, 
      {
        "orcid": "0000-0001-8944-1045", 
        "affiliation": "Visual and Data-Intensive Computing, CRS4, Italy", 
        "name": "Giovanni Pintore"
      }, 
      {
        "affiliation": "GEXCEL, Italy", 
        "name": "Matteo Sgrenzaroli"
      }
    ], 
    "access_right": "open", 
    "resource_type": {
      "type": "dataset", 
      "title": "Dataset"
    }, 
    "description": "<p><strong>Data Organization</strong><br>\nUnder the root directory for the whole acquisition, there is a <em>positions.csv</em>&nbsp;file and 3 subdirectories: <em>img</em>, <em>dense</em>, and <em>sparse</em>. The mobile mapping 3D dataset was generated walking around an indoor space and each&nbsp;<strong>&lt;positionID&gt;</strong> corresponds to a unique pose along the trajectory of this motion. This version of the dataset contains a total of 99 unique poses. There is a separation of 1 meter between each adjacent pose.</p>\n\n<pre><code>root\n\u251c\u2500\u2500 img\n\u2502  \u251c\u2500\u2500 &lt;positionID&gt;.jpg\n|  \u2514\u2500\u2500 ...\n\u251c\u2500\u2500 dense\n\u2502  \u251c\u2500\u2500 &lt;positionID&gt;.png\n|  \u2514\u2500\u2500 ...\n\u251c\u2500\u2500 sparse\n\u2502  \u251c\u2500\u2500 &lt;positionID&gt;.png\n|  \u2514\u2500\u2500 ...\n\u2514\u2500\u2500 positions.csv</code></pre>\n\n<p><strong>positions.csv</strong></p>\n\n<ul>\n\t<li>File format: One ASCII file.</li>\n\t<li>File structure Rows: Each image is one record.</li>\n\t<li>File structure Columns: Comma separated headers, with exact order described below.\n\t<ul>\n\t\t<li>Filename, column 0: Panorama file name as on disk, without file extension.</li>\n\t\t<li>Timestamps, column 1: Absolute time at which the panorama was captured, Decimal notation, without thousands separator (microseconds).</li>\n\t\t<li>X,Y,Z, columns 2 through 4: Position of the panoramic camera in decimal notation, without thousands separator (meters).</li>\n\t\t<li>w,x,y,z, columns 5 through 8: Rotation of the camera, quaternion.</li>\n\t</ul>\n\t</li>\n</ul>\n\n<p><strong>sparse</strong></p>\n\n<ul>\n\t<li>Set of equirectangular rendered depth images.</li>\n\t<li>1920x960 resolution</li>\n\t<li>16-bit grayscale PNG</li>\n\t<li>White &rarr; 0 m</li>\n\t<li>Black &rarr; &ge; 16 m or absent geometry</li>\n\t<li>Occlusions: If a pixel was hit by several rays, only the value of the closest one is represented.&nbsp;</li>\n</ul>\n\n<p><strong>dense</strong></p>\n\n<ul>\n\t<li>Set of equirectangular rendered depth images.</li>\n\t<li>1920x960 resolution</li>\n\t<li>16-bit grayscale PNG</li>\n\t<li>White &rarr; 0 m</li>\n\t<li>Black &rarr; &ge; 16 m or absent geometry</li>\n\t<li>Occlusions: If a pixel was hit by several rays, only the value of the closest one is represented.</li>\n</ul>\n\n<p><strong>img</strong><br>\nA set of equirectangular panoramic images was taken with a 360&deg; color camera in 1920x960 resolution. They follow the same trajectory.</p>"
  }
}
128
9
views
downloads
All versions This version
Views 128128
Downloads 99
Data volume 1.1 GB1.1 GB
Unique views 9898
Unique downloads 99

Share

Cite as