Dataset Open Access
Armando Arturo Sánchez Alcázar;
Giovanni Pintore;
Matteo Sgrenzaroli
{ "files": [ { "links": { "self": "https://zenodo.org/api/files/e10dae32-b20d-43cf-bfe7-52a82a5c307a/Indoor3Dmapping.zip" }, "checksum": "md5:9d9e21f5031b408dbeaffd457ec36965", "bucket": "e10dae32-b20d-43cf-bfe7-52a82a5c307a", "key": "Indoor3Dmapping.zip", "type": "zip", "size": 123593016 } ], "owners": [ 310240 ], "doi": "10.5281/zenodo.6367381", "stats": { "version_unique_downloads": 9.0, "unique_views": 98.0, "views": 128.0, "version_views": 128.0, "unique_downloads": 9.0, "version_unique_views": 98.0, "volume": 1112337144.0, "version_downloads": 9.0, "downloads": 9.0, "version_volume": 1112337144.0 }, "links": { "doi": "https://doi.org/10.5281/zenodo.6367381", "conceptdoi": "https://doi.org/10.5281/zenodo.6367380", "bucket": "https://zenodo.org/api/files/e10dae32-b20d-43cf-bfe7-52a82a5c307a", "conceptbadge": "https://zenodo.org/badge/doi/10.5281/zenodo.6367380.svg", "html": "https://zenodo.org/record/6367381", "latest_html": "https://zenodo.org/record/6367381", "badge": "https://zenodo.org/badge/doi/10.5281/zenodo.6367381.svg", "latest": "https://zenodo.org/api/records/6367381" }, "conceptdoi": "10.5281/zenodo.6367380", "created": "2022-03-18T10:24:57.376080+00:00", "updated": "2022-03-20T01:49:32.965350+00:00", "conceptrecid": "6367380", "revision": 7, "id": 6367381, "metadata": { "access_right_category": "success", "doi": "10.5281/zenodo.6367381", "version": "0.1.0", "language": "eng", "title": "Indoor3Dmapping dataset", "license": { "id": "CC-BY-4.0" }, "related_identifiers": [ { "scheme": "doi", "identifier": "10.5281/zenodo.6367380", "relation": "isVersionOf" } ], "relations": { "version": [ { "count": 1, "index": 0, "parent": { "pid_type": "recid", "pid_value": "6367380" }, "is_last": true, "last_child": { "pid_type": "recid", "pid_value": "6367381" } } ] }, "communities": [ { "id": "evocation-itn" } ], "grants": [ { "code": "813170", "links": { "self": "https://zenodo.org/api/grants/10.13039/501100000780::813170" }, "title": "Advanced Visual and Geometric Computing for 3D Capture, Display, and Fabrication", "acronym": "EVOCATION", "program": "H2020", "funder": { "doi": "10.13039/501100000780", "acronyms": [], "name": "European Commission", "links": { "self": "https://zenodo.org/api/funders/10.13039/501100000780" } } } ], "keywords": [ "point cloud", "indoor", "3D mapping" ], "publication_date": "2022-03-18", "creators": [ { "affiliation": "GEXCEL, Italy", "name": "Armando Arturo S\u00e1nchez Alc\u00e1zar" }, { "orcid": "0000-0001-8944-1045", "affiliation": "Visual and Data-Intensive Computing, CRS4, Italy", "name": "Giovanni Pintore" }, { "affiliation": "GEXCEL, Italy", "name": "Matteo Sgrenzaroli" } ], "access_right": "open", "resource_type": { "type": "dataset", "title": "Dataset" }, "description": "<p><strong>Data Organization</strong><br>\nUnder the root directory for the whole acquisition, there is a <em>positions.csv</em> file and 3 subdirectories: <em>img</em>, <em>dense</em>, and <em>sparse</em>. The mobile mapping 3D dataset was generated walking around an indoor space and each <strong><positionID></strong> corresponds to a unique pose along the trajectory of this motion. This version of the dataset contains a total of 99 unique poses. There is a separation of 1 meter between each adjacent pose.</p>\n\n<pre><code>root\n\u251c\u2500\u2500 img\n\u2502 \u251c\u2500\u2500 <positionID>.jpg\n| \u2514\u2500\u2500 ...\n\u251c\u2500\u2500 dense\n\u2502 \u251c\u2500\u2500 <positionID>.png\n| \u2514\u2500\u2500 ...\n\u251c\u2500\u2500 sparse\n\u2502 \u251c\u2500\u2500 <positionID>.png\n| \u2514\u2500\u2500 ...\n\u2514\u2500\u2500 positions.csv</code></pre>\n\n<p><strong>positions.csv</strong></p>\n\n<ul>\n\t<li>File format: One ASCII file.</li>\n\t<li>File structure Rows: Each image is one record.</li>\n\t<li>File structure Columns: Comma separated headers, with exact order described below.\n\t<ul>\n\t\t<li>Filename, column 0: Panorama file name as on disk, without file extension.</li>\n\t\t<li>Timestamps, column 1: Absolute time at which the panorama was captured, Decimal notation, without thousands separator (microseconds).</li>\n\t\t<li>X,Y,Z, columns 2 through 4: Position of the panoramic camera in decimal notation, without thousands separator (meters).</li>\n\t\t<li>w,x,y,z, columns 5 through 8: Rotation of the camera, quaternion.</li>\n\t</ul>\n\t</li>\n</ul>\n\n<p><strong>sparse</strong></p>\n\n<ul>\n\t<li>Set of equirectangular rendered depth images.</li>\n\t<li>1920x960 resolution</li>\n\t<li>16-bit grayscale PNG</li>\n\t<li>White → 0 m</li>\n\t<li>Black → ≥ 16 m or absent geometry</li>\n\t<li>Occlusions: If a pixel was hit by several rays, only the value of the closest one is represented. </li>\n</ul>\n\n<p><strong>dense</strong></p>\n\n<ul>\n\t<li>Set of equirectangular rendered depth images.</li>\n\t<li>1920x960 resolution</li>\n\t<li>16-bit grayscale PNG</li>\n\t<li>White → 0 m</li>\n\t<li>Black → ≥ 16 m or absent geometry</li>\n\t<li>Occlusions: If a pixel was hit by several rays, only the value of the closest one is represented.</li>\n</ul>\n\n<p><strong>img</strong><br>\nA set of equirectangular panoramic images was taken with a 360° color camera in 1920x960 resolution. They follow the same trajectory.</p>" } }
All versions | This version | |
---|---|---|
Views | 128 | 128 |
Downloads | 9 | 9 |
Data volume | 1.1 GB | 1.1 GB |
Unique views | 98 | 98 |
Unique downloads | 9 | 9 |