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Abstract

Recently, dictionary learning methods for unsupervised video summarization have

surpassed traditional video frame clustering approaches. This paper addresses

static summarization of videos depicting activities, which possess certain recur-

rent properties. In this context, a flexible definition of an activity video summary

is proposed, as the set of key-frames that can both reconstruct the original, full-

length video and simultaneously represent its most salient parts. Both objectives

can be jointly optimized across several information modalities. The two crite-

ria are merged into a “salient dictionary” learning task that is proposed as a strict

definition of the video summarization problem, encapsulating many existing algo-

rithms. Three specific, novel video summarization methods are derived from this

definition: the Numerical, the Greedy and the Genetic Algorithm. In all formula-

tions, the reconstruction term is modeled algebraically as a Column Subset Selec-

tion Problem (CSSP), while the saliency term is modeled as an outlier detection

problem, a low-rank approximation problem, or a summary dispersion maximiza-

tion problem. In quantitative evaluation, the Greedy Algorithm seems to provide

the best balance between speed and overall performance, with the faster Numer-

ical Algorithm a close second. All the proposed methods outperform a baseline
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clustering approach and two competing state-of-the-art static video summariza-

tion algorithms.

Keywords: Video Summarization, Key-Frame Extraction, Column Subset

Selection Problem, Video Saliency, Genetic Algorithm.

1. Introduction

Massive amounts of digital visual media data are publicly available nowadays,

accelerating the transformation of global culture into a vision-dominated one [38].

Thus, the need for compact and succinct visual data presentation has arisen. It is

a problem of broad interest in domains where large-scale video footage must be

stored, archived, analysed or visualized, that typically demands tedious human

intervention and manual effort.

Automated video summarization offers one solution to the video presentation

problem, by generating concise versions of a video stream that only retain its

most informative and representative content. Relevant algorithms are expected

to meticulously strike a balance between summary compactness, conciseness, en-

joyability and content coverage. Static summarization typically extracts a set of

represenative video frames, i.e., key-frames, that in a sense summarize the entire

video content. When editing cuts between clearly separated video shots are dis-

cernible (e.g., in television or film content [29]), a shot cut/boundary detector [4]

is typically employed before key-frame extraction, to facilitate the summarization

process by operating independently at each shot [16].

Several other possibilities exist for video summarization, such as dynamic

summarization (also called skimming) [8], video synopsis [37] or temporal video

segmentation exploiting semantic activity cues [39]. Despite their advantages,
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they may only be suitable for specific applications (for instance, the use of syn-

opses is limited to cases where the video frames are not visually crowded and

retaining the original content is not a requirement), or even require key-frame ex-

traction as a pre-processing / post-processing step. Thus, this paper focuses on

key-frame extraction, used hereafter synonymously with video summarization.

In most of the relevant literature, video summarization is implicitly defined

as a video frame sampling problem, constrained by an attempt to simultaneously

satisfy several intuitive heuristic criteria, such as representativeness (extraction of

key-frames that are jointly indicative of the original video content), compactness

(lack of redundancy in the selected key-frames), outlier inclusion (selection of

atypical key-frames) and content coverage (representation of the entire original

video in the produced summary) [25]. Additionally, the summary should be as

concise (i.e., short in length) as possible, or as desired by the end-user.

The traditional summarization method based on the constrained video frame

sampling philosophy is video frame clustering, where frames closest to the esti-

mated cluster centroids, or medoids, are selected as key-frames [44]. Thus, the

video summarization problem is simply cast as a distance-based data partitioning

task, with all semantic content description offloaded solely to the underlying video

frame description/representation algorithm.

The modern alternative route is extracting a key-frame set as a dictionary

of representative video frames that can linearly reconstruct the entire original

video stream. This is an effective approach, supported by a sound theoretical

background, that does not depend on shot cut/boundary detection or temporal

video segmentation and formalizes the representativeness, compactness and con-

tent coverage criteria. Under a reasonable linear representatives assumption [12],
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i.e., all original video frames can be approximately reconstructed as linear com-

binations of a representative subset of them, it can be argued that such methods,

when supported by appropriate underlying video frame description/representation

schemes, are able to incorporate scene semantics into the summarization algo-

rithm itself. The reason is that the extracted key-frames will inherently tend to

depict disjoint subsets of visually important scene objects, spatial segments, ac-

tivities etc. In contrast, with a distance-based clustering approach, such a se-

mantically meaningful partitioning of the key-frames will only be a serendipitous

outcome.

However, dictionary-of-representatives approaches do not guarantee outlier

inclusion. A related issue is that the reconstructive advantage conveyed by a video

frame (i.e., the sole factor typically considered) cannot be the only criterion for

its inclusion in the extracted key-frame set. The reason is that this leads to the

extraction of unimportant video frames that happen to depict common but unin-

teresting visual building blocks of the entire video (e.g., the background), at the

expense of engaging video frames, containing atypical visual elements which do

not contribute much to the reconstruction.

Since most human activities can easily be decomposed into specific combi-

nations of elementary actions [1], activity videos tend to satisfy the linear rep-

resentatives assumption. However, the problems of dictionary-of-representatives

approaches are especially pronounced when summarizing activity videos, due to

their characteristic properties: static camera, static background, heavy inter-frame

visual redundancy and lack of editing cuts. This paper, which integrates and

extends preliminary work [30] [31], introduces a framework for activity video

summarization that attempts to overcome the above issues. Its contributions are
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four-fold.

First, video summarization is explicitly formalized under a flexible, multi-

modal framework that can accommodate several existing algorithms as special

cases. The proposed framework generalizes most current dictionary methods,

which only consider the reconstructive ability, and conceptually places video sum-

marization at the crossroad between video saliency estimation and video dictio-

nary learning, thus defining it as a “salient dictionary” learning task. Second, three

key-frame extraction algorithms are formulated in this context, where the video

reconstruction term is modeled as a Column Subset Selection Problem (CSSP)

[2]. This guarantees summary conciseness, favors summary compactness and

had not been utilized for key-frame extraction before the preliminary work that

this paper extends ([30]). Third, the saliency terms for the Numerical and for

the Greedy algorithms are novel, video-oriented modifications of state-of-the-art

image saliency algorithms ([26] and [10], respectively). Fourth, a novel metric,

called Independence Ratio (IR), is proposed as an objective performance indicator

of activity video key-frame extraction.

The three presented video summarization methods are compared against a

baseline clustering approach [8] and two competing, dictionary-of-representatives

state-of-the-art static video summarization algorithms [32] [7]. Each of the pro-

posed algorithms is evaluated in five separate variants, characterized by a differ-

ent balance between the reconstruction and the saliency term. All of the above

algorithms, including both the proposed and the competing ones, are different,

specific formulations of the presented salient dictionary learning framework for

static video summarization.
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2. Related Work

Current static video summarization methods can be broadly classified into su-

pervised and unsupervised learning methods. Supervised approaches have sur-

faced lately [42] [43], in the wake of the success of deep learning. Such methods

do not rely on heuristic summarization criteria, but attempt to implicitly learn

them from human-created manual video summaries. However, due to the subjec-

tiveness inherent in the problem (different persons may produce widely differing

summaries from the same video source) and the lack of manual activity video

summaries readily available for training in most use-cases, this paper is focused

solely on unsupervised algorithms.

Established unsupervised approaches can be partitioned into the traditional

video frame clustering methods [44] [8] [33] and the more modern dictionary-

of-representatives algorithms [12]. General dictionary learning is an established

methodology consisting in learning a dictionary of atoms from training data, such

that the data themselves can be linearly re-expressed in terms of the dictionary

(usually, as sparse codes) [35]. It has been applied on several tasks and extended

in various ways. For instance, in [20] the method of Low-Rank Representation

(LRR) [23], which segments data drawn from a union of originally unknown

affine subspaces, is employed in an algorithm for human pose recovery from video

footage. In [19], a multi-view extension of Laplacian Sparse Coding (LCR) [14],

which preserves locality and similarity properties of data during coding, is also

employed for human pose recovery.

Dictionary-of-representatives is an offshoot of general dictionary learning,

well-suited to the key-frame extraction task, where the dictionary consists of un-

altered training data points. In [12] such an approach is introduced for video sum-
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marization, called sparse modeling representative selection, as a follow-up work

to sparse subspace clustering [11]. An initial reconstruction objective function is

defined, where the dictionary is given by the original data and the sparse codes

to be estimated essentially select the representatives. A convex relaxation of the

original objective is solved, while outliers are purposefully disregarded.

In [6] [32] video summarization is also framed under a dictionary-of-representatives

perspective. In [6] convex relaxation using the L2,1 norm is employed, while

in [32] an iterative algorithm called Minimum Sparse Reconstruction (MSR) at-

tempts to indirectly minimize the actual L0 sparsity norm. In both cases, the

outliers are entirely disregarded.

In [7] RPCA-KFE is presented, a key-frame extraction algorithm that takes

into account both the contribution to video reconstruction and the distinctness of

each video frame. The idea is to select as a summary the subset of video frames

that simultaneously minimizes the aggregate reconstruction error and maximizes

the total distinctness. RPCA-KFE is executed after performing Robust PCA [3],

an operation entailing joint nuclear norm-based and L1 norm-based minimization

that decomposes a matrix into a low-rank and a sparse component.

To the best of our knowledge, RPCA-KFE is the only relevant dictionary-of-

representatives method that explicitly considers a saliency measure, thus easily

fitting into the presented framework. However, its reliance on Robust PCA makes

it inflexible, with the saliency and the reconstruction measures tightly coupled (as

they are complementary in nature) and, thus, essentially fixed. Moreover, RPCA-

KFE is designed to operate on spatially sub-sampled versions of the raw lumi-

nance video frame channels, thus ignoring semantic content elicited by feature-

based video description/representation methods.
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3. Key-Frame Extraction as a Salient Dictionary Learning Task

We assume that an input video consists in a temporally ordered set of N video

frames. The desired output summary is an order-preserving subset of the input

video, containing C of its elements/video frames (N,C ∈ N, 0 < C < N ).

Moreover, we assume that a preliminary video frame description and represen-

tation process, across K different video modalities, has resulted in the following

video representation: a set of K matrices Dj ∈ RVj×N , 0 ≤ j < K, where Vj is

the representation vector size for the j-th modality. Column vector dj
:i, 0 ≤ i < N

is the representation vector of the j-th modality of the i-th video frame. The de-

sired output summary can either be expressed as a set of K matrices Sj ∈ RVj×C ,

each one containing an ordered set of video key-frame representation vectors in

the corresponding modality, or as a single binary-valued frame selection vector

s ∈ {0, 1}N indicating which frames of the original video are contained in the

summary (equivalently, which columns of Dj are contained in Sj). These two

expressions are interchangeable.

The proposed framework can best be expressed by the simultaneous optimiza-

tion of two terms: the first one (the “reconstruction” term) represents the ability

of the extracted key-frame set to reconstruct the original full-length video, while

the second one (the “saliency” term) represents the saliency of the extracted key-

frame set, i.e., the degree to which its elements are distinct with regard to the

complete video frame set, thus more likely to attract viewer attention. Thus, the

desired video summary is defined as a salient dictionary of unaltered atoms/video

frames, in a generalization of the dictionary-of-representatives tradition.

Both the reconstruction and the saliency terms are computed separately across

all the K available video modalities, in order to jointly optimize different aspects
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of the desired summary. The K modalities may be derived from K different de-

scription/representation processes pre-applied to the video frames. For instance,

one such process may capture mid-level semantic information (e.g., activity, scene

objects) and another one may convey low-level image properties (e.g., color, lu-

minance or stereoscopic disparity distribution). If sound or text is available, they

may also be described and represented as separate modalities in a per-frame fash-

ion. In the simplest scenario, i.e., K = 1, all representation vectors for the i-th

video frame (derived from different modalities) are concatenated into a single V -

dimensional vector d:i, 0 ≤ i < N , i.e., the i-th column of the single video matrix

D ∈ RV×N .

Table 1 contains the symbols employed in the proposed framework. Given

these definitions, the summarization process can be expressed in the following

manner:

min
s

:(1− α)
K−1∑
j=0

(‖Dj − SjAj‖n) + λR(s) − (1)

− α
K−1∑
j=0

(sTpj + L(Sj)),

where ‖ · ‖n is a matrix norm.

In the above expression, the goal is to find the binary-valued frame selection

vector s that minimizes the objective. Since each matrix Sj consists in C of the

columns of Dj , selected based on the entries of s, minimizing with respect to s is

equivalent to finding the most suitable summary matrices Sj .

Equation (1) is a general framework that can accommodate many different

video summarization algorithms, given specific choices for the reconstruction,
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Table 1: Summarization Nomenclature.

Dj ∈ RVj×N , 0 < j < K The j-th modality of the original video, with its i-th column dj
:i, 0 ≤ i < N

representing the i-th video frame

Sj ∈ RVj×C , 0 < C < N The j-th modality of the desired video summary, with all its columns

sj:i, 0 ≤ i < C having been sampled without replacement from the set of all

the columns in Dj

s ∈ {0, 1}N A binary-valued frame selection vector, common for all modalities,

according to which each Sj is constructed

Aj ∈ RC×N A matrix containing reconstruction coefficients for the j-th video modality

R(s), {0, 1}N → R An application-specific regularization function

λ ∈ [0,∞) Regularizer weight

α ∈ [0, 1] User-provided parameter regulating the contribution of the saliency terms

pj ∈ RN A vector containing precomputed, constant per-frame saliency values

for the j-th video modality

L(Sj),RVj×C → R A function assigning a global saliency value to a summary modality

saliency and regularization terms. The remainder of this Section provides con-

crete examples for these choices and describes more thoroughly the nomenclature

defined in Table 1.

The reconstruction term is meant to bias key-frame selection towards video

frames which constitute representative building blocks of the entire video content.

Using the above definition, coefficients matrix Aj may be implicitly derived from

any suitable video reconstruction method among several alternatives, which can

be embedded in the proposed framework. Such methods are Principal Compo-

nent Analysis (PCA), Orthogonal Subspace Projection (OSP) [17] or the Column
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Subset Selection Problem (CSSP) [2].

Function L(Sj) assigns an aggregate saliency value to an entire candidate so-

lution/summary, while the vector pj contains a precomputed saliency value per

video frame. Both operate on each video modality separately. L(Sj) is meant to

be estimated adaptively, during the optimization process, and contributes a global

perspective on the summary saliency, while pj is fixed and conveys static, tem-

porally localized information regarding the video content. It may not be neces-

sary for both of them to be included in a specific implementation of the proposed

framework, with a choice between them allowing better adjustment of summa-

rization to specific applications.

Function R(s) adds flexibility to the proposed framework by biasing the so-

lution towards desired summary properties, e.g., in the form of a sum of matrix

norms and/or vector dot products. For instance, it can be the L0 norm of a key-

frame selection matrix, in order to enforce summary conciseness through a spar-

sity constraint, as in [32], or the Frobenius norm of a key-frame similarity matrix,

to ensure summary compactness.

4. Salient Dictionary Learning on Activity Videos

Given the proposed framework and notation (detailed in Section 3), as well

as our stated goal of summarizing activity videos via key-frame extraction (due

to their characteristic properties, detailed in Section 1), three specific algorithms

have been developed and are presented in this Section.

Without loss of generality, we assume below that the various available video

representations (one for each modality) have been merged into a single represen-

tation by vector concatenation (K = 1). Therefore, in the following, a single
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matrix D, a single matrix S, a single representation vector size V and a single

precomputed per-frame saliency vector p replace the multiple matrices Dj , Sj ,

representation vector sizes Vj and vectors pj (0 ≤ j < K), respectively.

Actually following this route during key-frame extraction, would suggest a

compromise between reducing the computational cost of multimodal representa-

tion and jointly exploiting multiple video aspects/modalities.

4.1. Video Reconstruction Using Column Subset Selection

Since activity videos are mainly composed of elementary actions assembled

in various combinations [1], the linear representatives assumption is especially

applicable in their case. Thus, it is reasonable to expect D ∈ RV×N to have a

pronounced low-rank structure. In the context of Equation (1), the reconstruction

term should bias towards obtaining a solution S that can serve as a dictionary of

representatives. S will contain unaltered columns of D which, ideally, form a set

of linearly independent basis vectors that approximately span all columns of D.

The Column Subset Selection Problem (CSSP) [2] has been selected for mod-

eling the reconstruction term, due to its definition as directly selecting the “best”

subset of columns of a given matrix. The cardinality of this subset is pre-fixed.

These properties of CSSP make it well-suited to the problem of extracting a dic-

tionary of representatives that is as succinct as desired.

Given D and a parameter C < N , the CSSP consists in selecting a subset of

exactly C columns of D which form a new V × C matrix S. This is equivalent

to obtaining the most suitable binary-valued column selection vector s ∈ {0, 1}N .

Given these definitions, the CSSP objective is the following one:

min
S

: ‖D− (SS+)D‖F . (2)
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‖ · ‖F is the Frobenius matrix norm and S+ is the pseudoinverse of S. S approx-

imates D in a projection sense: SS+ projects D onto the span of the C columns

contained in S. Thus, SS+D is the rank-C approximation of D achieved with

the column subset matrix S. Minimizing the corresponding reconstruction error

is equivalent to finding a matrix S that is as close to full-rank as possible.

The CSSP is a combinatorial optimization problem, believed to be NP-hard

and typically employed in a feature selection setting [13]. As exhaustive search

requiresO(NC) time [2], approximate algorithms with lower computational com-

plexity have been proposed, with the goal of finding a suboptimal but acceptable

solution. In the context of this paper, three such approximate algorithms have been

adopted and adapted under the proposed framework. First, a landmark numeri-

cal algorithm based on the Singular Value Decomposition (SVD) [2]. Second, a

greedy approach that picks one column for addition to the currently selected subset

at each iteration, such that the reconstruction error for the new subset is minimal

[13]. Third, a genetic approach that directly uses Equation (2) as a fitness function

[22].

Due to the nature of the CSSP, there is no need for a regularizing functionR(s)

enforcing sparsity on the selection vector s. The degree of summary conciseness

is directly regulated by a strict, user-provided parameter C.

4.2. Video Saliency Using Outlier Detection and Low-Rank Approximation

Intuitively, the reconstruction term alone will tend to favor video frames solely

containing common, elementary visual building blocks of the entire video, which

facilitate the reconstruction process. These include not only video frames that

are representative of the depicted activities, but also uninteresting video frames

which do not contribute to discrimination among activities (e.g., emphasizing re-
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curring static background, or human body poses common to multiple activities).

Additionally, outlier video frames that do not significantly contribute to the re-

construction may be excluded, which is undesirable for a video summarization

task.

4.2.1. Local Outlier Detection

The first of the proposed saliency terms models saliency on temporally lo-

calized outlier detection, following the established center-surround retinal recep-

tive field organization paradigm [36]. Thus, the degree of estimated video frame

saliency depends on how different a video frame is from its temporal neigbours.

The method is adapted from the spatial, intra-frame component of the image

saliency estimation algorithm presented in [10]. In the context of this paper, a

preliminary saliency value is assigned to each video frame representation, instead

of each raw image block. Correspondingly, spatial distance between the image

blocks is replaced by temporal distance between video frames.

We define the fully connected, undirected, weighted distance graph D =

{X ,Y} derived from the matrix D, where xi ∈ X , 0 ≤ i < N , yj ∈ Y , 0 ≤

j < N(N − 1)/2. Each vertex xi corresponds to a column d:i in D, i.e., a video

frame representation, and each edge yj is weighted by the Euclidean distance be-

tween its two incident vertices/video frames, namely, the distance between the

corresponding columns in D, normalized by the temporal distance between the

two vertices. The degree deg(xi) of each vertex, i.e., the sum of the weights of all

its incident edges, is employed as an initial measure of video frame saliency.

Thus, a preliminary saliency value for each column d:i is computed. That is,
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the i-th entry of an initial per-frame saliency vector p̂ is given by:

p̂i = deg(xi) =
N−1∑
j=0

(
‖d:i − d:j‖2
1 + |i− j|

)
. (3)

The above saliency measure obviously favors local outlier inclusion. How-

ever, additionally, the most salient video frames should be temporally distant,

similarly to how salient image regions are typically selected so as to be spatially

distant, with less salient regions suppressed, in image saliency map estimation

algorithms [26]. Such a consideration also fits well with the demands of video

summarization, where the heuristic of maximum content coverage requires the ex-

tracted key-frames to be temporally dispersed, as long as this does not contradict

the remaining summarization heuristic criteria (representativeness, compactness,

conciseness and outlier inclusion).

Therefore, p̂ is post-processed in the following manner. Initially, the prelimi-

nary saliency value p̂i of video frame d:i is subtracted from the average saliency of

its temporal neighborhood [i−M, i+M ]. This is implemented by first performing

moving average filtering on p̂, using a filtering window of length 2M + 1. Sub-

sequently, all negative per-frame saliency values (corresponding to video frames

which, on average, are less salient than their neighbors) are set to zero, giving rise

to the final precomputed, per-frame saliency vector p.

4.2.2. Regularized SVD-based Low-Rank Approximation

The second of the proposed approaches, models precomputed per-frame saliency

on a regularized SVD-based reconstruction of D, adapted from the no-learning

raw image saliency estimation method in [26]. First, the SVD decomposition

D = UΣVT is obtained. Then, the singular values of D, lying ordered on the

diagonal of Σ, are clustered into three groups: large, intermediate and small. The
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large ones and the small ones are set to zero and, thus, the regularized matrix Σ̃ is

derived. Subsequently, the video matrix is approximately reconstructed using Σ̃:

D̃ = UΣ̃VT . (4)

The underlying intuition, as presented in [26], is that large, intermediate and

small singular values correspond to non-salient/visually dominating image regions

(e.g., the background), salient/important image regions and noise/fine-grained vi-

sual details, respectively. In this paper, the video frame representation D (en-

coding spatiotemporally varying content) is employed in place of raw image data

(directly conveying spatially varying content). The proposed saliency term relies

on the hypothesis that the above-mentioned intuition applies to such a scenario

also.

In [26], the three largest singular values of the image matrix are simply set to

zero. Here, instead, the singular values are adaptively clustered into three discrete

groups (large, intermediate, small) using a fast, dynamic programming-based vari-

ant [18] of the Jenk’s Natural Breaks Optimization algorithm for one-dimensional

clustering [21]. The latter operates by exploiting a scalar version of the Fisher ra-

tio, typically employed in Linear Discriminant Analysis (LDA), thus by attempt-

ing to simultaneously minimize intra-cluster variance and maximize inter-cluster

variance.

The resulting matrix D̃ is, in essence, a two-dimensional spatiotemporal video

saliency map. A preliminary saliency value for the i-th video frame can easily be

extracted from D̃ in the following manner:

p̃i = ‖d̃:i‖1, (5)

where d̃:i is the the i-th column of D̃ and p̃ is a preliminary, per-frame saliency

16



vector.

The final, precomputed per-frame saliency vector p can then be derived by

applying the post-processing saliency enhancement step, previously described in

Section 4.2.1, on p̃.

4.2.3. Maximum-Dispersion Global Summary Saliency

Finally, a global summary saliency function is also examined in the context of

the proposed algorithms:

L(S) = trace
(
SST

)
. (6)

This global saliency term simply seeks to maximize the dispersion of the de-

sired summary, in order to indirectly push towards greater compactness and outlier

inclusion.

4.3. Solving the Optimization Problem

The desired solution is the binary-valued video frame selection vector s ∈

{0, 1}N , or, equivalently, the actual video summary representation S ∈ RV×C ,

constructed based on s (‖s‖0 = C).

Three different algorithms were devised for extracting the solution, i.e., three

concrete implementations of the proposed salient dictionary learning framework,

by coupling one of the CSSP algorithms discussed in Subsection 4.1 with one of

the saliency terms discussed in Subsection 4.2. The global saliency term could

only be combined trivially with the Genetic CSSP method. Precomputed per-

frame saliency terms were only employed for both the Numerical and the Greedy

Algorithm.
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4.3.1. Numerical Algorithm

In the context of the proposed framework, the objective function implicitly

optimized in the Numerical Algorithm is the following:

min
s

: (1− α)‖D− SS+D‖F − αsTp, (7)

where the entries of p are a priori given by the proposed Regularized SVD-based

Low-Rank Approximation saliency estimation method. A solution to this opti-

mization problem is obtained in the way described below.

The Numerical Algorithm relies on a landmark SVD-based method for solving

the CSSP [2], based on the notion of statistical leverage score sampling [9]. The

intuition behind it is that the SVD decomposition D = UΣVT can be exploited

to quickly remove the less outlying columns from D in a preliminary, randomized

step, before deterministically constructing the final matrix S. Below, VC ∈ RN×C

denotes the matrix whose columns are the top C right singular vectors of D.

The method operates in two stages. First, approximately ClogC columns are

randomly sampled from matrix D. Assuming that pi is the probability of selecting

the i-th column of D, sampling follows a probability distribution computed based

on information coming from the top-C right singular subspace of D, which is

spanned by the columns of VC :

pi = ‖(VC)i:‖22/C, (8)

where (VC)i: denotes the i-th row of VC .

In the second stage, exactly C columns are selected from the sample using any

deterministic CSSP algorithm (e.g., based on Rank-Revealing QR decomposition

[5]).
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In order to adapt the method to the proposed framework, matrix D is modified

in the following manner:

D̂ = (1− α)D + αD (diag(n)diag(p)) , (9)

where n ∈ RN is a vector containing normalization coefficients, so as to map

the precomputed saliency factors to the interval [0, 1]. In D̂, less salient columns

(corresponding to less salient video frames) have been scaled down to a degree

directly proportional to their saliency and to the provided saliency contribution

parameter α. Subsequently, the algorithm in [2] is applied on D̂, in order to obtain

the desired summary.

4.3.2. Greedy Algorithm

In the context of the proposed framework, the objective function implicitly

optimized in the Greedy Algorithm is also given by Equation (7), but the entries

of p are provided by the proposed Local Outlier Detection saliency estimation

method, described in Eq. (3). A solution to this optimization problem is obtained

in the way described below.

The Greedy Algorithm is based on an efficient iterative method for approxi-

mately solving the CSSP [13]. One video frame is added to the currently extracted

key-frame set at each iteration, so that the reconstruction error is greedily mini-

mized, until C key-frames have been extracted (equivalently, after C iterations).

Therefore, for the t-th iteration, the following quantities are defined:

1. st−1: the currently extracted key-frame set/summary binary selection vector,

prescribing the current summary St−1. It holds that ‖st−1‖0 = t− 1.

2. Rt−1
: the set of the temporal indices of all video frames not contained in

St−1. It contains N − (t− 1) elements, all in the interval [0, N − 1].
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3. lt: the temporal index of the video frame d:lt that is actually selected for

inclusion in St during iteration t. Obviously, lt ∈ Rt−1
, but lt /∈ Rt

.

The method operates by recursively maintaining two vectors, f ,g ∈ RN . Each

one keeps track of a scalar score for each video frame d:i, 0 ≤ i < N . At the start

of the t-th iteration, the most suitable lt is selected for addition to the extracted

key-frame set/summary in the following manner:

lt = argmax
i

f t−1
i

gt−1
i

, i ∈ Rt−1
, (10)

where f t−1
i , gt−1

i is the i-th entry of current vector f ,g, respectively. Subsequently,

f t and gt are computed, by updating f t−1 and gt−1 based on the value of lt. The

specific formulas for initializing and updating f and g, as well as their derivation,

can be found in [13], in the form of the so-called “Memory-Efficient Criterion”.

In order to adapt the method to the proposed framework, p̃ ∈ RN is initially

precomputed once. It is a modified version of p, with its entries (the per-frame

saliency factors) normalized into the interval [0, 1]. Subsequently, the Greedy Al-

gorithm is iteratively executed as described above, but Equation (10) is modified

in the following manner:

lt = argmax
i

(
(1− α)f

t−1
i

gt−1
i

+ αp̃i
f t−1
i

gt−1
i

)
, i ∈ Rt−1

. (11)

where p̃i is the i-th entry of p̃. Thus, at each iteration, vectors f and g are updated

based on the reconstructive advantage currently conveyed by each video frame,

but the actual selection of a candidate video frame for inclusion in the summary

also depends on its precomputed saliency and the provided saliency contribution

parameter α. The algorithm is completed after C iterations.
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4.3.3. Genetic Algorithm

The Genetic Algorithm is the third proposed implementation of the key-frame

extraction framework defined in Equation (1). It approximates an optimal solution

to the problem prescribed by the following objective function:

max
s

: −(1− α)‖D− SS+D‖F + α trace
(
SST

)
. (12)

Therefore, it is a straightforward combination of the CSSP definition and the

Maximum-Dispersion global saliency term from Section 4.2.3, using a typical

genetic approach. Equation (12) is directly employed as a fitness function. Each

candidate is encoded in the form of a sequence of integer column indices sorted

in increasing order, with every such candidate/chromosome having length C. De-

terministic tournament selection at each iteration is adopted as the mating pool

formation strategy. Order-preserving variants of 1-point crossover and of mu-

tation are adopted from [22], where a genetic approach was first introduced for

solving the CSSP. They were also employed in [29] [28], using a slightly different

problem formulation and fitness function, for multimodal shot selection in movie

summarization.

4.4. Computational Complexity Analysis

The computational complexity of the proposed methods is shown in Table

2, where competing algorithms are also included for reference purposes. NUM,

GRE and GEN denote the Numerical, the Greedy and the Genetic Algorithm, re-

spectively. In the Genetic Algorithm, P and G refer to the population size and the

number of generations, respectively. Details are provided in the Supplementary

Material.
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Table 2: Computational Complexity of Activity Video Summarization Algorithms.

Method Complexity Class

NUM O(min{V N2, V 2N})

GRE O(V N2)

GEN O(PGV 2N), if V < C

O(max{PGV CN,PGV 2C}), if V > C

[8] O(V CN)

[32] O(CNV 2)

[7] O(V CN2)

5. Quantitative Evaluation

5.1. Video Description and Representation

Provenly effective hand-engineered video description and representation meth-

ods were employed for deriving the original video representation D. Three dif-

ferent feature descriptors were applied per video frame, using their default pa-

rameters: LMoD [27] (low-level, local, spatial descriptor, computed on four dif-

ferent video frame channels, i.e., luminance, color hue, optical flow magnitude

and edge map), SIFT [24] (mid-level, local, spatial, semantic descriptor) and Im-

proved Dense Trajectories (IDT) [40] (mid-level, local, spatiotemporal, semantic

descriptor). The resulting three descriptions per video frame can be seen as dif-

ferent modalities, since they capture different aspects of the underlying data. The

Improved Fisher Vector (IFV) approach [34] was selected for feature aggregation

per video frame (and, thus, video frame representation).
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5.2. Evaluation Datasets

Single-view subsets of three publicly available, annotated, multi-view activ-

ity video datasets were employed. The datasets were slightly processed to better

suit an activity video summarization task (e.g., several videos, each one depict-

ing a single activity, were temporally concatenated, so as to form a long video

composed of multiple consecutive activities). In each case, a specific camera an-

gle was chosen from the original multi-view dataset for all activity sessions. The

processed versions are briefly described below:

1. The IMPART video dataset [39], depicting 3 actors in 2 different settings:

an outdoor one and a living-room. A total of 116 indoor and 214 outdoor

activity sessions with static camera are included, where the actors perform

a series of activities one after another, moving along approximately fixed

trajectories via predefined waypoints. 4 different activity types were per-

formed, namely “Walk”, “Hand-wave”, “Run” and “Other”. The dataset

consists of 6 video files with a resolution of 720 × 540 pixels and mean

duration of about 4542 video frames.

2. The IXMAS dataset [41], depicting 10 actors in an indoor setting. A total

of 467 activity sessions with static camera are included, where the actors

perform a series of activities one after another, with varying/unconstrained

body poses. In total, 11 different activities were performed. The dataset

consists of 4 video files with a resolution of 390 × 290 pixels and mean

duration of about 9055 video frames. This is the most challenging dataset,

due to the low video resolution, the relatively high number of video frames

and activity segments, as well as the very high visual similarity between

video frames belonging to different activity segments.
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3. The i3DPOST dataset [15], depicting 8 actors in a blue-screen backdrop. A

total of 104 activity sessions with static camera are included, where either

the actors perform a series of activities one after another, moving along ap-

proximately fixed trajectories, or two actors interact. In total, 12 different

activities were performed. The dataset consists of 3 video files with a reso-

lution of 640 × 480 pixels and mean duration of about 5358 video frames.

5.3. Evaluation Metric

Video summarization methods are typically evaluated either subjectively, where

a group of end-users rates the informativeness and the enjoyability of the extracted

summary (e.g., in [29]), or in a semi-objective manner, where several video frames

have been manually pre-selected by end-users, according to their judgment, as

“ground-truth” key-frames. In the latter case, the automatically extracted key-

frames can be compared to this “ground truth” using various evaluation metrics,

including the F-Score (as in [32]) or the summarization-specific “Comparison of

User Summaries” (CUS) metric, introduced in [8]. However, a significant degree

of subjectivity is unavoidable due to reliance on manually prepared summaries.

During empirical evaluation of this work, the special characteristics of activity

videos were exploited so as to avoid the subjectivity outlined above. Tempo-

ral video segmentation ground-truth annotation data, describing obvious temporal

boundaries between consecutive activity video segments, were employed for eval-

uating the proposed methods as objectively as possible, similarly to [30]. Given

a summary s of an input video D, the number Is of extracted key-frames de-

rived from actually different activity segments (hereafter called independent key-

frames) is used as an indirect indication of summarization success. Obviously, Is

equals the number of different activity segments represented in the summary s.
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Thus, the Independence Ratio (IR) score is defined:

IR(s) =
Is
C
, (13)

where C is the total number of requested key-frames. That is, the percentage of

independent key-frames in the set of all extracted key-frames serves as a practi-

cally objective evaluation metric, automatically adjustable to the desired degree

of summary conciseness (regulated by the user through C).

This way, any two video frames belonging to the same activity segment are

treated as interchangeable and, from the aspect of its empirical evaluation, video

summarization is reduced to a variant of temporal video segmentation, so as to

bypass any subjective judgement regarding which video frames are more repre-

sentative of a specific activity segment.

5.4. Algorithm Parameters

A crucial, user-provided parameter controlling the grain of summarization is

the desired number of requested key-frames per video (C, i.e., the length of the

summary). It corresponds to the number of clusters, in clustering, and of columns

of S, in the proposed methods. In video summarization literature, C is typically

set to a fixed or adaptable percentage of the original video duration (e.g., [8], [33],

[29]), unless the algorithm itself converges to its own estimation of C (e.g., [32]).

In this work, in order to most effectively compare the competing algorithms, the

actual number of different activity segments (known from the ground truth) was

employed as C for each video. This was also used in our implementation of [32],

so as to achieve a fair comparison. However, in principle, it is perfectly possible

to rely on any pre-existing method for estimating a proper C.
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Regarding the proposed algorithms, saliency contribution parameter α was set

to five different values: 0.00, 0.25, 0.50, 0.75, 1.00, ordered from less to more con-

tribution of the saliency term at the expense of the reconstruction term. Therefore,

in total, 15 different variants of the proposed methods were evaluated, including

reconstruction-only (α = 0.00) and saliency-only (α = 1.00) forms. Note that

when α = 0.00, the proposed algorithms reduce to traditional CSSP applied for

key-frame extraction.

Other implementation issues are detailed in the Supplementary Material.

5.5. Evaluation Setup

The 15 presented video summarization method variants were compared against

a baseline clustering approach [8] and two competing, state-of-the-art static video

summarization algorithms: OffMSR from [32] and RPCA-KFE from [7]. OffMSR

was selected as a relatively recent dictionary-of-representatives video summariza-

tion method. RPCA-KFE was selected not only because it fits perfectly within

the proposed framework, being a dictionary-of-representatives approach that also

considers a form of video frame saliency, but also because it is a method operating

on raw pixel luminance video frame representations, unlike the feature-based pro-

posed approaches. To achieve a fair comparison, the video representation scheme

described in Section 5.1 was employed for all competing feature-based methods,

but the proposed deterministic Greedy Algorithm was additionally tested with the

4800-dimensional raw pixel luminance video frame representations employed by

RPCA-KFE. Results of trivial key-frame extraction via random video frame sam-

pling are also presented for comparison purposes.

In order to achieve a reasonable execution time, videos were pre-sampled in

the case of RPCA-KFE (every tenth video frame was retained), as suggested in
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[7]. This was not necessary for the other methods. All other algorithm parameters

were tuned according to the original papers, in the cases of OffMSR and RPCA-

KFE.

The algorithm underpinning key-frame extraction in [8] is simple K-Means

clustering, similarly to many other video summarization methods which only dif-

fer with respect to the employed video description/representation scheme and are

based on K-Means or K-Medoids variants (e.g., [33]). Since our own choice for

video representation was used in all methods, comparing the proposed algorithms

with [8] is (to a degree) equivalent to comparing them with any of the above-

mentioned clustering approaches.

5.6. Evaluation Results

Below, NUM, GRE and GEN denote the Numerical, the Greedy and the Ge-

netic Algorithm, respectively, while GRE-RAW refers to the Greedy Algorithm

using the raw pixel luminance video frame representations employed by RPCA-

KFE. Tables 3, 4 and 5 present the mean IR scores obtained by all competing

methods, for the IMPART, i3DPOST and IXMAS datasets, respectively. The pre-

sented IR scores for random sampling have been averaged over 1000000 execu-

tions per video. The presented IR scores for all randomized algorithms (both from

the proposed and the competing ones) have been averaged over 5 executions per

video. In all tables, the best IR performance for each value of α is highlighted in

bold.

Tables 6, 7 and 8 present the mean required execution time per-frame (in mil-

liseconds) for all competing methods, for each dataset. These measurements do

not include the computation time necessary for initial video description/representation.

In all tables, the fastest algorithm runtime for each value of α is highlighted in
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Table 3: Mean IR scores for all competing methods in the IMPART dataset (higher is better).

Random NUM GRE GEN [8] [32] [7] GRE-RAW

α = 0.00 58.86% 72.16% 75.21% 75.85% 72.94% 68.03% 47.15% 68.97%

α = 0.25 - 69.86% 74.74% 74.72% - - 50.17% 70.71%

α = 0.50 - 70.40% 75.05% 75.03% - - 48.70% 65.04%

α = 0.75 - 68.80% 77.13% 76.01% - - 49.13% 63.57%

α = 1.00 - 56.09% 63.63% 58.49% - - 43.17% 52.00%

Table 4: Mean IR scores for all competing methods in the i3DPOST dataset (higher is better).

Random NUM GRE GEN [8] [32] [7] GRE-RAW

α = 0.00 59.01% 70.94% 67.95% 72.56% 72.65% 65.81% 37.18% 67.52%

α = 0.25 - 71.62% 74.79% 72.05% - - 44.87% 67.52%

α = 0.50 - 75.64% 70.94% 70.68% - - 40.60% 71.79%

α = 0.75 - 73.93% 73.50% 71.37% - - 32.91% 68.80%

α = 1.00 - 62.65% 62.39% 56.75% - - 20.09% 67.09%

Table 5: Mean IR scores for all competing methods in the IXMAS dataset (higher is better).

Random NUM GRE GEN [8] [32] [7] GRE-RAW

α = 0.00 59.40% 66.33% 62.94% 62.00% 65.29% 66.16% 46.66% 61.02%

α = 0.25 - 66.38% 61.22% 60.07% - - 44.73% 61.88%

α = 0.50 - 65.08% 62.07% 62.90% - - 45.38% 61.24%

α = 0.75 - 63.80% 60.58% 60.07% - - 46.66% 61.24%

α = 1.00 - 61.87% 67.66% 59.22% - - 37.91% 59.32%
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Table 6: Mean execution time per video frame (in milliseconds) for all competing methods on the

IMPART dataset.

NUM GRE GEN [8] [32] [7] GRE-RAW

α = 0.00 17.90 1.26 552.92 76.85 4043.82 425.34 0.46

α = 0.25 45.96 216.24 551.07 - - 427.84 61.07

α = 0.50 45.28 216.26 553.59 - - 431.45 61.06

α = 0.75 44.98 216.27 553.58 - - 420.84 61.07

α = 1.00 36.14 216.27 1.89 - - 0.401 61.05

Table 7: Mean execution time per video frame (in milliseconds) for all competing methods on the

i3DPOST dataset.

NUM GRE GEN [8] [32] [7] GRE-RAW

α = 0.00 11.28 1.26 517.80 70.01 2544.20 400.37 0.43

α = 0.25 41.49 251.26 517.85 - - 385.35 75.71

α = 0.50 42.05 251.29 517.13 - - 410.03 75.70

α = 0.75 43.10 251.27 519.45 - - 380.41 75.68

α = 1.00 36.49 251.26 0.99 - - 0.76 75.67

bold.

One should notice the similarity between the no-saliency variant of the pro-

posed GRE (when α = 0.00) and the OffMSR method in [32]: they are both

iterative procedures attempting to greedily optimize almost identical objectives

(the CSSP and the OSP definitions, respectively) and, thus, incrementally con-

struct the desired summary. However, GRE is not only entire orders of magnitude

faster (due to the intelligent way it keeps track of the reconstructive advantage

each video frame conveys per iteration, using the f and g vectors), but also leads

29



Table 8: Mean execution time per video frame (in milliseconds) for all competing methods on the

IXMAS dataset.

NUM GRE GEN [8] [32] [7] GRE-RAW

α = 0.00 33.75 2.42 734.34 225.45 8594.31 897.57 0.96

α = 0.25 80.82 427.44 748.63 - - 905.70 130.49

α = 0.50 81.41 427.44 760.21 - - 900.88 130.46

α = 0.75 82.01 427.42 749.12 - - 891.55 130.48

α = 1.00 65.92 427.41 2.52 - - 1.28 130.48

to much improved IR scores.

Secondly, RPCA-KFE completely fails to handle the desired task, performing

far below even random sampling. The IR performance of GRE-RAW (signifi-

cantly higher than random sampling, lower than GRE), indicates that this cannot

be solely attributed to the limitations of raw pixel luminance video frame repre-

sentations (when compared to feature-based representations). Therefore, it is rea-

sonable to conclude that RPCA-KFE is not suitable for processing activity videos

having the property of heavy visual inter-frame redundancy. The behaviors of

RPCA-KFE and GRE-RAW on a specific video from the i3DPOST dataset are vi-

sualized and contrasted in Figure 1. As it can be seen, RPCA-KFE mainly favors

specific activity segments, assessed as more salient by the algorithm, producing

multiple key-frames for them, at the expense of other activity segments that re-

main under-represented in the produced summary.

In general, GRE and NUM provide the best IR performance, while NUM

is the fastest method (in fact, near-real-time). When both reconstruction and

saliency terms are considered in the experiments (i.e., α = 0.25, α = 0.50 or
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a)

b)

c)

Figure 1: Behavior of RPCA-KFE and GRE-RAW algorithms in an example video composed of

6125 video frames: a) The ground truth activity segment boundaries are marked as red stars, b)

The key-frames selected by GRE-RAW are marked as blue dots, c) The key-frames selected by

RPCA-KFE are marked as black triangles.

α = 0.75), one of the three proposed methods is the best performer in all three

employed datasets: GRE in IMPART, NUM in i3DPOST and IXMAS. When only

the reconstruction term is considered (α = 0.00), as in traditional dictionary-of-

representatives methods, one of the proposed methods is the best performer in

two out of three datasets (GEN in IMPART, NUM in IXMAS), while clustering-

based [8] performs best in i3DPOST. The latter result highlights the contribution

of the saliency term in good key-frame extraction performance when employing

dictionary-of-representatives methods, which is the main idea behind the proposed

framework.

When only the saliency term is considered (α = 1.00, i.e., no reconstruction

term), one of the three proposed methods is the best performer in all three em-

ployed datasets: GRE in IMPART and IXMAS, GRE-RAW in i3DPOST. Local

Outlier Detection alone, i.e., the saliency term of GRE, leads to acceptable results,
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while Maximum-Dispersion Global Summary Saliency alone, i.e., the saliency

term of GEN, fails to surpass even random video frame sampling.

Absolute best performance, over all tested values of α, is obtained by one of

the proposed methods, employing both reconstruction and saliency terms, in two

out of three datasets (GRE with α = 0.75 in IMPART, NUM with α = 0.50

in i3DPOST). In the third dataset IXMAS, absolute best performance is also

achieved by one of the proposed methods (GRE), when only considering the

saliency term of Local Outlier Detection (α = 1.00). This is most likely due to the

very challenging nature of this dataset (low resolution, very high visual similarity

between video frames belonging to different activity segments), which results in

enhanced reconstructive advantage conveyed by the background and by human

body poses common across multiple different activity segments, at the expense of

summarization performance. This outcome also highlights the contribution of the

saliency term in good key-frame extraction.

The execution time deviates significantly for the extreme values of saliency

contribution parameter α, i.e., for α = 0.00 and α = 1.00. This is because

for α = 0.00 the saliency term is not calculated at all, while for α = 1.00 less

computations have to be performed, since there is no need to fuse the degree of

reconstruction advantage and the degree of saliency corresponding to each video

frame (only saliency is considered). In the cases of GEN and RPCA-KFE, the

reconstruction term is not calculated at all for α = 1.00, resulting in extremely

fast execution since their saliency terms are much faster to compute than their

reconstruction terms. In contrast, GRE runs extremely fast for α = 0.00 (no

saliency term), since its reconstruction term is much faster to compute than Local

Outlier Detection. Overall, Regularized SVD-based Low-Rank Approximation,
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i.e., the saliency term of NUM, balances very well speed and IR performance,

while GRE implements the fastest reconstruction term.

As a final note, one should notice the relatively good performance of simple K-

Means clustering in activity video summarization, which explains its continuing

dominance in key-frame extraction literature.

6. Conclusions and Discussion

Static activity video summarization was explicitly formalized under a flexible,

multimodal framework that follows the unsupervised dictionary-of-representatives

approach, thus integrating video semantics into the summarization process itself

and guaranteeing summary representativeness. The proposed framework can ac-

commodate several existing algorithms as special cases and firmly locates video

summarization at the intersection of video saliency estimation and video dic-

tionary learning. Thus, unlike most dictionary-of-representatives methods, key-

frame extraction is defined as a salient dictionary learning task that attempts to

balance a reconstruction and a saliency term, guaranteeing outlier inclusion.

In this context, three key-frame extraction algorithms were formulated as con-

crete instances of the presented framework. The video reconstruction term was

modeled algebraically as a Column Subset Selection Problem (CSSP), thus fa-

voring summary conciseness and compactness, while the saliency term was mod-

eled as an outlier detection, a low-rank approximation, or a summary dispersion

maximization problem, thus favoring outlier inclusion and/or content coverage

in the summary. A numerical, SVD-based approach (Numerical Algorithm), a

recursive, greedy approach (Greedy Algorithm) and an evolutionary, genetic ap-

proach (Genetic Algorithm) were detailed. In all cases, pre-existing solutions to
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the CSSP have been modified and adapted to the proposed framework. Moreover,

the saliency terms for the Numerical and for the Greedy algorithms are novel,

video-oriented modifications of state-of-the-art image saliency algorithms. The

first one exploits regularized SVD-based low-rank approximation of the video

data matrix, while the second one models video frame saliency estimation upon

local outlier detection.

Objective quantitative evaluation results on three public, activity video datasets,

using a combination of provenly effective video description/representation meth-

ods, indicated the superiority of the proposed framework/algorithms in compari-

son to traditional data partitioning/clustering, as well as to competing dictionary-

of-representatives approaches. The contribution of the saliency term to this effect

is especially highlighted. In general, the Greedy Algorithm seems to provide the

best balance between speed and overall performance, with the faster Numerical

Algorithm a close second. Additionally, the importance of good, semantically

meaningful video frame representations was showcased by comparing the perfor-

mance of the Greedy Algorithm when using a rich, feature-based representation

and a raw pixel luminance value representation.
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