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Motivation
● Proteins mediate many biological 

functions and are crucial to 
understanding biological 
pathways.

● If we know their 3D structures, it 
will help identify:

○ Protein interactions

○ Drug targets

○ Interrelationships (evolution)

● We want to be able to find distant 
relationships between proteins to 
understand protein evolution, and 
annotate functions of a new 
protein if it is related to a known 
protein with known function

~ 200 Å

Image from David Goodsell



Background

● Traditionally, hierarchical classification 
systems are used to understanding 
these protein relationships

● Discrete clustering of proteins is an 
important first step of organizing the 
protein universe

● However, this approach breaks down for 
distantly related proteins that don’t fit 
into discrete bins, highlighting the 
continuity of protein structure/fold 
space
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Image from cathdb.info



A Hierarchy of Structural Levels
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Types of 2° structure 
elements (SSE)

E.g. Mostly Beta (2)

3D arrangements of SSEs

E.g. Sandwich (2.60)

Evolutionary relationships via sequence,
≥25% sequence identity

E.g. Immunoglobulins (2.60.40.10)

1. Class

2. Architecture 4. Homologous Superfamily

3. Topology

3D arrangement AND pattern of 
connectivities between SSEs

E.g. Immunoglobulin-like (2.60.40)

PDB ID: 1TEN

180°
Fibronectin



A Hierarchy of Structural Levels
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Types of 2° structure 
elements (SSE)

E.g. Alpha/Beta (3)

3D arrangements of SSEs

E.g. 3-Layer Sandwich (3.40)

Evolutionary relationships via sequence,
≥25% sequence identity

E.g. NAD(P)-binding Rossmann-like 
Domain (3.40.50.720)

1. Class

2. Architecture 4. Homologous Superfamily

3. Topology

3D arrangement AND pattern of 
connectivities between SSEs

E.g. Rossman fold (3.40.50)

PDB ID: 1cdoB

Face 1 Face 2 Face 3

Alcohol Dehydrogenase



Small β-Barrels (SBBs) Exhibit Architectural Similarity 
Despite Topological Variability
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Youkharibache, Veretnik, et al. Structure (2019); https://doi.org/10.1016/j.str.2018.09.012

2.40.50.702.30.30.100

SH3/Sm
1kq2

OB
1c4q

https://doi.org/10.1016/j.str.2018.09.012


Small β-Barrels (SBBs) Exhibit Architectural Similarity 
Despite Topological Variability
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Youkharibache, Veretnik, et al. Structure (2019); https://doi.org/10.1016/j.str.2018.09.012

2.40.50.702.30.30.100
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https://doi.org/10.1016/j.str.2018.09.012


Possible new entity between Architecture+Topology
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Types of 2° structure 
elements (SSE)

3D arrangements of SSE

3D arrangement AND pattern of 
connectivities between SSEs

Evolutionarily relationships via sequence,
≥25% sequence identity

1. Class

2. Architecture

4. Topology

5. Homologous Superfamily
3D architectural 
similarity despite 

topological variability  

3. Ur-fold

Mura, Veretnik, Bourne. Prot Sci (12/2019); https://doi.org/10.1002/pro.3742

Prefix meaning “proto-, primitive, 
original.” Origin: German.



Other Potential ‘Urfolds’
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Mura, Veretnik, Bourne. Prot Sci (12/2019); https://doi.org/10.1002/pro.3742

P-loop NTPases

3.40.50.300 3.30.250.10

KH Domains

3.30.1370.10 3.30.300.20

3.30.310.60 3.30.1360.40 3.30.1380.10 3.30.70.870
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Mostly 
β

Rolls SandwichBarrels

2.40.50.702.30.30.100 2.60.40.10

Current Clustering Potential Clustering

OB

α/βMostly 
α

... Ig-like...SH3
SM

...

Few SS

...

C

A

T

H

Mostly 
β

SandwichBarrels

OB

α/βMostly 
α

... Ig-like...SH3
SM

...

Few SS

...

C

A

T

Small
β-Barrels

...U “7-strand
greek key”?

...

2.40.50.702.30.30.100 2.60.40.10

H

A Different View of Clustering Relationships



DeepUrfold
Can we learn local substructures of biophysical 

properties and geometry that bridge ‘gaps’ in 
hierarchical classification systems?
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Thesis Aims 

2 Build and interrogate Deep Generative Models to learn superfamily-specific 
geometries and properties

Learn the defining geometries and biophysical properties for different 
superfamilies, allowing us to assess the Urfold hypothesis

3 Identify distant evolutionary relationships that bridge protein architectures 
and topologies that define an Urfold

Use Explainable AI techniques to understand model decisions and cluster proteins in 
light of the continuous nature of fold space

1

Develop a scalable, reproducible workflow to prepare proteins and calculate 
atomic properties; intended to be shared as a community resource

Create a database of biophysical atomic-level properties, in 3D, for the 
known protein universe



Aim 1
Create a database of biophysical atomic properties 

in 3D for the known protein universe

13 of 49



Data Engineering is the first step in machine learning

● Atom Type
● Partial Charge + Electrostatics
● Hydrophobicity
● Secondary Structure
● Evolutionary Conservation

14 of 49

Step 1: Protein Structure Preparation

Step 2: Calculate Biophysical Properties

1. Add missing 
residues

2. Add missing 
atoms

3. Add hydrogens and 
energy minimize 
structure



How to process ~500K protein domains quickly?
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How to process ~500K protein domains quickly?
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~50 Million 
New 

AlphaFold2 
structures!

July 2021



Massively Parallel Workflows with TOIL are used to 
process the CATH Hierarchy in the cloud and HPCs
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Kubernetes

Speed-up is ~1 week instead of 3+ months



Hierarchical Data Format (HDF) files can chunk and 
compress the CATH hierarchy in a scalable way

Da
ta

se
ts

Protein 1

Protein 2

Atoms + Features

Residue Features

Edge Features

Da
ta

 S
pl

its

35% Sequence ID

60% Sequence ID

Train

Validation

Test

Level 1 (C): 4 nodes
Level 2 (A): 41 nodes
Level 3 (T): 1391 nodes
Level 4 (H): 6119 nodes

18 of 49



Create a Highly Scalable Data Service (HSDS) with REST 
API to access biophysical properties

h5pyd

Query

Result

Train model

19 of 49



Process 20 Superfamilies of Interest (potential urfolds) 
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Manual Searches

Used in previous study



Aim 1 Progress
● Data Generation

✓ Structure preparation workflow

✓ Feature calculation workflow

✓ Migrate to HSDS

✓ Complete 20 Superfamilies of interest

➢ Process all 6K superfamilies

➢ Migrate to use Kubernetes as the default provisioner

● Data Access

✓ Setup local HSDS instance

➢ Migrate to UVA Rivanna HPC

21 of 49



Aim 2
Build and interrogate Deep Generative Models to 

learn superfamily-specific geometries and properties

22 of 49



Overall DeepUrfold Model: Reconstruct CATH 
domain structures for one homologous superfamily 
with Variational Autoencoders

13 of 49

Z
Latent 
space

Sparse 
Encoder
3D-CNN

q(z|x)

Sparse 
Decoder
3D-CNN

p(x|z)

SH3 Fold
(PDB: 1KQ2)

‘Reconstructed’ 
SH3 Fold

(PDB: 1KQ2)
sam

ple

Evidence Lower Bound (ELBO):
ln p(x) ≥ Eq(z|x)[ln p(x|z)] − DKL[q(z|x)||p(z)]

z ~ N(𝜇,σ)

Reconstruction Error Similarity between 
learned distribution (q) 
and true distribution (p)

p(z) ~ N(𝜇,σ)



Representation: 3D Image, Voxel Space
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● Protein centered in 2563 Å3 volume

SH3 Fold (PDB ID: 1KQ2.A)

● Van der Waals Spheres around 
each atom are discretized to fit 1 Å3 
voxels using a KDTree

○ No need to annotate all voxels because most 
volume is sparse

○ Each voxel within an atomic sphere inherits 
same set of features

● Covalent bonding occurs where 
there is overlap between voxels 
from different atoms

○ Bond voxels use the max between features

(128, 128, 128)



Representation: Atom-based Physicochemical Features
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Feature Type # of Boolean 
Features

Atom Type 13 

Residue Type 21

Secondary Structure 3

Accessibility 1

Is Hydrophobic 1

Is Positively Charged 1

Is Electronegative 1

SH3 Fold (PDB ID: 1KQ2.A)



Model Evaluation: Ig Reconstruction 
● Train 7 different Ig 

models with different 
types of features (1 
type per model)

● Residue Type 
performed worst for 
both metrics, so it 
was removed from 
training all other 
models

26 of 22

Area Under 
Precision-Recall Curve 

(AUPRC)

Area Under 
Receiver Operator Curve

(AUROC)
 True positive rate (TPR) vs. 

false positive rate (FPR)

TPR = Precision = TP(TP+FP)

FPR = FP/(FP+TP)

Recall = TP/(TP+FN) 



1. Trained 20 different 
models for each 
superfamily

2. Ran representatives 
through the models for 
each superfamily, saving 
latent space

3. Combined all latent 
spaces from all 
different models into 1 
dataset

4. Used UMAP reduce the 
# of dimensions from 
1024->2

Superfamilies separate by CATH Class (2° structure)

27 of 49

SH3
Ig

OB

SS Score = 
#β atoms

#β atoms + #ɑ atoms

Mostly ɑ

ɑ/β
Mostly β



Asses Urfold Hypothesis via Multiple Loop 
Permutations

28 of 49

SH3/Sm
1kq2

3-4-ɑ1-1-2-5
RMSD: 0.734

TM-Score: 0.61

5-1-2-ɑ1-4-3
RMSD: 1.297

TM-Score: 0.415

96 possible 
permutations!

Remodel Loops 
with 

MODELLER



Likelihood ratios can be used to quantify similarities 
among multi-loop permuted structures
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Log-odds score distribution

More Similar
Log-odds score = log(ELBOPermuted)-log(ELBOWild-type)



Aim 2 Progress

✓ Train 20 SF models

✓ Visualize latent spaces

✓ Multiple loop permutations for SH3 

➢ Complete for other SFs

30 of 49



Aim 3
Identify distant evolutionary relationships that bridge 

protein architectures and topologies 
that define an Urfold

31 of 49



Question 3.1: 

Which superfamilies might share an urfold?

32 of 49



Objective: Create a New Similarity Metric

31 of 49

SH3/Sm IgOB 1. Train one model for 
each superfamily 

SH3/Sm VAE Model OB VAE Model Ig VAE Model

2. Subject superfamily 
representatives to all 
other superfamily VAE 
models



Stochastic block models (SBM) can find superfamilies 
that span multiple clusters
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SH3 VAE 

Model

OB VAE 
Model

Ig VAE 
Model

SH3 
Domain

OB 
Domain

Ig 
Domain

Ig VAE Model

OB VAE Model

SH3 VAE 
Model

● SBMs are probabilistic graphical models that can detect mixed-membership 
communities in fully connected bipartite graphs, with variable edge weights

ELBO

Domains DomainsModels Models



Stochastic Block Modelling finds domains from different 
superfamilies in the same community (potential urfolds?)
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SH3/Sm

Ig

Ig

Ig

SH3/Sm

Domain structure 
representatives

SH3 VAE 
Model

edge weight →

Ig VAE 
Model

OB VAE 
Model



Measure clusters with no ground truth of Urfolds
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● Hypothesis: Using CATH as ground truth, “least similar” clusterings will be 
stronger evidence for the Urfold 

● Compare to known state-of-the-art protein similarity algorithms using their 
similarity metric in the Stochastic Block Model

Silhouette
Mean intra-cluster vs mean 
nearest-cluster distances 

Overlap
% overlap using 
bipartite graphs

Homogeneity
All clusters contain only 

members of a single class

Completeness
All data points of a given 

class are in the same cluster

a
 b

Peixoto. Phys. Rev. 2021

-1 ≤ Silhouette ≤ 1 
(wrong)           (perfect)

0=overlapping

0 ≤ Overlap ≤ 1 
(wrong)        (perfect)

0 ≤ Homogeneity  ≤ 1 
(wrong)                 (perfect)

0 ≤ Completeness  ≤ 1 
 (wrong)                    (perfect)



SBM Communities vs. CATH Superfamilies

37 of 49Sequence-based Structure-based
Pairwise PairwiseSF-specific SF-specific1 model

● DeepUrfold’s CATH 
reconstructing CATH is 
the ‘worst’ – e.g. 
Hierarchical clustering 
might not be the the best 
view of fold space

● Our van der Waals 
representation of each 
atom complete with 
biophysical features is so 
different from the others

● Our model is learning 
something beyond 
simple structural and 
geometric similarity, 
towards the realm of 
structure/function 
properties



Question 3.2: 
Do particular geometric and biophysical properties 

contribute to an urfold?
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Layerwise Relevance Propagation (LRP)
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Z
1x1024 Latent 

space

Sparse 
Encoder
3D-CNN

q(z|x)

Sparse 
Decoder
3D-CNN

p(x|z)

OB Fold
(PDB: 1KQ2)

‘Reconstructed’ 
OB Fold

(PDB: 1KQ2)

sam
ple

Montavon, Binder, at al. Lecture Notes in Computer Science. 2019



LRP Example For Predicting Castles
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ε = 0 ε = 0.25 Positive scores 
weighted higher

Montavon, Binder, at al. Lecture Notes in Computer Science. 2019



LRP Example: Ig structure through Ig Model
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Ig Fold
(PDB: 1TEN)

Z
1x1024 Latent 

space

Learned 
Ig Model

q(z|x)

Z
1x1024 Latent 

space

Sparse 
Encoder
3D-CNN

q(z|x)

Sparse 
Decoder
3D-CNN

p(x|z)

sam
ple

Reconstructed 
Ig Fold

1. Train Ig Model 

2. Test Ig Domains 



LRP Uncovers Backbone Carbons as Most Relevant

 4unu, amyloid fiber Ig dimer 42 of 49

Noncanonical hydrophobic interface b/w variable domains
Bruhstein et al. JBC 2014

Least Relevant
50th Percentile

236

Most Relevant
99th Percentile

344,236



LRP Example: OB structure through SH3 Model

43 of 49

SH3 Fold
(PDB: 1KQ2)

Z
1x1024 Latent 

space

Learned 
SH3 Model

q(z|x)

Z
1x1024 Latent 

space

Sparse 
Encoder
3D-CNN

q(z|x)

Sparse 
Decoder
3D-CNN

p(x|z)

sam
ple

Reconstructed 
SH3 Fold

1. Train SH3 Model 

2. Test OB Domains 

OB Fold
(PDB: 1C4Q)
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Loops and Hydrogens from Conserved hydrophobic core 
are uncovered by LRP

Youkharibache, Veretnik, et al. Structure (2019); https://doi.org/10.1016/j.str.2018.09.012

PDB: 2dgyA01
ELBO: 0.1403

https://doi.org/10.1016/j.str.2018.09.012


Question 3.3: 

How can we define an urfold by combining SBM 
communities with Atomic Relevance scores from 

All-vs-All LRP?
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Browse SBM communities
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Zoom into a single community
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LRP scores for one domain in community: 1a04A02

48 of 49

3.40.50.720: ~18% 1.20.1260.10: 0% 3.10.20.30: ~4% 2.30.30.100: ~2% 3.30.300.20: ~2%

3.40.50.300: ~15% 2.60.40.10: ~25% 1.10.510.10: ~2% 3.30.230.10: ~2% 3.30.1630.40: ~6%

1.10.490.10: ~2% 2.40.50.140: ~7.5% 1.10.238.10: ~8% 1.10.10.10: ~15% 3.90.79.10: ~5%

3.30.1370.10: ~6%



Next Steps for Aim 3
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● Question 1: Which Superfamilies may share an urfold?
✓ Complete All-vs-All for 20 superfamilies of interest

✓ Detect communities with Stochastic Block Models

● Question 2: Which geometric and biophysical properties contribute to 
an urfold?
✓ Run Layerwise-relevance Propagation for all domain in the All-vs-All approach

● Question 3: How can we define an urfold?
○ Create javascript visualizations to analyze and combine SBM communities and LRP results

➢ Add biophysical properties to visualizations

➢ Find common structural fragments through structure alignment

➢ Create a definition for an urfold by elucidating why the SBM created the communities



Conclusions
● Hypothesis: An entity called the ‘Urfold’ may exist as a bona fide 

level, between Architecture and Topology, to represent 3D 
architectural similarity despite topological variability

● Aim 1: Develop a community resource to create and share 
biophysical properties and protein structures with 
Train/Test/Validation splits to facilitate reproducible ML 
workflows

● Aim 2: Design and implement a novel sequence-independent, 
alignment-free, rotation-invariant similarity metric of proteins that 
leverages similarities in latent-spaces rather than 3D structures.

● Aim 3: A new approach to detect clusters, or communities, of 
similar protein structures using Stochastic Block Models. This 
method takes a different approach to clustering, allowing for 
proteins to span multiple clusters, thereby allowing for the 
continuous nature of fold space.
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Questions?
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