Journal article Open Access
Olivia A. Attallah; Marija Mojicevic; Eduardo Lanzagorta Garcia; Muhammad Azeem; Yuanyuan Chen; Shumayl Asmawi; Margaret Brenan Fournet
{ "description": "<p>On a score sheet for plastics, bioplastics have a medium score for combined mechanical performance and a high score for biodegradability with respect to counterpart petroleum-based plastics. Analysis quickly confirms that endeavours to increase the mechanical performance score for bioplastics would be far more achievable than delivering adequate biodegradability for the recalcitrant plastics, while preserving their impressive mechanical performances. Key architectural features of both bioplastics and petroleum-based plastics, namely, molecular weight (M<sub>w</sub>) and crystallinity, which underpin mechanical performance, typically have an inversely dependent relationship with biodegradability. In the case of bioplastics, both macro and micro strategies with dual positive correlation on mechanical and biodegradability performance, are available to address this dilemma. Regarding the macro approach, processing using selected fillers, plasticisers and compatibilisers have been shown to enhance both targeted mechanical properties and biodegradability within bioplastics. Whereas, regarding the micro approach, a whole host of bio and chemical synthetic routes are uniquely available, to produce improved bioplastics. In this review, the main characteristics of bioplastics in terms of mechanical and barrier performances, as well as biodegradability, have been assessed—identifying both macro and micro routes promoting favourable bioplastics’ production, processability and performance.</p>", "license": "https://creativecommons.org/licenses/by/4.0/legalcode", "creator": [ { "affiliation": "Materials Research Institute, Athlone Institute of Technology, N37 HD68 Athlone, Ireland", "@type": "Person", "name": "Olivia A. Attallah" }, { "affiliation": "Materials Research Institute, Athlone Institute of Technology, N37 HD68 Athlone, Ireland", "@type": "Person", "name": "Marija Mojicevic" }, { "affiliation": "Materials Research Institute, Athlone Institute of Technology, N37 HD68 Athlone, Ireland", "@type": "Person", "name": "Eduardo Lanzagorta Garcia" }, { "affiliation": "Materials Research Institute, Athlone Institute of Technology, N37 HD68 Athlone, Ireland", "@type": "Person", "name": "Muhammad Azeem" }, { "affiliation": "Materials Research Institute, Athlone Institute of Technology, N37 HD68 Athlone, Ireland", "@type": "Person", "name": "Yuanyuan Chen" }, { "affiliation": "Fundamental and Applied Science Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar 32610, Perak Darul Ridzuan, Malaysia", "@type": "Person", "name": "Shumayl Asmawi" }, { "affiliation": "Materials Research Institute, Athlone Institute of Technology, N37 HD68 Athlone, Ireland", "@type": "Person", "name": "Margaret Brenan Fournet" } ], "headline": "Macro and Micro Routes to High Performance Bioplastics: Bioplastic Biodegradability and Mechanical and Barrier Properties", "image": "https://zenodo.org/static/img/logos/zenodo-gradient-round.svg", "datePublished": "2021-06-30", "url": "https://zenodo.org/record/6258830", "@context": "https://schema.org/", "identifier": "https://doi.org/10.3390/polym13132155", "@id": "https://doi.org/10.3390/polym13132155", "@type": "ScholarlyArticle", "name": "Macro and Micro Routes to High Performance Bioplastics: Bioplastic Biodegradability and Mechanical and Barrier Properties" }
Views | 36 |
Downloads | 37 |
Data volume | 166.4 MB |
Unique views | 32 |
Unique downloads | 37 |