
International Journal of Current Research and Modern Education (IJCRME)

ISSN (Online): 2455 - 5428

(www.rdmodernresearch.com) Volume I, Issue II, 2016

15

 A CASE STUDY OF IMPLEMENTING A GDB
INTERFACE BETWEEN AN ARM BASED IC

SIMULATOR AND GNU DEBUGGER
H. S. Sachin Kumar* & Trisila Devi Nagavi**

Department of Computer Science & Engineering, Sri Jaya Chamarajendra College of
Engineering, Mysore, Karnataka

Abstract:
Simulators are basically used in pre-silicon software development, for architectural

exploration etc. As the software is becoming increasingly complex, it requires a debugging
support to debug the software being run on the core. So the program running on the
simulator must be debugged, Keil is the debugger used for this purpose earlier. Because of
some drawbacks of Keil debugger and to overcome those drawbacks we are introducing
another familiar debugger called as GNU Debugger, popularly known as GDB. This paper
covers the replacement of GNU Debugger (GDB) in place of Keil Debugger for the ARM
Based IC simulator.
Key Words: GNU Debugger, Debugging & Multi Core Debug
1. Introduction:

In the past, embedded software development and verification was typically
performed by running code on a prototype of the hardware platform until the project
team was satisfied that a working system had been achieved. This solution is time-
consuming, unreliable in terms of quality and hard to use, making it impractical for next
generation embedded software development. Similarly to hardware verification 15
years ago, new thinking must be applied if high quality embedded software is to be
produced in a timely fashion.

Virtual platforms offer an alternative to hardware prototypes. Software models
of the key components in a processor platform are combined to form an executable sub-
system. The models must have enough functionality to execute the code correctly, but
retain a level of abstraction that provides the performance necessary for rigorous
testing.

Typical Virtual Platforms make use of “Instruction Accurate,” or IA, processor
models together with abstractions of memory blocks and key peripherals. The virtual
platforms need to be accurate enough that the software cannot tell it is not running on
real hardware, and production binaries of the embedded software should be able to run
unmodified. The virtual platforms may be connected to embedded software
development tools to enable a comprehensive environment for the verification and
analysis of code.

 However Keil debugger with AGDI has some disadvantages in terms of cost.
Whenever the user wants to use the Keil debugger one has to pay the licence fees. In this
paper we proposed an open source GNU Debugger to debug the software being run on
the simulator. GNU Debugger popularly known as GDB is a part of GNU compiler suit
consortium, which we used here to debug the software program being run on the
simulator. Limited features are targeted for this experiment such as Break point
handling, Register access, Memory access, etc. This can be achieved by building an
interface between GNU Debugger and the Simulator. This paper covers a case of such an
implementation.
2. Virtual Platform:

The SoC contained in modern electronic products has evolved dramatically in
recent years along three dimensions:

International Journal of Current Research and Modern Education (IJCRME)

ISSN (Online): 2455 - 5428

(www.rdmodernresearch.com) Volume I, Issue II, 2016

16

 Scale: The use of embedded software operating on standardized hardware
platforms has become increasingly common as the cost of IC hardware
production increases. This has driven up the sheer volume of code required for
each project, and the effort to produce it.

 Complexity: Multi-core processor architectures have been continually
improved, providing the necessary performance and capability to meet modern
product requirements. However, coding these new processors has become
exponentially more complex than previous generations.

 Quality: Modern electronic product functionality and quality requirements
continue to increase dramatically, suggesting a zero tolerance for post-
production bugs. In addition, embedded software has become harder to change
as a product moves into production.

 The tool used for debugging is Keil which is also an IDE for the software
development. The SDK is integrated with the Keil in a manner where Keil acts as a front
end to the end users and simulator as a virtual target acting as the back-end. The Keil
tool works with the target (simulator or hardware) using a debug interface called AGDI.
Hence, to support the integration with Keil, the SDK implements the standard AGDI
debug interface in order to act as a virtual target to Keil. At the end, as the virtual
simulator acts as a target driver to Keil, this enables and provides many advantages for
the software development.

 As and when the debugger is used from the start until the end of debug session,
Keil generates the AGDI interface method calls which finally land-up in the target driver
interfaced to the Keil. As in our case, it is the simulator which is acting as a target for
Keil. The AGDI interface method calls are received by the simulator are forwarded to a
debug module in the virtual system which handles all the debugger related functionality
and acts as a central place for debug handling throughout the system.
3. Literature Survey:
MCD:

The MCD API is a simple yet powerful C-interface. It has been captured in a single
header file and all API users have to include this header file in their source code. The
MCD API is composed of two distinct parts:
 An API in order to allow tools to access debug targets in a uniform way (Tools

API).
 An API in order to allow the MCD framework to access target components in a

standard way (Target API).The MCD API can be classified further as following
sub-APIs which have methods/functions to be implemented:

 Target Connection: MCD works on a server-client model where the target is the
server and debugger is the client.

 Target System Description: These methods are used by the tool to retrieve
information about the connected system.

 Target Run Control: These methods are used to control the simulation run. The
simulation can be paused/resumed from the debugger.

 Trigger Support: It is used to set break-points, watch-point and complex break-
points. It also allows customized ones.

 Trace Support: It is used to get the trace information from the simulation. The
traces can later be processed to gather code and data coverage of the embedded
software.

 Memory and Register Accesses: Unified memory and register access mechanism
using transaction lists.

International Journal of Current Research and Modern Education (IJCRME)

ISSN (Online): 2455 - 5428

(www.rdmodernresearch.com) Volume I, Issue II, 2016

17

 Communication Channels: Various types of communication channels between
debug tool and target system, e.g. for communication with applications running
on the targeted core or for configuration of additional analysis resources.

4. Functional Specifications:
 As aforementioned, the VP is required to implement the debug API to provide the
information required by the debugger. The VP acts as the server and debugger as a
client. As shown in the figure, the MCD APIs are implemented by the core model. The
core model is the ideal place to implement the debug API as it has access to CPU
registers, peripheral registers and memories. The following points describe the
implementation in the core:
A. Simulation Control: For debugging the software running on the core, the user would
need to have the feature to control the simulation – to pause or break the simulation at
any-point, single step into the code and resume the simulation. The MCD API provides
method to run, pause and stop the simulation. The VP has to implement the methods
and perform the needed operation. The SystemC-2.3[3] library provides in-build
support to pause the simulation using a function called “sc_pause”. It is a non-blocking
function which causes the simulation to pause after completing the tasks in the current
execution phase. But it has to be used carefully. If there is no follow-up call to resume
the simulation or wait on any event, the simulation will end. The situation is handled
running the simulation in an OS (operating system) thread and controlling the
pause/resume operations using OS events. The following diagram shows the flow for
simulation control.

Figure 1: Flow diagram of simulation thread

As shown in the figure 3, the simulation is started in the OS thread. When the
simulation receives the pause command by the debugger, the thread waits for the
Resume or Terminate event. In the background, when the run command is issued, the
implementation in simulator will cause the resume event to be triggered and the thread
resumes the simulation. Similarly, when the stop command is issued, the thread will

International Journal of Current Research and Modern Education (IJCRME)

ISSN (Online): 2455 - 5428

(www.rdmodernresearch.com) Volume I, Issue II, 2016

18

terminate. The same flow is used to implement the “step” command where the
simulation is stopped after executing every instruction.
B. Regester Access Controls: The register and memory access methods of MCD API are
also handled by the Core model. By using these methods, a debugger can access the
memory regions of the simulator and show it in a window in its GUI. The addresses to
be read usually depend on the addresses visible in the GUI. The following figures show a
memory window and CPU register view snapshots from the Trace32 debugger.
C. Break-Point: The break-point feature allows a user to pause the simulation when it
hits a particular statement in the software. It is a much needed feature for the software
developers as it allows the simulation to run to the point of interest without stepping
through the whole software code. When the software is compiled for a particular tool-
chain, like ARM, the resulted binary is a sequence of instructions to be executed by the
core. The binary is loaded in the memory (ROM) at the start of the simulation and is
read and executed by the core. When a break-point is set on a particular statement in
the code, the MCD API requires the corresponding instruction address to be given as
input to the core model in the simulator. The core model then monitors the “program
counter” and pauses the simulation when its value matches the break-point address. It
supports multiple break-points to be set and cleared when needed.
5. Existing System:

As mentioned earlier, Keil has its own debug interface called AGDI through which
it can communicate with different targets. Hence, it mandates that the virtual platform
(or simulator) now implements the AGDI interface. As it is clear from the abstract the
aim is to de-couple the debug interface and the debug implementation of simulation
model. Hence, the approach is to support a tool-specific debug interface by developing a
translation layer between it and the supported debugger on the SDK. Referring to the
figure below, SDK implements the standard MCD interface API’s and acts as a MCD
client. For interfacing with Keil, the target driver implements the AGDI interface API’s of
Keil and acts as a client to Keil. Debug calls coming from Keil are received and processed
in the AGDI Target Driver component as shown in the figure below. There is no one-to-
one mapping between the AGDI interface API’s and the MCD interface API’s (except in
some calls like reset and terminate etc.). Hence, to transfer the information between
Keil and SDK there is an AGDI-MCD translator in between which takes care of
translating the data structures from AGDI to MCD and vice-versa. The information
received on the debug calls from Keil is in the form of AGDI interface data structures.
Hence, the AGDI calls are translated using the translator. The translated calls are then
passed on to the MCD driver component which is responsible for finally calling the
standard MCD interface API’s on the simulation model. The simulation model
implements the necessary functionality in accordance with the calls received over the
MCD interface. Sometimes, the information returned back from the MCD driver after the
MCD calls, needs to be translated (for example in case of memory reads and register
reads etc.). Hence, the translator is used again which has API’s to translate the data back
to AGDI from MCD. The MCD driver component is not bound to the AGDI interface (as it
always sends and receives in MCD language) hence this component is re-usable to
interface with other debuggers (for ex: GDB).
6. Interfacing GDB With Simulator Over MCD Interface (Proposed System):

The GNU debugger (GDB) is increasingly getting used by many embedded
software developers who are familiar with Linux environment, as a tool to debug their
target code. Within Infineon, several business units use GNU toolchain for embedded

International Journal of Current Research and Modern Education (IJCRME)

ISSN (Online): 2455 - 5428

(www.rdmodernresearch.com) Volume I, Issue II, 2016

19

software development and debug. The debugger backend, by default, in such cases is
GDB.

Figure 2: Interfacing with GDB using MCD

GDB provides a mechanism by which user can connect to a remote target (GDB
server) over TCP socket though a protocol named Remote Serial Protocol (RSP). This
mechanism can be used to connect GDB (client) to the VP through an adapter which acts
as GDB server. This adapter listens on a TCP socket for commands from the GDB client.
These commands are interpreted according to RSP and then propagated as MCD calls to
the VP. The diagram in figure 9 shows the setup with the GDB. The MCD Driver, MCD
implementation is re-used from the Keil setup which reduced the setup effort for GDB
significantly.
7. Results:

By using open source debugging tool such as GNU Debugger now we can able to
debug the program which is running on the simulator. Only limited features are
targeted for this experiment such as simulation control, register access, memory access
etc.
8. References:

1. MCD API press release Common Modeling Architecture Group project
2. GDB Tutorial a Walkthrough with Examples Simulator, CMSC 212 - Spring 2009

Last modified March 22, 2014
3. Jack Lange Department of Computer Science University of Pittsburgh,

“Implementing a GDB Stub in Lightweight Kitten OS”
4. Jeremy Bennett, “How to: GDB Remote Serial Protocol Writing a RSP Server”

Application Note 4, Issue 2.

