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ABSTRACT

This study presents a dynamic phenology stage estimation
methodology for cotton towards early warning and mitigation
advice against natural disasters. First, a time-series compari-
son algorithm, based on Earth Observation (EO) data, is used
to assign pseudo-labels to approximately 1,000 parcels. For
this, we employ only a limited number of ground truth sam-
ples. The pseudo-labels are then used to train Random For-
est (RF) regression models for phenology stage estimation.
The pseudo-labeling process is used to augment the anno-
tated dataset and allow for modelling the growth of cotton.
The models are applied and evaluated on two different test
sites in Greece; for which field campaigns were carried out
to collect the labels. The results are satisfactory and show-
case the successful generalization of the models to other ar-
eas. The dynamic predictions for cotton growth and extreme
weather events, from numerical weather prediction (NWP)
models, are invaluable information for decision-making rele-
vant to agricultural insurance schemes and farm management.

Index Terms— cotton phenology, agricultural insurance,
semi-supervised learning, early warning, natural disasters

1. INTRODUCTION

Crop yield is exposed to a number of risks that result in
volatile farm profit and hence an unstable income for the
farmers [1]. The timely knowledge of the occurrence and
severity of upcoming weather perils is significant information
for the development of risk management tools, but also the
optimization of farm management and the control of inputs.
In this context, farmers, agricultural consultants and agricul-
tural insurance companies could benefit greatly [2].
With respect to agricultural insurance schemes, the usually
applied indemnity-based insurance is subject to asymmetries
in information, and for this reason index-based insurance has
been used as an alternative [3]. However, unlike traditional
compensation schemes, index-based insurance is not based
on the actual farm losses but rather on exceeding an index
threshold [4]. Given that the overall goal is the reduction
of the farm losses and the increase of the transparency in

the compensation process, indices should be able to describe
the reality of the individual farm. This discrepancy between
indices and actual farm losses is known as basis risk. The
knowledge of phenology significantly decreases the basis risk
and the expected utility for the farmers [4].
The yield losses caused by adverse weather events can vary
significantly, as there is high dependence on the phenological
stage of the plant at the instance of the event. Therefore,
instead of having fixed time windows for the index deter-
mination, phenology estimation can play a key role in the
adjustment of the index results based on the expected impact
of the disastrous event on yield. Big Earth Observation (EO)
data that cover large areas with high frequency and at high
spatial resolution have introduced new opportunities for the
large-scale monitoring of phenology, without the need for
costly and time-consuming manual observations [5, 6].
Additionally, proactive actions and mitigation measures
against imminent adverse weather events, but also the man-
agement and scheduling of farm practices, can be assisted
by the timely and accurate knowledge of the growth stage of
the crop. For instance, soil fertilization can be applied earlier
or foliar fertilization can be delayed based on the knowledge
of an upcoming precipitation event. Another example is the
early picking of cotton bolls, during the boll opening phase,
in the case of an approaching extreme weather event.
In this study, we have implemented a dynamic phenology
estimation methodology for cotton. To overcome the scarcity
of labelled data for training the Machine Learning (ML) mod-
els, we have developed a pseudo-labeling technique that is
based on a comparison analysis of EO data time-series from
the Sentinel-2 mission. The pseudo-labels are used to train
a Random Forest (RF) regression model and its performance
is evaluated on 27 parcels for which ground truth data was
collected through field campaigns.

2. METHODOLOGY

2.1. Early warning for weather events

In order to predict the occurrence of an imminent extreme
weather event, atmospheric parameters from numerical weather
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prediction (NWP) models are exploited. Currently, infor-
mation both from a long-term/coarse-grid-spacing global
model (15-days/0.25-degrees respectively) as well as a short-
term/high-grid-spacing regional model (2.5 days/0.02-degrees)
are available. The latter refers to an in-house configuration of
WRF-ARW on a spatial configuration of 6-km grid spacing
over Europe and 2-km over Greece. The model configuration
in terms of resolution, as well as the microphysical schemes
that are used, allow for an explicit resolution of complex
processes such as the initiation of deep convection without
the need for parameterization schemes. This also benefits
the estimation of difficult to estimate processes such as hail
growth, that are known to challenge the reliability of any
NWP model. Forecasts from both sources are updated daily.
The model outputs that are used to identify approaching ex-
treme weather phenomena include 2m temperature and soil
temperature at different depths (0-10, 10-40 and 40-100cm),
the wind speed at 10 m (gale risk), accumulated precipitation
(flood-inducing heavy precipitation event risk) and Convec-
tive Available Potential Energy - CAPE ( hailstorm risk).

2.2. Phenology stage prediction

The phenology stage prediction methodology is comprised
of two steps. Initially, a time-series comparison algorithm is
used to generate predictions based on a limited amount of ref-
erence parcels, for which on-the-spot acquired growth stage
timestamps are available (Section 2.2.1). The second step in-
volves utilizing the predictions from the first step as pseudo-
labels to then train RF regression models (Section 2.2.2). The
reference data refer to the collection of phenological stage
timestamps for 10 parcels in Rodopi, Greece; as collected
through field visits in 2018 and 2019. The growth stages that
concern this study include the root establishment (germina-
tion and emergence), the leaf development, the squaring, the
flowering, the boll development and the boll opening.

Growth stage Cont. scale DoY range Days
Seeding 100 110-125 -
Root Establishment 100 - 199 110-150 15-25
Leaf Development 200 - 299 130-190 25-40
Squaring 300 - 399 160-215 20-25
Flowering 400 - 499 180-250 35-45
Boll Development 500 - 599 220-270 20-25
Boll Opening 600 - 699 240-315 25-45
Harvest 700 265-315 -

Table 1. Phenological stages with reference to this study’s
continuous scale, the possible DoY ranges in which a stage
can occur and the expected ranges of duration

Table 1 lists the seven growth stages, along with their corre-
sponding values in i) a continuous growth scale that is used
for the model predictions, ii) the range in DoY that stages

can occur and iii) the range of their expected duration accord-
ing to literature [7]. The continuous scale ranges from 100 to
700, where 100 refers to the seeding day and 700 refers to the
completion of the boll opening stage.

2.2.1. Pseudo-labeling

The methodology is based on the 1vAll comparisons of the
time-series of an incoming parcel with the ones from the ref-
erence dataset. The time-series feature space comprises of
Sentinel-2 images, including all spectral bands - except B01,
B09 and B10 - and the vegetation indices Normalized Differ-
ence Vegetation Index (NDVI), Normalized Difference Water
Index and Boll Opening Rate Index (BORI). Since phenol-
ogy is dependent on the relative temporal progression of fea-
tures and not their absolute values, the final parameter space
is comprised of the slopes (y′) of the time-series with a step
of s (=5) days, as shown in Algorithm 1.

Algorithm 1: Pseudo-labeling
Result: Current phenological stage
Input: data, ref data, DoP, tw, s
foreach feature in data do

y = data.subset(feature);
for i=DoP-tw to DoP do

y
′
(i) = [y(i)-y(i− s)]/s;

possible stages = get stages(DoP);
foreach stage in possible stages do

foreach ref parcel in ref data do
start = start day(stage,ref parcel);
end = end day(stage,ref parcel);
y ref = ref data.subset(feature,ref parcel);
for i=start to end do

for j=i-tw to i do
y

′

ref (j)=[yref (j)-yref (j − s)]/s;
end pos = (i-start)/(end-start);
pred stage = stage + 100*end pos;
errors.add( MAE(y

′
, y

′

ref ));
preds.add(pred stage);

sort(preds, by = errors) ;
results.add(preds[:3]);

final stage = median(results);

In order to predict the phenological stage for a parcel, a time
window (tw) that refers to the number of examined days prior
to the Day of Prediction (DoP) must be defined. This way,
we generate the feature subspace for the given DoP. For this
study, tw was set to 75 days. In other words, each time-series
segment represents the last 75 days prior to the DoP. Then,
based on the literature derived DoY ranges, as given in Table
1, we record all possible phenological stages for any given
DoP. The tw-long feature subspace of the examined parcel
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is compared with multiple equivalent segments of the refer-
ence parcels using the Mean Absolute Error (MAE). These
segments stem from sliding in time, from the start of the first
(start) to the end of the last possible stage (end), for a DoP.
The comparisons are made for each feature individually, and
the three smallest errors for each are recorded. The prediction
targets refer to the continuous phenology scale, as defined in
Table 1. Each error corresponds to a particular segment from
the reference parcels and in turn to a specific value in the con-
tinuous scale. For instance, the prediction 510 refers to the 5th
phenological stage (Boll development), with a 10% comple-
tion percentage. The three segments with the smallest MAE
are recorded for each parameter. The median value of the re-
spective predictions for those recorded segments is the final
growth stage prediction at a given DoP.

2.2.2. RF regression model using pseudo-labels

The reference parcels are confined and the extracted knowl-
edge from those can only be fully representative for parcels
of the same region and of similar agro-climatic conditions.
Therefore, the time-series comparison method was applied to
994 cotton parcels in close proximity to the reference parcels.
Due to the scarcity of ground truth data and the need to gen-
eralize the methodology to be applicable in other areas, we
examined a pseudo-labeling approach. The pseudo-labels re-
fer to those 994 predictions that are then used to train an RF
regression model.
Since the phenology prediction methodology needs to be dy-
namic and capable to execute at any time instance, multiple
RF models are trained for every 5 days throughout the grow-
ing cycle of cotton. Therefore, predictions are made every 5
days, using different RF models of increasingly larger feature
spaces. The feature spaces comprise of images from seeding
to the DoP. Each model has been fine-tuned individually.

3. EXPERIMENTAL RESULTS

The validation data, based on which the performance of the
two phenology estimation techniques were evaluated (Sec-
tions 2.2.1 and 2.2.2), has been collected through a field
campaign on 16 parcels in Rodopi, Greece and 11 parcels
in Thessally, Greece. Two experts visited each of the fields
3 or 4 times from the beginning of August 2020 until their
harvest. On each visit, the experts recorded the prevailing
phenological stage of the parcel in the BBCH scale, which
was then translated to the continuous scale of this study.
Table 2 shows the percentiles of predictions with respect to
error ranges in the continuous scale. The results are given
for the two validations datasets, namely of Thessally and
Rodopi, separately. It should be noted that the Thessaly
region is situated far from both the reference data and the
pseudo-labels; and is characterized by different agro-climatic
conditions. For both regions, but particularly for Thessaly, the

RF performs better than the time-series comparison method
(pseudo-labeling). Even though the validated samples are
limited, it could be argued that the model generalizes well,
providing satisfactory results when transferred to different
regions.

Thessaly Rodopi
Error RF PL RF PL
<10 29% 31% 24% 31%
<20 76% 51% 54% 51%
<30 100% 74% 63% 64%
<40 - 86% 80% 82%
<50 - 96% 92% 91%

Table 2. Percentiles of predictions of RF and pseudo-labeling
(PL) for different ranges of error in the continuous scale

The MAE of the two methods has been averaged over all pre-
dictions for the 97 field visits and was computed in both the
continuous scale and in days. The pseudo-labeling method
resulted in a MAE of 23.98 in the continuous scale and 6.88
in days, while the RF regression gave a MAE of 20.33 and
5.82 days. The results are satisfactory, particularly given the
inherent ambiguity of the target. The different plants in a
parcel do not all grow exactly at the same pace. Therefore,
both the reference and validation data, which were given with
a single BBCH description for a single DoY timestamp, are
subject to observation errors. The experts have quoted that
even though they are confident of their aggregated decision,
they have witnessed an intra-parcel deviation for the growth
stage of up to 4 days. The results are within the limits of this
aggregation error and thus estimation errors should not be
interpreted based on their absolute value but rather their rela-
tive importance. Having said that, both approaches appear to
perform well.

4. DISCUSSION

The prediction of extreme weather events combined with the
timely knowledge of the current growth stage is invaluable
information for pertinent decision making. An indicative
application would be an alerting mechanism that results in
i) prevention and mitigation actions and ii) evidence-based
insurance processes.
Ideal conditions for seeding based on temperature predic-
tions. The germination of cotton requires soil temperatures
(0-20cm) larger than 16 ◦C for 10 consecutive days [8]. Also,
for non irrigated parcels an indicative average rainfall of
50mm should be recorded prior to seeding [8].
Predicted heatwaves and intensification of irrigation. This
is relevant particularly during the flowering and end of flow-
ering stages.Temperatures larger than 32 ◦C during flowering,
but also during boll development can be thought as threshold
temperatures [9]. Nevertheless, the knowledge of an immi-
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nent heatwave is important for every stage of the cultivation.
Interruption of irrigation based on the estimation of the
current phenological stage and expected rainfall. Irriga-
tion can be interrupted on the onset of boll opening [10],
in order to stop the continuous growth of cotton and for the
photosynthetic carbohydrates to start contributing to the de-
velopment of bolls and not the development of leaves and
flowers. On the other hand, the interruption of irrigation at
the physiological cutout could be compromised due to an
upcoming rainfall, with a significant cost to the yield.
Application of fertilizers depending on rainfall predic-
tions. There are many fertilization methods, i.e. application
of standard fertilization prior and during seeding and applica-
tion of superficial fertilization at the first stages of the plant
[11]. The knowledge of an imminent rainfall can assist in
rushing the fertilization prior to the event in order to better
integrate the fertilizer. Furthermore, foliar fertilization could
be postponed based on the knowledge of an imminent rain-
fall, avoiding rinsing prior to its absorption.
Prediction of adverse weather event and early harvest.
The knowledge of imminent gale, frost, hail and flooding risk
near the end of the cultivation can trigger an earlier harvest of
cotton. If the hazard and the consequent damage are expected
to be severe, then the early harvesting is justified even in
cases of merely 30% of bolls are open.

5. CONCLUSIONS

In this study we implemented a dynamic phenology predic-
tion pipeline that is based on generating pseudo-labels to then
train RF regression models. The available ground truth data is
scarce and limited to a single region. Therefore the proposed
semi-supervised methodology can provide a scalable and
geographically transferable solution. The time-series com-
parison and the RF regression methods provided satisfactory
and comparable results. However, within the context of large
scale applications, the RF solution is more computationally
efficient than the exhaustive time-series comparison equiva-
lent and with greater potential for generalization.
The results presented showcase the performance of the meth-
ods only for the last stages of cotton growth. In the near fu-
ture, the methodology will be tested for the full growth cycle
in order to inspect and understand the potential performance
differences among the various growth stages. Nonetheless,
the results clearly illustrate the potential of dynamically iden-
tifying the growth stages over large areas with only minimal
ground truth information. This in turn can have great impact
towards a more resilient agricultural sector, both from the
farm management and agricultural insurance perspective.
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