Conference paper Open Access

Semi-Supervised Phenology Estimation in Cotton Parcels with Sentinel-2 Time-Series

Sitokonstantinou Vasileios; Koukos Alkiviadis; Kontoes Charalampos; Bartsotas Nikolaos; Karathanassi Vassilia

DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="" xmlns="" xsi:schemaLocation="">
  <identifier identifierType="URL"></identifier>
      <creatorName>Sitokonstantinou Vasileios</creatorName>
      <affiliation>National Observatory of Athens</affiliation>
      <creatorName>Koukos Alkiviadis</creatorName>
      <affiliation>National Observatory of Athens</affiliation>
      <creatorName>Kontoes Charalampos</creatorName>
      <affiliation>National Observatory of Athens</affiliation>
      <creatorName>Bartsotas Nikolaos</creatorName>
      <affiliation>National Observatory of Athens</affiliation>
      <creatorName>Karathanassi Vassilia</creatorName>
      <affiliation>National Technical University of Athens</affiliation>
    <title>Semi-Supervised Phenology Estimation in Cotton Parcels with Sentinel-2 Time-Series</title>
    <subject>cotton phenology ,agricultural insurance, semi-supervised learning, early warning, pseudo labels</subject>
    <date dateType="Issued">2021-10-12</date>
  <resourceType resourceTypeGeneral="ConferencePaper"/>
    <alternateIdentifier alternateIdentifierType="url"></alternateIdentifier>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.1109/IGARSS47720.2021.9553456</relatedIdentifier>
    <rights rightsURI="">Creative Commons Attribution 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
    <description descriptionType="Abstract">&lt;p&gt;This study presents a dynamic phenology stage estimation methodology for cotton towards early warning and mitigation advice against natural disasters. First, a time-series comparison algorithm, based on Earth Observation (EO) data, is used to assign pseudo-labels to approximately 1,000 parcels. For this, we employ only a limited number of ground truth samples. The pseudo-labels are then used to train Random Forest (RF) regression models for phenology stage estimation. The pseudo-labeling process is used to augment the annotated dataset and allow for modelling the growth of cotton. The models are applied and evaluated on two different test sites in Greece; for which field campaigns were carried out to collect the labels. The results are satisfactory and showcase the successful generalization of the models to other areas. The dynamic predictions for cotton growth and extreme weather events, from numerical weather prediction (NWP) models, are invaluable information for decision-making relevant to agricultural insurance schemes and farm management.&lt;/p&gt;</description>
    <description descriptionType="Other">This work has been supported by the e-shape project, which has been funded by the European Union's Horizon 2020 innovation programme under grant agreement 820852.</description>
      <funderName>European Commission</funderName>
      <funderIdentifier funderIdentifierType="Crossref Funder ID">10.13039/100010661</funderIdentifier>
      <awardNumber awardURI="info:eu-repo/grantAgreement/EC/Horizon 2020 Framework Programme - Innovation action/820852/">820852</awardNumber>
      <awardTitle>EuroGEO Showcases: Applications Powered by Europe</awardTitle>
Views 50
Downloads 47
Data volume 9.4 MB
Unique views 46
Unique downloads 44


Cite as