Poster Open Access

TBro - a transcriptome browser for de novo RNA-sequencing experiments

Ankenbrand, Markus J.; Weber, Lorenz; Becker, Dirk; Förster, Frank; Bemm, Felix


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="DOI">10.5281/zenodo.61590</identifier>
  <creators>
    <creator>
      <creatorName>Ankenbrand, Markus J.</creatorName>
      <givenName>Markus J.</givenName>
      <familyName>Ankenbrand</familyName>
      <affiliation>Department of Animal Ecology and Tropical Biology, Biocenter, Würzburg, Germany</affiliation>
    </creator>
    <creator>
      <creatorName>Weber, Lorenz</creatorName>
      <givenName>Lorenz</givenName>
      <familyName>Weber</familyName>
      <affiliation>Department of Bioinformatics, Biocenter, Würzburg, Germany</affiliation>
    </creator>
    <creator>
      <creatorName>Becker, Dirk</creatorName>
      <givenName>Dirk</givenName>
      <familyName>Becker</familyName>
      <affiliation>Department of Bioinformatics, Biocenter, Würzburg, Germany</affiliation>
    </creator>
    <creator>
      <creatorName>Förster, Frank</creatorName>
      <givenName>Frank</givenName>
      <familyName>Förster</familyName>
      <affiliation>Center for Computational and Theoretical Biology, University of Würzburg, Germany</affiliation>
    </creator>
    <creator>
      <creatorName>Bemm, Felix</creatorName>
      <givenName>Felix</givenName>
      <familyName>Bemm</familyName>
      <affiliation>Max-Planck-Institute for Developmental Biology, Department Molecular Biology (Detlef Weigel), Tübingen, Germany</affiliation>
    </creator>
  </creators>
  <titles>
    <title>TBro - a transcriptome browser for de novo RNA-sequencing experiments</title>
  </titles>
  <publisher>Zenodo</publisher>
  <publicationYear>2016</publicationYear>
  <subjects>
    <subject>Transcriptome</subject>
    <subject>Browser</subject>
    <subject>Expression</subject>
    <subject>Visualization</subject>
  </subjects>
  <dates>
    <date dateType="Issued">2016-09-13</date>
  </dates>
  <resourceType resourceTypeGeneral="Text">Poster</resourceType>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/61590</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="Cites">10.1101/gr.202200.115</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="Cites">10.1093/bioinformatics/btm189</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="Cites">10.1016/S0022-2836(05)80360-2</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;Nowadays, information about the identity and expression levels of genes are often retrieved by RNA-sequencing (RNA-seq). One of its major challenges is gaining biologically meaningful information from the vast amount of short read data. Therefore, tools for assembly and quantification have been developed. Still, the problem remains, that their results are often huge text files which are difficult to handle and interpret. Here we present TBro, a flexible denovo transcriptome browser, tackling this challenge. It aggregates data from different sources and allows interactive exploration of transcriptomes.&lt;br&gt;
This comprises assembled sequences as well as multiple annotation information. Moreover, expression level analyses and differential expression analyses can be visualized. Furthermore, TBro supports collaborative workflows. User created subsets of transcripts can be shared with other researchers for further investigation. TBro can be easily integrated into existing workflows and is also easily extensible due to its modular design. Therefore, TBro is well suited to assist in unravelling the biological story hidden underneath the wealth of RNA-seq data.&lt;/p&gt;</description>
    <description descriptionType="Other">Presented at the GCB 2016 in Berlin (poster 66, session 2).</description>
  </descriptions>
</resource>
520
225
views
downloads
All versions This version
Views 520520
Downloads 225226
Data volume 478.0 MB480.2 MB
Unique views 368368
Unique downloads 224225

Share

Cite as