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Abstract 26 

The phytomanagement concept combines a sustainable reduction of pollutant linkages at risk-assessed 27 

contaminated sites with the generation of both valuable biomass for the (bio)economy and ecosystem 28 

services. One of the potential benefits of phytomanagement is the possibility to increase biodiversity in 29 

polluted sites. However, the unique biodiversity present in some polluted sites can be severely impacted 30 

by the implementation of phytomanagement practices, even resulting in the local extinction of endemic 31 

ecotypes or species of great conservation value. Here we highlight the importance of promoting measures 32 

to minimize the potential adverse impact of phytomanagement on biodiversity at polluted sites, as well as 33 

recommend practices to increase biodiversity at phytomanaged sites without compromising its 34 

effectiveness in terms of reduction of pollutant linkages and the generation of valuable biomass and 35 

ecosystem services. 36 

 37 

Keywords: contaminated soil; metal; metallophytes; phytoremediation; trace elements.  38 

  39 
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1. Introduction 40 

The notion of phytomanagement is based on the combination of (i) a sustainable reduction of pollutant 41 

linkages at degraded sites with (ii) the generation of valuable products and essential ecosystem services. 42 

In other words, its main purpose is to grow profitable plants to minimize pollutant-induced environmental 43 

risks while maximizing economic and/or ecological revenues. It is often claimed that one of the potential 44 

benefits of phytomanagement is the possibility to enhance biodiversity in the degraded site under 45 

recovery. Pertinently, it must be strongly emphasized that some polluted sites, most relevantly mining 46 

sites, can harbour a unique biodiversity that must be carefully preserved. In any event, protecting 47 

biodiversity is of the utmost importance as human well-being depends upon biodiversity in many 48 

different ways (Naeem et al., 2016). In consequence, under the current scenario of global change and 49 

biodiversity loss, it is crucial to use as many tools as possible to preserve the fabric of life and the natural 50 

capital on which our survival and well-being depend. Biodiversity is known to be critical for the supply of 51 

ecosystem services and, then, it is not surprising that much research effort has been directed at 52 

understanding how biodiversity impacts ecosystem functioning and resilience, and concomitantly the 53 

sustainable provision of goods and ecosystems services. This aspect has special relevance within the 54 

phytomanagement framework since, as described above, the main purpose of phytomanagement is to 55 

grow profitable plants in order to minimize pollutant-induced environmental risks while maximizing 56 

economic and/or ecological revenues in terms of products and ecosystem services. However, when 57 

implementing actions to promote such biodiversity in phytomanaged sites, in most cases, the only 58 

initiative is to enhance the number of different plant species grown for phytomanagement purposes. We 59 

must overcome such incomplete approach by widening our understanding of how the different taxonomic 60 

groups can be positively or negatively affected by phytomanagement practices. In addition, the unique 61 

biodiversity present in some polluted sites can be negatively affected by the implementation of 62 

phytomanagement practices. In this review paper, the importance of promoting (i) measures to minimize 63 

the potential adverse impact of phytomanagement on biodiversity; and (ii) practices to increase 64 

biodiversity at phytomanaged sites, is highlighted. 65 

 66 

2. Phytomanagement: a sustainable gentle remediation option  67 

As a result of a wide variety of anthropogenic activities and accidental spills, many soils are currently 68 

polluted with a myriad of potentially toxic compounds, such as trace elements (TEs), mineral oils, 69 
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polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), pesticides, etc. 70 

Unfortunately, the remediation of polluted soils is often a very expensive, environmentally-disruptive 71 

activity, especially at large sites and/or in those soils simultaneously polluted with several contaminants 72 

inducing adverse effects on biological receptors (Agnello et al. 2016). 73 

 Opportunely, in the last decades, various Gentle Remediation Options (GROs) have been 74 

developed as more cost-effective, environmentally-friendly and aesthetically-pleasing technologies for 75 

the remediation of large areas with polluted soils from mild up to medium levels of contamination 76 

(Vangronsveld et al. 2009; Kidd et al. 2015; Mench et al. 2018). Among them, phytoremediation and 77 

phytomanagement have shown their great potential, on the long term, for the sustainable remediation of 78 

polluted sites due to their capacity to combine an effective mitigation of pollutant-induced risks with the 79 

provision of valuable plant biomass and ecosystem services (Mench et al. 2018).  80 

The term phytoremediation refers to a set of sustainable phytotechnologies focused on the use of 81 

plant species to remediate polluted sites, mainly those affected by the presence of TEs via the 82 

phytoextraction or phytostabilization options, which aim at (i) decreasing the available soil TEs, through 83 

plant uptake and accumulation in the harvestable plant parts, or (ii) reducing the labile (“bioavailable”) 84 

TE pool usually by combining the growth of TE-excluding plants with the application of soil amendments 85 

(Garbisu and Alkorta 2001; Alkorta et al. 2004a,b). However, the commercial application of 86 

phytoextraction has been seriously hampered by its intrinsic limitations, e.g. the long time required to 87 

effectively extract TEs from medium and highly polluted soils, root depth, lack of plants that can 88 

accumulate more than one or two TEs, decrease of metal(loid) market prices, etc. In turn, one constraint 89 

for the application of phytostabilization is that many risk-assessment regulations for soil remediation are 90 

still based on total soil TEs, not on their bioavailable concentrations or site-specific risk assessment. 91 

Paradoxically, the harmful effects of TEs on soil biota and, hence, soil health, are related to the 92 

sensitivity/tolerance of living organism populations and the bioavailable pool rather than total metal(loid) 93 

concentrations (Kumpiene et al. 2009, 2017), the bioavailable fraction being subject to uptake by soil 94 

organisms, leaching, and transfer to other environmental media (Madejón et al. 2006).  95 

In any event, for effective clean-up of TE-polluted soils, the combination of different 96 

approaches, e.g. phytoextraction with hyperaccumulators, chelate-assisted phytoextraction, 97 

phytostabilization, microbe-assisted phytoremediation (bioaugmentation), traditional breeding and/or 98 
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genetic engineering of phytoremediation plants, etc., appears necessary to increase the applicability of 99 

phytoremediation in the future (Yang et al. 2020a). 100 

To overcome the phytoremediation limitations, the concept of phytomanagement evolved (Fig. 101 

1), combining a sustainable reduction in pollutant linkages with the generation of plant biomass (mainly 102 

non-food crops) and ecosystem services (Mench et al. 2009; Robinson et al. 2009; Fässler et al. 2010; 103 

Robinson and McIvor 2013; Cundy et al. 2016; Burges et al. 2018). The phytomanagement objective is to 104 

grow profitable plants to control the bioavailable pool of soil pollutants (e.g., TEs), thereby minimizing 105 

environmental risks, while maximizing economic and ecological revenues (Vangronsveld et al. 2009). In 106 

this way, phytomanagement (commonly based on the interactions among plants, microorganisms and soil 107 

amendments) is often considered a “holding strategy” for vacant sites until their remediation is 108 

undertaken according to future land use (Mench et al. 2018). Most importantly, compared to other 109 

remediation technologies, the requirements of phytomanagement for chemicals and energy are much 110 

lower, as well as the total cost, making it a viable strategy for the remediation of large polluted areas 111 

(Thewys et al. 2010; Kuppens et al. 2015; Giagnoni et al. 2020). 112 

The production of valuable plant biomass (for timber, bioenergy, biofortified products, 113 

ecomaterials, etc.) is considered essential for the commercial success of phytomanagement (Conesa et al. 114 

2012). Energy crops, e.g. Miscanthus spp., Ricinus communis L. and Brassica napus L., can be grown for 115 

biofuel production (Burges et al. 2018). Other plant species can be grown for the production of biochar, 116 

raw materials (oil, paper, chemicals, essential oils, etc.), medicinal purposes, etc. (Pandey et al. 2016). 117 

Likewise, the growth of fast growing trees opens the possibility to phytoextract some metals in excess 118 

(e.g., Cd, Zn, Ni, U, Cs, and Sr) while producing biomass for bioenergy and products (e.g., timber, resin, 119 

adhesives, etc.). Other phytomanagement options are aimed at removing the bioavailable metal(loid) 120 

fraction, the so-called “bioavailable contaminant stripping (BCS)”, while providing ecosystem services 121 

and feedstocks for biomass-processing (bio)technologies (Herzig et al. 2014). 122 

Since the 2010s, an increasing attention is developing on the capacity of phytomanagement 123 

options to provide a wide variety of co-benefits and ecosystem services, such as primary production, 124 

control of soil erosion, water runoff/drainage management, carbon sequestration, amenity and recreation, 125 

aesthetic value, habitat for animals and microorganisms, biodiversity, etc. (Evangelou et al. 2015; Kidd et 126 

al. 2015; Cundy et al. 2016; Simek et al. 2017; Touceda-González et al. 2017a; Xue et al. 2018). Strictly 127 

speaking, biodiversity per se is not an ecosystem service (Haines-Young and Potschin 2010); rather, 128 
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biodiversity supports the flow of vital ecosystem services that we depend upon (in other words, 129 

biodiversity forms the biological infrastructure that supports the provision of ecosystem services). Indeed, 130 

the ecosystem services (and, concomitantly, human well-being) depend essentially on the structures and 131 

processes generated by living organisms and their interactions with, and processing of, abiotic materials 132 

(Haines-Young and Potschin 2010; IPBES 2019). Although biodiversity has intrinsic value by itself (and, 133 

then, it should be preserved in its own right), its utilitarian value has increasingly become the central 134 

focus of the debates on the need to preserve our natural capital (Chang et al. 2007; Haines and Potskin 135 

2010). 136 

The phytomanagement capacity to promote biodiversity in polluted sites is of key importance, as 137 

we are currently at a crucial juncture in human history, with biodiversity being lost at an accelerating pace 138 

due to an increasingly affluent human population, climate change, uncontrolled development and habitat 139 

destruction (Sandifer et al. 2015; IPBES 2019). Taking into consideration the links between biodiversity, 140 

ecosystem functioning, ecosystem services and human well-being (Cardinale et al. 2006; Naeem et al. 141 

2016), now more than ever, the importance of promoting biodiversity must be emphasized.  142 

 143 

3. Unique biodiversity at polluted sites 144 

One of the recurrently mentioned potential benefits of phytomanagement is the possibility to increase 145 

biodiversity in the polluted land in question. However, the unique biodiversity often present in many 146 

polluted sites (in particular, long-term abandoned mine sites) can be severely impacted by the 147 

implementation of phytomanagement practices, even resulting in the local extinction of endemic ecotypes 148 

or species of great conservation value. Here we highlight the importance of promoting measures to 149 

minimize the potential adverse impact of phytomanagement on biodiversity at polluted sites. After all, 150 

some polluted sites, most relevantly mining sites, harbour a unique biodiversity that must be 151 

painstakingly preserved. Actually derelict soils can provide an interesting biodiversity for a variety of 152 

uses (Vincent et al. 2018). 153 

In particular, there is a need to conserve metallophytes (i.e., unique plant species that have 154 

evolved to survive on soils with high TE levels), which are nowadays increasingly under threat of 155 

extinction from mining activity (Whiting et al. 2004; Batty 2005; Baker et al. 2010; Paul et al. 2018). 156 

Indeed, regrettably, metalliferous ecosystems are presently threatened at a global scale by the growth of 157 
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mining activities with concomitant extinction risks for metallophyte diversity (Whiting et al. 2004; Séleck 158 

et al. 2013). 159 

Metallophytes are the consequence of powerful selective pressures over long evolutionary times 160 

as a result of the presence of high total soil TEs (Ginocchio and Baker 2004). The intensity and duration 161 

of the sustained evolutionary exposure to these high TE levels direct the degree of specialization of the 162 

TE resistance trait. Thus, some populations of plant species can evolve TE resistance within a few years, 163 

for example around metal smelters, if the selection pressure is high enough (Barrutia et al. 2011a). 164 

Populations of pseudometallophytes present a greater capacity to withstand phytotoxicity induced by TE 165 

excess, as compared with other populations of the same plant species from non-polluted sites (Whiting et 166 

al. 2004; Barrutia et al. 2011a). But, as the duration of TE exposure increases, the mechanisms that allow 167 

survival and growth in the presence of high TE levels become gradually more specialized, resulting in 168 

true metallophytes or eumetallophytes that have developed evolutionary mechanisms to live and thrive on 169 

metalliferous soils. As a matter of fact, true metallophytes have often diverged genetically and 170 

morphologically to form new taxa endemic to their native metalliferous soils (Barrutia et al. 2011a). 171 

Regrettably, their restricted geographic range is, partly, responsible for the current high rates of 172 

population decline or, what is worse, irreversible extinction.  173 

Plants growing in TE-polluted sites can be classified as (1) excluders: these plants limit TE 174 

uptake and translocation and, then, maintain low TE concentrations in their aerial tissues; (2) indicators: 175 

these plants accumulate TEs in their harvestable parts at concentrations similar to those present in the 176 

polluted soil; and (3) accumulators/hyperaccumulators: these plants increase TE uptake, translocation 177 

and accumulation in their aboveground biomass reaching levels that far exceed those present in the 178 

polluted soil (van der Ent et al. 2013, 2015a; Malik et al. 2017; Massoura et al. 2014; Reeves et al. 179 

2017a). Particularly, hyperaccumulators are exceptional plants that accumulate metal(loid)s in their 180 

tissues to levels that can be hundreds or thousands of times greater than common ranges in other plant 181 

species (van der Ent et al. 2013), and whose ecology is an active field of research, focusing on anti-182 

herbivore defences, allelopathy and biotic interactions (Reeves et al. 2017b). Logically, it is important to 183 

protect not only TE hyperaccumulators as nature´s oddities but also TE excluders, indicators and 184 

accumulators. 185 

Apart from their intrinsic value as remarkable rare species, metallophytes are suitable candidates 186 

for the revegetation of mining sites, as well as for the implementation of phytoremediation 187 
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(phytoextraction/phytomining, phytostabilization) and phytomanagement initiatives (van der Ent et al. 188 

2015b; Rosenkranz et al. 2019; Corzo Remigio et al. 2020). Thus, TE excluders and hyperaccumulators 189 

have been extensively used for phytostabilization and phytoextraction purposes, respectively (Hernández-190 

Allica et al. 2006; Epelde et al. 2008, 2009, 2010; Barrutia et al. 2009; Pardo et al. 2014; Garaiyurrebaso 191 

et al. 2017). There is nowadays an increasing interest in the use of native plant species and populations 192 

for the revegetation of TE polluted sites, as opposed to non-native, introduced species (Parraga-Aguado et 193 

al. 2014; Chen et al. 2019). In this respect, a sturdy commitment to conservation of metallophyte 194 

biodiversity is self-evident (Whiting et al. 2002).  195 

Then, before starting any phytomanagement initiative, it is imperative to study the native 196 

vegetation of the polluted site in search of potential candidates (e.g., metallophytes) for conservation 197 

purposes. If such candidates are identified, then, an area of the site (preferably, the area where the most 198 

interesting plant species have been identified) must be left unmanaged for conservation purposes (and, if 199 

needed, protection barriers must be installed).  200 

In addition to protecting the natural environment of valued and treasured plant species (i.e., in 201 

situ conservation in biotope ‘‘islands’’), efforts must also be directed at conserving them ex situ, that is to 202 

say, in germplasm banks, seed gardens, arboreta, botanic gardens, etc. (Whiting et al. 2004), ideally 203 

maintaining the required degree of contaminant exposure (otherwise, contaminant-sensitive, non-adapted 204 

individuals might again become dominant in the plant population after a few cultivations). Additionally, 205 

when designing a strategy to preserve the valuable native vegetation at the polluted site, attention should 206 

also be paid to plant assemblages (e.g., metalliferous distinctive plant communities).  207 

Apart from the presence of unique metallophytes in TE-polluted sites, these degraded 208 

environments can also harbour a valuable microbial diversity that can likewise be used for 209 

phytoremediation and/or phytomanagement initiatives. For instance, TE resistant plant growth-promoting 210 

rhizobacteria and endophytes, as well as TE-resistant mycorrhiza, can be isolated from TE-polluted sites 211 

and, subsequently, be used to improve plant survival, growth and performance under the harsh conditions 212 

usually present in many TE-polluted sites, particularly mining sites (Weyens et al. 2011; Ma et al. 2015; 213 

Burges et al. 2016, 2017; Harrison and Griffin 2020). For instance, rhizobacterial inoculants (e.g., 214 

Arthrobacter nicotinovorans SA40) have been shown to improve nickel phytoextraction by the 215 

hyperaccumulator Alyssum pintodasilvae (Cabello-Conejo et al. 2014). Similarly, the inoculation of 216 

ultramafic soils with Microbacterium arabinogalactanolyticum AY509224 increased soil Ni extractability 217 
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and uptake by Alyssum murale (Abou-Shanab et al. 2006). The inoculation with TE-resistant plant 218 

growth-promoting bacteria has been reported to enhance the biomass of different plant species (e.g., 219 

Brassica juncea, Ricinus communis, Helianthus annuus, and Sedum alfredii) growing in TE-polluted soils 220 

(Dell’Amico et al. 2008; Jiang et al. 2008; Mastretta et al. 2009; Zaidi et al. 2006). Likewise, Kolbas et al. 221 

(2015) reported the positive effects of endophytic bacteria for Cu phytoextraction by sunflower plants. 222 

Truyens et al. (2015) found that inoculation of Agrostis capillaris plants with endophytes can be 223 

beneficial for their establishment during phytoextraction and phytostabilisation of Cd polluted soils. The 224 

co-inoculation of Paenibacillus mucilaginosus and Sinorhizobium meliloti in Cu-contaminated soil 225 

planted with Medicago sativa improved alfalfa growth and decreased Cu accumulation in shoots, 226 

compared to the uninoculated control (Ju et al. 2020). The inoculation of Pseudomonas vancouverensis 227 

promoted As accumulation efficiency in Pteris vittata and Pteris multifidi (Yang et al. 2020b). However, 228 

the effect of bacterial inoculants on plant growth and TE-accumulation has been shown to be plant 229 

species-specific (Becerra-Castro et al. 2012). 230 

Apart from the recognized conservation value of metallophytes present at TE-polluted sites, 231 

plant species and, interestingly, microbial (bacteria, fungi) populations living in soils polluted with 232 

organic compounds must also be considered for conservation purposes, owing to their intrinsic value as 233 

well as their potential use for the rhizoremediation (i.e., degradation of pollutants by rhizosphere bacteria) 234 

(Barrutia et al. 2011b; Lacalle et al. 2018; Brereton et al. 2020) and bioremediation of organically 235 

polluted soils (Garbisu et al. 2017; Anza et al. 2018; Meglouli et al. 2019; Villaverde et al. 2019). Since 236 

bacterial and fungal strains isolated from organically-polluted soils can then be used for bioremediation 237 

via bioaugmentation purposes, after thoroughly testing their degrading capabilities and potentials, it is 238 

recommended to keep them in a microbial bank for possible future biotechnological applications. 239 

 240 

4. Managing biodiversity during phytomanagement 241 

4.1. Phytomanagement under the current scenario of climate change 242 

The negative consequences of climate change can nowadays be undoubtedly identified in the more 243 

frequent alteration of natural and agricultural ecosystems, owing to, for instance, higher temperatures, 244 

extreme droughts and storms, and an increased likelihood of heat waves and heavy precipitation episodes 245 

(Alkorta et al. 2017). Not surprisingly, plant survival and growth are being significantly altered under 246 
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changing climatic conditions. Furthermore, increasing CO2 concentrations in the atmosphere are currently 247 

changing the physiology of plants, affecting, among other aspects, their growth rate.  248 

Specifically, regarding the choice of plant species for phytomanagement in semi-arid and arid 249 

regions (e.g., southern Europe) (Pulighe et al. 2019), and taking into account the critical importance of an 250 

adequate water regime for the success of revegetation programs, special attention should be paid to the 251 

selection of drought-resistant plant species and ecotypes, since the duration and frequency of extreme 252 

droughts is nowadays increasing in many semi-arid and arid regions (Risueño et al. 2020).  253 

The possibility of irrigating phytomanagement crops is decidedly controversial, since water is an 254 

increasingly scarce resource in many parts of the world. A proper sustainable management of water 255 

resources is currently one of the greatest challenges for our society worldwide. Above all, we must first 256 

ensure availability of good quality water for human consumption and agricultural purposes. Regrettably, 257 

in the coming decades, the problem of water scarcity will probably get worse than it is now. Predictably, 258 

an increase in the world human population will imply more water for human consumption and 259 

agricultural production (agriculture accounts for around 70% of the water currently used in the world). 260 

Then, it follows that the consumption of good quality water for irrigation of phytomanaged sites is, in 261 

general, not considered a valid option, especially in semi-arid and arid regions. An alternative is the use 262 

of wastewater for irrigation. An appealing, and currently attention-grabbing, option is the possibility of 263 

treating such wastewater by means of rhizofiltration (i.e., the use of plant roots and associated microbes to 264 

absorb, concentrate and precipitate pollutants, especially TEs, from polluted effluents and waters) and/or 265 

biodegradation, notably using constructed wetlands (CWs) and floating islands (Dushenkov et al. 1995; 266 

Schröder et al. 2007; Zhang et al. 2007; Olguin et al. 2017). 267 

Urban wastewater is known to contain nitrogen, phosphorus and other nutrients, leading to an 268 

extra beneficial effect for plant growth through fertilization. Irrigation with wastewater is only 269 

recommended for non-food and non-fodder crops, and then it would be an ideal option for 270 

phytomanagement. Evidently, it would be beneficial to have an efficient urban wastewater treatment plant 271 

closed to the site to be phytomanaged, so that the wastewater, directly or preferably after rhizofiltration in 272 

a CW does not need to be transported a long distance. Interestingly, CWs can also be used to treat acid 273 

mine drainage and then there is the possibility of reusing the treated water to eventually irrigate mine 274 

tailings (Pat-Espadas et al. 2018). 275 



11 

 

Therefore, especially in semi-arid and arid regions of the world, for phytomanagement purposes, 276 

it is recommended to select plant species that are resistant to water stress, extreme droughts and heat 277 

waves for increasing the long-term success of the phytomanagement strategy (Risueño et al. 2020). For 278 

instance, as water supply and its distribution during the crop cycle is a key limiting factor for crop 279 

production in SW France, the sunflower and tobacco ability to stand more frequent heat waves and long 280 

droughts is certainly an advantage (Kidd et al. 2015; Mench et al. 2018). Although hundreds of plant 281 

species are suitable candidates for phytoremediation and/or phytomanagement purposes, there is 282 

nowadays an urgent need to identify those which can successfully be used under the current scenario of 283 

climate change.  284 

The potential indirect effects of climate change on the soil biota present in phytomanaged sites 285 

must be also considered, through the abovementioned climate change-induced alterations in plant growth 286 

and physiology. Although higher levels of atmospheric CO2 are a priori not expected to directly affect 287 

soil microbial communities (i.e., CO2 concentrations in the soil are much higher than in the atmosphere), 288 

higher atmospheric CO2 concentrations can indirectly impact on soil microbial communities through 289 

higher plant growth, increases in litter deposition and rhizodeposition (often resulting in a stimulation of 290 

soil microbial biomass and activity), faster nutrient uptake and water use efficiency (Phillips et al. 2011; 291 

Bardgett et al. 2013; Burns et al. 2013; Alkorta et al. 2017). Such climate change-induced variations of 292 

rhizodeposition patterns, and concomitant changes in the composition and activity of rhizosphere 293 

microorganisms, can modify TE bioavailability in soils (Rajkumar et al. 2013), thus potentially affecting 294 

plant performance during phytomanagement.  295 

The consequences of climate change (via higher atmospheric CO2 concentrations, heat waves, 296 

extreme droughts, higher temperatures, etc.) on beneficial plant-microorganism interactions (e.g., plant 297 

growth-promoting rhizobacteria, endophytes, and mycorrhiza) are increasingly being studied (Compant et 298 

al. 2005, 2010; Classen et al. 2015; Cavicchioli et al. 2019; Risueño et al. 2020). Plant growth-promoting 299 

bacteria and fungi can positively affect water-stressed plants and, then, their inoculation should nowadays 300 

be strongly considered for phytomanagement. On the other hand, climate-induced changes in soil 301 

temperature and moisture can alter soil processes, such as organic matter decomposition and nutrient 302 

cycling (Burns et al. 2013), supported, to a great extent, by the activity of soil microorganisms.  303 

Some phytomanagement practices (e.g., the application of organic amendments, low- or no-304 

tillage practices, grassland implementation and afforestation) have great potential for carbon sequestration 305 
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and, hence, climate change mitigation. The incorporation of trees in phytomanagement initiatives (e.g., as 306 

part of intercropping systems) has also acknowledged positive effects in this respect (Schoeneberger et al. 307 

2012; Alam et al. 2014; Zeng et al. 2019a,b; Brereton et al. 2020).  308 

In theory, a possible option for adaptation to climate change in phytomanagement is to 309 

incorporate to the planting scheme as many plant species as possible, and preferably from different 310 

vegetation types: grasses, shrubs and trees. Nevertheless, in many situations this is not a realistic, feasible 311 

option because the specific plant assemblages established for phytomanagement purposes are determined, 312 

to a great extent, on the future land use and on the particular non-food crops intended to be delivered to 313 

the local chains processing the harvestable biomass. 314 

Moreover, the conservation of plant biodiversity (e.g., the aforementioned metallophyte 315 

diversity) is crucial for adaptation to climate change as part of an “insurance policy”: different species, 316 

varieties and ecotypes may be needed in the future as environmental conditions are altered by climate 317 

change. 318 

 319 

4.2. Promotion of biodiversity under phytomanagement 320 

Under the inherent constraints inevitably derived from the phytomanagement goals, it is certainly possible 321 

to promote biodiversity in phytomanaged sites by means of, for instance, growing as many plant species 322 

and varieties/ecotypes from different vegetation types (grasses, shrubs and trees) as possible (Table 1). 323 

Interestingly, the establishment of different plant species in phytomanaged sites can result in the 324 

generation of a wider variety of valuable products and ecosystem services (Evangelou et al. 2015; Pandey 325 

and Bauddh 2018).  326 

 Many additional benefits can be obtained when combining different plant species for the 327 

phytoremediation and phytomanagement of polluted sites. For instance, the combination of Pteris vittata 328 

with Morus alba and Broussonetia papyrifera not only increased the phytoextraction of trace elements 329 

but alleviated phytotoxicity as well (Zeng et al. 2019b). In a similar study, the co-planting of P. vittata 330 

with Arundo donax, M. alba and B. papyrifera resulted in an improvement of soil health (Zeng et al. 331 

2019a). Furthermore, intercropping with Paspalum miliaceum and Axonopus affinis was efficient in 332 

promoting gravevine growth in Cu-polluted soil by reducing metal bioavailability (De Conti et al. 2019). 333 

Interestingly, the combination of tree, shrub and grass species in a metal polluted soil resulted in a more 334 

efficient employment of water resources and a higher biodiversity of soil microorganisms (Parraga-335 
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Aguado et al. 2014). In contrast, the co-planting of Odontarrhena chalcidica or Noccaea goesingensis 336 

with Lotus corniculatus for Ni removal led to reduced values of shoot biomass (Rosenkranz et al. 2019).  337 

The beneficial effects of co-planting have also been reported for organically-polluted and mixed-338 

polluted soils. Wang et al. (2013) reported an enhanced degradation of PAHs, in the presence of trace 339 

elements, when S. alfredii was combined with Lolium perenne or Ricinus communis. In agreement with 340 

these results, in their studies on intercropping with Medicago sativa and Festuca arundinacea, Sun et al. 341 

(2011) observed higher PAH degradation values under intercropping vs. monoculture. Likewise, 342 

intercropping with M. sativa, L. perenne and F. arundinacea improved the degradation of phthalic acid 343 

esters. Finally, F. arundinacea was also co-planted with Salix miyabeana and M. sativa, finding out that 344 

when crops were cultivated in pairs they showed an enhanced rhizosphere community in terms of the 345 

presence of plant growth-promoting bacteria (Brereton et al. 2020). 346 

Aboveground and belowground organisms are closely linked: plants provide organic carbon for 347 

soil decomposers and resources for root-associated organisms; in turn, soil decomposers break down dead 348 

plant material and regulate plant growth by determining the nutrient supply (Wardle et al. 2004). 349 

Different plant species differ in the quantity and quality of litter and root exudates, thus affecting the 350 

biomass, activity and diversity (mainly, composition) of soil microbial communities. A more diversified 351 

vegetation leads to a higher number of ecological niches and, hence, biodiversity (Risueño et al. 2020). 352 

Indeed, higher plant richness results in a higher variety of root exudates and types of litter, thus 353 

stimulating biodiversity belowground (Wardle et al. 2004; Haichar et al. 2008). Nonetheless, Li et al. 354 

(2015) found no relationship between plant and soil bacterial diversity in an early successional forest, and 355 

a negative correlation in a late successional forest. Similarly, Kowalchuk et al. (2000) reported a negative 356 

correlation between grassland plant and soil ammonia-oxidizing bacterial diversity. These contradictory 357 

results point out to the vast complexity of the multiple links and interactions between aboveground and 358 

belowground diversity (Wardle et al. 2004; De Deyn and Van der Putten 2005; Kardol and Wardle 2010), 359 

which, at the moment, are far from being well understood. Phytomanagement, apart from increasing soil 360 

microbial biomass and activity, can induce shifts in the bacterial community structure at both the total 361 

community and functional group levels (Touceda-González et al. 2017a). In a study on the effectiveness 362 

of dolomite and compost as amendments for enhancing Cu phytostabilization with Populus trichocarpa x 363 

deltoides cv. Beaupré and Agrostis gigantea L., Cu stabilization and phytomanagement induced positive 364 
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changes in the microbial community of soil leachates, enriching this community with plant beneficial 365 

bacteria (Giagnoni et al. 2020). 366 

The presence of phytopathogens and root herbivores in the rhizosphere can produce a negative 367 

feedback on plant growth, whereas mycorrhizal fungi and plant-growth promoting rhizobacteria can have 368 

a positive one on plant growth (Sessitsch et al. 2013; Sura-de Jong et al. 2015). In any case, the evidence 369 

for positive or negative links between aboveground and belowground biodiversity is mixed, and not all of 370 

the mechanisms by which aboveground organisms affect belowground diversity and vice versa 371 

necessarily lead to correlations of species richness in both domains (Hooper et al. 2000). The common 372 

perception that belowground biodiversity should follow similar patterns to those of plant diversity during 373 

ecosystem development is challenged by Delgado-Baquerizo et al. (2020). 374 

A higher richness of plant species can, for instance, be used to promote the biodegradation of 375 

aged polycyclic aromatic compounds in soil: oxygenated PAHs (some of which are more toxic than their 376 

related PAHs) can, however, accumulate in soils during such a plant-assisted remediation process 377 

(Bandowe et al. 2019). 378 

Through an increase in plant diversity and, hence, in the number of ecological niches and 379 

possible habitats, it is also desirable to promote the aboveground and belowground diversity of animals 380 

(e.g., arthropods: insects, arachnids, myriapods, etc.; earthworms; nematodes; mammals; birds; and so 381 

on), of course, always paying close attention to the potential risk of pollutant bioaccumulation and 382 

biomagnification (e.g., TE biomagnification along the trophic chain) (Peterson et al. 2003). Interestingly, 383 

these animals can act as phytomanagement crop auxiliaries, helping to fight pests, pollinate the cultivated 384 

plants, etc. (Verkerk et al. 1998; Ferron and Deguine 2005). 385 

Finally, intercropping systems have been extensively investigated for phytoremediation purposes 386 

(Sun et al. 2011; Ma et al. 2013; Wang et al. 2013; Alam et al. 2014; De Conti et al. 2019; Zeng et al. 387 

2019a,b; Brereton et al. 2020) with additional benefits in terms of aboveground and belowground 388 

diversity. Likewise, as individual plant species repeatedly possess a limited range of TE phytoremediation 389 

capacities, functional complementarity principles could be of value for the phytoremediation of soils 390 

polluted with multiple TEs by means of using assemblages of species (Desjardins et al. 2018). 391 

Biodiversity provides a wide range of values, some of them indirectly such as aesthetic value, 392 

cultural value, spiritual value, scientific value, educational value, etc. Arguably, from an anthropocentric 393 

point of view, the most important value of biodiversity comes from the ecosystem services it provides. 394 
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Biodiversity preserves the structure and integrity on which healthy ecosystems depend to provide the vital 395 

ecosystem services on which we rely on.  396 

Among other values of biodiversity, the following two are often discussed when dealing with the 397 

conservation of biodiversity and the human use of natural resources: (1) intrinsic value: as such, we have 398 

the moral responsibility to preserve biodiversity (well-known nature writers such as Henry David 399 

Thoreau, John Muir, Aldo Leopold, etc. have emphasized the intrinsic value of biodiversity); and (2) 400 

utilitarian value: as such, focused on the commercial and subsistence benefits (e.g., food, medicines, raw 401 

materials, energy, etc.) of biodiversity to humankind. Within this utilitarian perspective, the idea is to 402 

protect biodiversity so that we can utilize it later for our own benefit. Obviously, this utilitarian value of 403 

biodiversity is inextricably link to the phytomanagement concept. In any case, when designing a 404 

phytomanagement initiative, it is unquestionably possible to promote biodiversity within the limits 405 

imposed by the specific phytomanagement objectives (e.g., by means growing as many plant species as 406 

possible) with the concomitant potential benefit of obtaining a wider variety of products and ecosystem 407 

services. 408 

Anyhow, the biodiversity concept is anything but simple. Among others, it includes the 409 

following aspects: richness (or the number of species), evenness (relative abundances resulting in rare and 410 

dominant species), composition (in terms of taxonomic groups), phylogenetic relatedness/distinctiveness, 411 

and spatial and temporal distribution. Regarding species composition, biological species are certainly not 412 

all equal: there are keystone species, foundation species, umbrella species, flagship species, charismatic 413 

species, ecosystem engineers, invasive species, indicator species, chemical engineers, biological 414 

regulators, etc., leading us to the difficult and arduous challenge to prioritize among them (Vane-Wright 415 

et al. 1991).  416 

Some authors proposed to assign more value to those species that lack close relatives, as by 417 

maximizing the conservation of evolutionary diversity, we maximize genotypic, phenotypic and 418 

functional diversity, and, hence, provide ecosystems with the most options to adapt to a changing world 419 

(Vane-Wright et al. 1991; Cadotte et al. 2010). Besides, some species appear to perform phylogenetically 420 

narrow processes (e.g., nitrification, atmospheric nitrogen fixation) while others perform phylogenetically 421 

broad processes (e.g., denitrification). The former show a lower degree of functional redundancy, 422 

compared to the latter. 423 
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To assess the influence of phytomanagement practices on biodiversity (such a broad concept) is 424 

anything but easy. There are still many unanswered questions that research is yet to answer, e.g. What 425 

number of species is a good number? What species composition is best? What degree of phylogenetic 426 

distance is more adequate? How differently should we value the different types of species? Are 427 

functionally redundant species less valuable than non-functionally redundant species? These questions 428 

being answered, we must not take only richness into consideration when promoting biodiversity at 429 

polluted sites under phytomanagement. To the best of our expertise and capacities, we must try to 430 

consider other relevant aspects also included within the biodiversity concept. 431 

To further complicate matters, biodiversity is difficult to quantify, at least partly, due to the 432 

multitude of indices available to measure it (e.g., species richness, Shannon-Wiener entropy, Simpson’s 433 

index, Berger-Parker index, etc.). This is not surprising because of the abovementioned complexity of all 434 

the aspects of biodiversity, which inevitably leads to the fact that no single perfect indicator for 435 

biodiversity can be devised (Duelli and Obrist 2003). As a matter of fact, the choice of index often 436 

depends on the question(s) to be answered, as well as on the specific aspect(s) or entity of biodiversity to 437 

be evaluated. Paradoxically, most diversity indices have traditionally relied on three untrue assumptions: 438 

(i) all species are equal; (ii) all individuals are equal; and (iii) species abundances have been correctly 439 

assessed with appropriate tools and in similar units (Magurran 2004). In any case, although the choice of 440 

index(es) depends, to a great extent, on the specific questions and objectives of the study, three of the 441 

most commonly used indices are the Margalef´s index for richness, the Shannon-Weaver´s index for 442 

diversity and the Simpson´s index for dominance. 443 

Similarly, the use of indices for quantifying functional biodiversity (functional richness, 444 

functional evenness, and functional divergence) is essential to better understand the links between 445 

biodiversity, ecosystem functioning and environmental constraints (Mouchet et al. 2010). Indeed, many 446 

studies on the impact of disturbances (e.g., agronomic practices, contamination, climate change, nitrogen 447 

deposition, etc.) on biological diversity are focused exclusively on structural biodiversity (usually, of only 448 

one or a few taxonomic groups). But phytomanagement has a strong functional component related to the 449 

provision of ecosystem services. Thus, it is highly beneficial to include both types of biodiversity, i.e. 450 

structural and functional diversity, when promoting biodiversity under phytomanagement. Apart from a 451 

selection, as wide as possible, of taxonomic groups, an analysis of functional groups, traits, guilds and so 452 
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on must be included in phytomanagement initiatives (Kumpiene et al. 2014; Durand et al. 2017; Touceda-453 

González et al. 2017a,b; Xue et al. 2018; Burges et al. 2020).  454 

Although the identification of links between structural and functional biodiversity is undoubtedly 455 

a challenging task, such identification is of much value from both an academic/scientific and management 456 

point of view. Statistical multivariate analyses, applied to the group of variables used to measure 457 

structural and functional diversity, are suitable tools for the establishment of hypotheses regarding the 458 

abovementioned links. 459 

The topic of the selection of the best indices to quantify both structural and functional 460 

biodiversity is not within the scope of this document. Nonetheless, we encourage the use of various 461 

indices for covering as much as possible the different aspects of the term biodiversity: richness, 462 

abundance, phylogenetic relatedness, functional traits, etc. Ideally, one should make the best efforts 463 

possible to evaluate the effect of phytomanagement practices on the various levels of biodiversity: 464 

genetic, species, populations and communities/ecosystems. However, biodiversity is not simply the sum 465 

of all ecosystems, species and genetic material, as it represents the variability within and among them.  466 

In particular, for soil microorganisms, the assessment of genetic diversity is indispensable for 467 

microbial ecologists since: (i) all the current definitions of “species” are inadequate for prokaryotes, 468 

among other reasons due to the transfer of genes by horizontal gene transfer; and (ii) most 469 

microorganisms cannot be cultivated and so we have no other choice than to study them by means of the 470 

application of molecular biology techniques. In consequence, most soil microbial ecologists are nowadays 471 

focused on the use of next generation sequencing techniques (e.g., metabarcoding, metagenomics) for the 472 

quantification of soil microbial diversity. But next generation sequencing has still many technical 473 

limitations and then we must be cautions when drawing conclusions about the effect of disturbances or 474 

practices (e.g., phytomanagement) on soil microbial diversity.  475 

Most studies on the effect of phytoremediation or phytomanagement practices on microbial 476 

diversity are focused on soil microbial communities, especially rhizosphere microorganisms. In this 477 

respect, more attention should be paid to plant microbiota and plant microbiomes (e.g., in the 478 

phyllosphere) under phytomanagement (Imperato et al. 2019). 479 

Similarly, concerning genetic diversity, there are still many unanswered questions, such as, for 480 

example: The more genes the better? Are all genes equally important? Can we talk about “good” genes 481 
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(e.g., genes involved in contaminant biodegradation pathways) and “bad” genes (e.g., antibiotic resistance 482 

genes)? How can be combined data from metagenomic, metatranscriptomic and metaepigenomic studies? 483 

Likewise, when dealing with ecosystem diversity (i.e., the richness and complexity of biological 484 

communities, including trophic levels and ecological processes, together with the chemical and physical 485 

environment), additional questions emerge: How many trophic levels do we need? Are all of them equally 486 

important? How many species per trophic level are needed? 487 

Regarding the critical links between biodiversity and ecosystem functioning, one should take 488 

into consideration the concept of emergent properties, i.e. those new qualities that appear on higher 489 

integration levels and represent more than the sum of the low-level components (Reuter et al. 2005). For 490 

understanding these emergent properties, the interaction between the different elements must be closely 491 

studied (Reuter et al. 2005). In consequence, when possible, key biological interactions should be 492 

identified and studied during phytomanagement initiatives, since they support the functioning of the 493 

ecosystem and are the basis of emergent properties.   494 

On the other hand, when promoting biodiversity under phytomanagement, it is important to 495 

always include organisms from the different levels of the trophic chain. Instead, when evaluating their 496 

effect on biodiversity, most phytomanagement initiatives only pay attention to aboveground botanical 497 

diversity (richness, composition, vegetation structure) and, occasionally, include some belowground soil 498 

biota, in many cases just microorganisms owing to their well-known key role in critical soil processes 499 

and, hence, functions and ecosystem services (Xue et al. 2018; Burges et al. 2020). Nonetheless, for a 500 

biodiversity assessment with more ecological relevance, it is desirable to include taxonomic groups from 501 

the different levels of the trophic chain. As a matter of fact, we should study as many taxonomic groups 502 

from the food web as possible (Garrouj et al. 2018; Ali et al. 2019; Prins et al. 2019).  503 

Simplifying, the aboveground food web includes producers (plants), primary consumers 504 

(herbivores) and secondary consumers (predators). Regarding consumers, there is an unresolved debate 505 

regarding the benefits and disadvantages associated to the presence of animals in phytomanaged sites. 506 

Actually, when dealing with the remediation of polluted sites, in many cases, animals are deliberately 507 

excluded, in an attempt to avoid possible ecotoxic effects on exposed animals and, also, to minimize the 508 

risk of bioaccumulation and biomagnification (Mann et al. 2011). But animals (e.g., arthropods, 509 

earthworms, mammals, birds, etc.) can act as phytomanagement crop auxiliaries, helping to fight pests, 510 

pollinate the cultivated plants, etc. (Verkerk et al. 1998; Ferron and Deguine 2005). 511 
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Pertaining to the soil ecosystem, an amazing diversity of soil organisms make up its food web: 512 

bacteria, fungi, algae, protozoa, nematodes, micro-arthropods, earthworms, insects, small vertebrates 513 

(mice, moles), etc. Like all food webs, the soil food web is fueled by primary producers such as plants, 514 

lichens, mosses, photosynthetic bacteria (e.g., cyanobacteria) and unicellular algae. The remaining 515 

members of the soil biota obtain energy and carbon by consuming the organic compounds produced by 516 

primary producers. 517 

 518 

4.3. Adaptive monitoring during phytomanagement 519 

When dealing with long-term monitoring programs, such as the one for assessing the influence of 520 

phytomanagement practices on biodiversity, as time passes, it is inevitable that (i) new analytical 521 

techniques, methods and equipments might appear in the market; (ii) different approaches, concepts, 522 

ideas, etc. might come up; (iii) changes in the ecosystem developmental stage will occur; (iv) unexpected 523 

environmental threats might emerge; (v) budget fluctuations might threaten the initiative, and so forth 524 

(Epelde et al. 2014). For that reason, we propose that the paradigm of adaptive monitoring (this paradigm 525 

enables monitoring programs to evolve iteratively as new information emerges and research questions 526 

change) should be incorporated to the long-term monitoring of the effect of phytomanagement practices 527 

on biodiversity.  528 

To this purpose, among other aspects, (i) well-formulated, clear and tractable questions must be 529 

established at the beginning of the phytomanagement initiative; (ii) a rigorous statistical design must be 530 

implemented from the onset of the study, notably accounting for the spatial variability of soil 531 

contamination, contaminant exposure and pollutant linkage; and (iii) a conceptual model of the site under 532 

phytomanagement must be created (Cundy et al. 2016).  533 

As part of the adaptive monitoring program, periodically (the time period will depend on the 534 

specific phytomanagement initiative), an expert judgment analysis must be organized to revise and, if 535 

necessary, update the different aspects that make up the biodiversity monitoring program. Expert 536 

judgment analyses often encourage the forging of partnership between researchers, policy-makers and 537 

resource managers, an aspect of the utmost importance in phytomanagement (Cundy et al. 2013). 538 

The accomplishment of economic, social and environmental benefits is a key aspect of 539 

phytomanagement (Cundy et al. 2016). In particular, the provisioning of ecosystem services (carbon 540 

sequestration, improvement of soil fertility, control of soil erosion, improvement of air quality, climate 541 
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and water regulation, production of atmospheric oxygen, provision of habitat, etc.) is a crucial component 542 

of phytomanagement initiatives (Burges et al. 2018).  543 

The provision of ecosystem services is underpinned by a variety of ecological processes and 544 

functions which themselves are driven by biodiversity. Although changes in biodiversity can affect 545 

ecosystem processes and, hence, the provision of ecosystem services, in some situations, biomass, species 546 

composition, functional traits, etc. are more important than biodiversity itself for the provisioning of those 547 

services. Nonetheless, trade-offs between biodiversity and ecosystem services might arise in some 548 

situations (Bandowe et al. 2019). Also, trade-offs and conflicts between the different ecosystem services 549 

themselves might also emerge, and, then, it is desirable to select from the onset what specific ecosystem 550 

services to promote, and implement measures that minimize conflicts.  551 

 552 

Conclusion 553 

Paraphrasing the three well-known M´s of successful trading (Mind, Money management, and Method), 554 

we can visualize the links between biodiversity and phytomanagement according to three M´s of 555 

successful phytomanagement: (1) Mind: for effective phytomanagement, we must use our mind and 556 

creativity to design the best strategy for each specific site and casuistry (here, following the medical 557 

aphorism “there are no diseases but sick people”, we can state that “there is no pollution but polluted 558 

areas”; all of them are different and require a site-specific assessment). In this respect, biodiversity 559 

provides ideas, models and strategies (tested through millions of years of evolution) that we can learn 560 

from; (2) Management: for successful phytomanagement, we must apply scientifically-based adaptive 561 

management, especially under the current scenario of climate change. Biodiversity provides a myriad of 562 

species, metabolic capabilities, functional traits, etc. which we can use in response to changing 563 

conditions; and (3) Money: a fruitful phytomanagement will provide economic value through products 564 

(crops for biomass-processing technologies) and ecosystem services which can help fuel our bioeconomy. 565 

Interestingly, the promotion of biodiversity in phytomanaged sites can result in the generation of a wider 566 

variety of valuable products and ecosystem services, while minimizing pollutant-induced environmental 567 

risks. 568 

 569 

 570 

 571 
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Table 1: Ten examples of effects of biodiversity under phytomanagement. 1019 

Plant species Contaminants Main finding Reference 

Pteris vittata co-planted 
with Morus alba and 
Broussonetia papyrifera  

As, Cd, Pb and Zn Co-planting alleviated toxicity 
and improved phytoextraction  

Zeng et al.  
2019b 

Pteris vittata co-planted 
with Arundo donax, Morus 

alba and Broussonetia 

papyrifera 

As, Cd, Pb, and 
Zn 

Co-planting enhanced P. 

vittata growth and metal(oid) 
accumulation, and improve 
soil quality  

Zeng et al.  
2019a 

Co-planting Sedum alfredii 

with Lolium perenne or 
Ricinus communis 

Metals and PAHs Co-planting S. alfredii with 
ryegrass or castor enhanced 
pyrene and anthracene 
dissipation 

Wang et al.  
2013 

Intercropping: Medicago 

sativa with Festuca 

arundinacea 

PAHs Removal PAHs under 
intercropping was higher than 
under monoculture 

Sun et al.  
2011 

Odontarrhena chalcidica or 
Noccaea goesingensis co-
planted with  Lotus 

corniculatus 

Ni Intercropping with L. 

corniculatus tended to 
decrease the shoot biomass of 
both species 

Rosenkranz et al. 
2019 

The grass Piptatherum 

miliaceum, the shrub 
Helichrysum decumbens, 
and the trees Pinus 

halepensis and Tetraclinis 

articulata 

Metal(loid)s A diverse set of plant species 
with contrasting life forms 
may result in a more efficient 
employment of water 
resources and a higher 
biodiversity not only in 
relation to flora but also soil 
microbes  

Parraga-Aguado et al. 
2014 

Medicago sativa, Lolium 

perenne and Festuca 

arundinacea 

Phthalic acid 
esters (PAEs) 

Intercropping with the three 
species was the most effective 
treatment for PAEs removal 

Ma et al.  
2013 

Monocultures and 
polycultures of Festuca 

arundinacea, Medicago 

sativa and Salix miyabeana 

Ag, As, Cd, Cr, 
Cu, Pb, Se and Zn 

Co-cropping with the three 
species was the most robust 
scenario for remediation of 
multiple trace element  
contaminated soil 

Desjardins et al.  
2018 

Grapevine was grown in 
monocropping, 
intercropping with 
Paspalum plicatulum and 
intercropping with 
Axonopus affinis 

Cu Intercropping with P. 

plicatulum and A. affinis was 
efficient in promoting the 
growth of grapevines at 
moderate and low levels of Cu 
contamination by reducing its 
bioavailability 

De Conti et al.  
2019 

Co-cropping of Festuca 

arundinacea, Salix 

miyabeana and Medicago 

sativa 

Trace elements 
and persistent 

organic pollutants 
(POPs) 

The crops cultivated in pairs 
retained rhizosphere 
microbiome bacteria involved 
in plant growth promotion, 
POP tolerance and 
degradation, and improved 
nutrient acquisition 

Brereton et al.  
2020 
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Figure legends 1022 

Figure 1: Evolution from phytoremediation to phytomanagement. 1023 
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