Conference paper Open Access

Information-theoretic Analysis of Entity Dynamics on the Linked Open Data Cloud

Nishioka, Chifumi; Scherp, Ansgar


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="DOI">10.5281/zenodo.61386</identifier>
  <creators>
    <creator>
      <creatorName>Nishioka, Chifumi</creatorName>
      <givenName>Chifumi</givenName>
      <familyName>Nishioka</familyName>
      <affiliation>Kiel University and Leibniz Information Centre for Economics (ZBW)</affiliation>
    </creator>
    <creator>
      <creatorName>Scherp, Ansgar</creatorName>
      <givenName>Ansgar</givenName>
      <familyName>Scherp</familyName>
      <affiliation>Kiel University and Leibniz Information Centre for Economics (ZBW)</affiliation>
    </creator>
  </creators>
  <titles>
    <title>Information-theoretic Analysis of Entity Dynamics on the Linked Open Data Cloud</title>
  </titles>
  <publisher>Zenodo</publisher>
  <publicationYear>2016</publicationYear>
  <dates>
    <date dateType="Issued">2016-05-29</date>
  </dates>
  <resourceType resourceTypeGeneral="Text">Conference paper</resourceType>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/61386</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://zenodo.org/communities/ecfunded</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://zenodo.org/communities/moving-h2020</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="http://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;The Linked Open Data (LOD) cloud is expanding continuously. Entities appear, change, and disappear over time. However, relatively little is known about the dynamics of the entities, i. e., the characteristics of their temporal evolution. In this paper, we employ clustering techniques over the dynamics of entities to determine common temporal patterns. We define an entity as RDF resource together with its attached RDF types and properties. The quality of the clusterings is evaluated using entity features such as the entities’ properties, RDF types, and pay-level domain. In addition, we investigate to what extend entities that share a feature value change together over time. As dataset, we use weekly LOD snapshots over a period of more than three years provided by the Dynamic Linked Data Observatory. Insights into the dynamics of entities on the LOD cloud has strong practical implications to any application requiring fresh caches of LOD. The range of applications is from determining crawling strategies for LOD, caching SPARQL queries, to programming against LOD, and recommending vocabularies for reusing LOD vocabularies. &lt;/p&gt;</description>
  </descriptions>
  <fundingReferences>
    <fundingReference>
      <funderName>European Commission</funderName>
      <funderIdentifier funderIdentifierType="Crossref Funder ID">10.13039/501100000780</funderIdentifier>
      <awardNumber awardURI="info:eu-repo/grantAgreement/EC/H2020/693092/">693092</awardNumber>
      <awardTitle>Training towards a society of data-savvy information professionals to enable open leadership innovation</awardTitle>
    </fundingReference>
  </fundingReferences>
</resource>
10
4
views
downloads
All versions This version
Views 1010
Downloads 44
Data volume 4.5 MB4.5 MB
Unique views 1010
Unique downloads 44

Share

Cite as